91d8b6c6facf2f9a8fe190b05efede8537cfb3ee
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: None
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     real *           vdwgridioffsetptr0;
86     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     int              nvdwtype;
91     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
95     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
96     __m256d           c6grid_00;
97     real             *vdwgridparam;
98     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
99     __m256d           one_half  = _mm256_set1_pd(0.5);
100     __m256d           minus_one = _mm256_set1_pd(-1.0);
101     __m256d          dummy_mask,cutoff_mask;
102     __m128           tmpmask0,tmpmask1;
103     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
104     __m256d          one     = _mm256_set1_pd(1.0);
105     __m256d          two     = _mm256_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120     vdwgridparam     = fr->ljpme_c6grid;
121     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
122     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
123     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = jnrC = jnrD = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129     j_coord_offsetC = 0;
130     j_coord_offsetD = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     for(iidx=0;iidx<4*DIM;iidx++)
136     {
137         scratch[iidx] = 0.0;
138     }
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
156
157         fix0             = _mm256_setzero_pd();
158         fiy0             = _mm256_setzero_pd();
159         fiz0             = _mm256_setzero_pd();
160
161         /* Load parameters for i particles */
162         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
163         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
164
165         /* Reset potential sums */
166         vvdwsum          = _mm256_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             jnrC             = jjnr[jidx+2];
176             jnrD             = jjnr[jidx+3];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179             j_coord_offsetC  = DIM*jnrC;
180             j_coord_offsetD  = DIM*jnrD;
181
182             /* load j atom coordinates */
183             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
184                                                  x+j_coord_offsetC,x+j_coord_offsetD,
185                                                  &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm256_sub_pd(ix0,jx0);
189             dy00             = _mm256_sub_pd(iy0,jy0);
190             dz00             = _mm256_sub_pd(iz0,jz0);
191
192             /* Calculate squared distance and things based on it */
193             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
194
195             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
196
197             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
198
199             /* Load parameters for j particles */
200             vdwjidx0A        = 2*vdwtype[jnrA+0];
201             vdwjidx0B        = 2*vdwtype[jnrB+0];
202             vdwjidx0C        = 2*vdwtype[jnrC+0];
203             vdwjidx0D        = 2*vdwtype[jnrD+0];
204
205             /**************************
206              * CALCULATE INTERACTIONS *
207              **************************/
208
209             r00              = _mm256_mul_pd(rsq00,rinv00);
210
211             /* Compute parameters for interactions between i and j atoms */
212             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
213                                             vdwioffsetptr0+vdwjidx0B,
214                                             vdwioffsetptr0+vdwjidx0C,
215                                             vdwioffsetptr0+vdwjidx0D,
216                                             &c6_00,&c12_00);
217
218             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
219                                                                   vdwgridioffsetptr0+vdwjidx0B,
220                                                                   vdwgridioffsetptr0+vdwjidx0C,
221                                                                   vdwgridioffsetptr0+vdwjidx0D);
222
223             /* Analytical LJ-PME */
224             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
225             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
226             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
227             exponent         = gmx_simd_exp_d(ewcljrsq);
228             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
229             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
230             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
231             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
232             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
233             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
234             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
235             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
236
237             /* Update potential sum for this i atom from the interaction with this j atom. */
238             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
239
240             fscal            = fvdw;
241
242             /* Calculate temporary vectorial force */
243             tx               = _mm256_mul_pd(fscal,dx00);
244             ty               = _mm256_mul_pd(fscal,dy00);
245             tz               = _mm256_mul_pd(fscal,dz00);
246
247             /* Update vectorial force */
248             fix0             = _mm256_add_pd(fix0,tx);
249             fiy0             = _mm256_add_pd(fiy0,ty);
250             fiz0             = _mm256_add_pd(fiz0,tz);
251
252             fjptrA             = f+j_coord_offsetA;
253             fjptrB             = f+j_coord_offsetB;
254             fjptrC             = f+j_coord_offsetC;
255             fjptrD             = f+j_coord_offsetD;
256             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
257
258             /* Inner loop uses 54 flops */
259         }
260
261         if(jidx<j_index_end)
262         {
263
264             /* Get j neighbor index, and coordinate index */
265             jnrlistA         = jjnr[jidx];
266             jnrlistB         = jjnr[jidx+1];
267             jnrlistC         = jjnr[jidx+2];
268             jnrlistD         = jjnr[jidx+3];
269             /* Sign of each element will be negative for non-real atoms.
270              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
271              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
272              */
273             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
274
275             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
276             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
277             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
278
279             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
280             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
281             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
282             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
283             j_coord_offsetA  = DIM*jnrA;
284             j_coord_offsetB  = DIM*jnrB;
285             j_coord_offsetC  = DIM*jnrC;
286             j_coord_offsetD  = DIM*jnrD;
287
288             /* load j atom coordinates */
289             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
290                                                  x+j_coord_offsetC,x+j_coord_offsetD,
291                                                  &jx0,&jy0,&jz0);
292
293             /* Calculate displacement vector */
294             dx00             = _mm256_sub_pd(ix0,jx0);
295             dy00             = _mm256_sub_pd(iy0,jy0);
296             dz00             = _mm256_sub_pd(iz0,jz0);
297
298             /* Calculate squared distance and things based on it */
299             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
300
301             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
302
303             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
304
305             /* Load parameters for j particles */
306             vdwjidx0A        = 2*vdwtype[jnrA+0];
307             vdwjidx0B        = 2*vdwtype[jnrB+0];
308             vdwjidx0C        = 2*vdwtype[jnrC+0];
309             vdwjidx0D        = 2*vdwtype[jnrD+0];
310
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             r00              = _mm256_mul_pd(rsq00,rinv00);
316             r00              = _mm256_andnot_pd(dummy_mask,r00);
317
318             /* Compute parameters for interactions between i and j atoms */
319             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
320                                             vdwioffsetptr0+vdwjidx0B,
321                                             vdwioffsetptr0+vdwjidx0C,
322                                             vdwioffsetptr0+vdwjidx0D,
323                                             &c6_00,&c12_00);
324
325             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
326                                                                   vdwgridioffsetptr0+vdwjidx0B,
327                                                                   vdwgridioffsetptr0+vdwjidx0C,
328                                                                   vdwgridioffsetptr0+vdwjidx0D);
329
330             /* Analytical LJ-PME */
331             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
332             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
333             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
334             exponent         = gmx_simd_exp_d(ewcljrsq);
335             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
336             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
337             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
338             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
339             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
340             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
341             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
342             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
346             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
347
348             fscal            = fvdw;
349
350             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
351
352             /* Calculate temporary vectorial force */
353             tx               = _mm256_mul_pd(fscal,dx00);
354             ty               = _mm256_mul_pd(fscal,dy00);
355             tz               = _mm256_mul_pd(fscal,dz00);
356
357             /* Update vectorial force */
358             fix0             = _mm256_add_pd(fix0,tx);
359             fiy0             = _mm256_add_pd(fiy0,ty);
360             fiz0             = _mm256_add_pd(fiz0,tz);
361
362             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
363             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
364             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
365             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
366             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
367
368             /* Inner loop uses 55 flops */
369         }
370
371         /* End of innermost loop */
372
373         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
374                                                  f+i_coord_offset,fshift+i_shift_offset);
375
376         ggid                        = gid[iidx];
377         /* Update potential energies */
378         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
379
380         /* Increment number of inner iterations */
381         inneriter                  += j_index_end - j_index_start;
382
383         /* Outer loop uses 7 flops */
384     }
385
386     /* Increment number of outer iterations */
387     outeriter        += nri;
388
389     /* Update outer/inner flops */
390
391     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*55);
392 }
393 /*
394  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_avx_256_double
395  * Electrostatics interaction: None
396  * VdW interaction:            LJEwald
397  * Geometry:                   Particle-Particle
398  * Calculate force/pot:        Force
399  */
400 void
401 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_avx_256_double
402                     (t_nblist                    * gmx_restrict       nlist,
403                      rvec                        * gmx_restrict          xx,
404                      rvec                        * gmx_restrict          ff,
405                      t_forcerec                  * gmx_restrict          fr,
406                      t_mdatoms                   * gmx_restrict     mdatoms,
407                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
408                      t_nrnb                      * gmx_restrict        nrnb)
409 {
410     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
411      * just 0 for non-waters.
412      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
413      * jnr indices corresponding to data put in the four positions in the SIMD register.
414      */
415     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
416     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
417     int              jnrA,jnrB,jnrC,jnrD;
418     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
419     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
420     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
421     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
422     real             rcutoff_scalar;
423     real             *shiftvec,*fshift,*x,*f;
424     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
425     real             scratch[4*DIM];
426     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
427     real *           vdwioffsetptr0;
428     real *           vdwgridioffsetptr0;
429     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
430     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
431     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
432     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
433     int              nvdwtype;
434     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
435     int              *vdwtype;
436     real             *vdwparam;
437     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
438     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
439     __m256d           c6grid_00;
440     real             *vdwgridparam;
441     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
442     __m256d           one_half  = _mm256_set1_pd(0.5);
443     __m256d           minus_one = _mm256_set1_pd(-1.0);
444     __m256d          dummy_mask,cutoff_mask;
445     __m128           tmpmask0,tmpmask1;
446     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
447     __m256d          one     = _mm256_set1_pd(1.0);
448     __m256d          two     = _mm256_set1_pd(2.0);
449     x                = xx[0];
450     f                = ff[0];
451
452     nri              = nlist->nri;
453     iinr             = nlist->iinr;
454     jindex           = nlist->jindex;
455     jjnr             = nlist->jjnr;
456     shiftidx         = nlist->shift;
457     gid              = nlist->gid;
458     shiftvec         = fr->shift_vec[0];
459     fshift           = fr->fshift[0];
460     nvdwtype         = fr->ntype;
461     vdwparam         = fr->nbfp;
462     vdwtype          = mdatoms->typeA;
463     vdwgridparam     = fr->ljpme_c6grid;
464     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
465     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
466     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
467
468     /* Avoid stupid compiler warnings */
469     jnrA = jnrB = jnrC = jnrD = 0;
470     j_coord_offsetA = 0;
471     j_coord_offsetB = 0;
472     j_coord_offsetC = 0;
473     j_coord_offsetD = 0;
474
475     outeriter        = 0;
476     inneriter        = 0;
477
478     for(iidx=0;iidx<4*DIM;iidx++)
479     {
480         scratch[iidx] = 0.0;
481     }
482
483     /* Start outer loop over neighborlists */
484     for(iidx=0; iidx<nri; iidx++)
485     {
486         /* Load shift vector for this list */
487         i_shift_offset   = DIM*shiftidx[iidx];
488
489         /* Load limits for loop over neighbors */
490         j_index_start    = jindex[iidx];
491         j_index_end      = jindex[iidx+1];
492
493         /* Get outer coordinate index */
494         inr              = iinr[iidx];
495         i_coord_offset   = DIM*inr;
496
497         /* Load i particle coords and add shift vector */
498         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
499
500         fix0             = _mm256_setzero_pd();
501         fiy0             = _mm256_setzero_pd();
502         fiz0             = _mm256_setzero_pd();
503
504         /* Load parameters for i particles */
505         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
506         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
507
508         /* Start inner kernel loop */
509         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
510         {
511
512             /* Get j neighbor index, and coordinate index */
513             jnrA             = jjnr[jidx];
514             jnrB             = jjnr[jidx+1];
515             jnrC             = jjnr[jidx+2];
516             jnrD             = jjnr[jidx+3];
517             j_coord_offsetA  = DIM*jnrA;
518             j_coord_offsetB  = DIM*jnrB;
519             j_coord_offsetC  = DIM*jnrC;
520             j_coord_offsetD  = DIM*jnrD;
521
522             /* load j atom coordinates */
523             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
524                                                  x+j_coord_offsetC,x+j_coord_offsetD,
525                                                  &jx0,&jy0,&jz0);
526
527             /* Calculate displacement vector */
528             dx00             = _mm256_sub_pd(ix0,jx0);
529             dy00             = _mm256_sub_pd(iy0,jy0);
530             dz00             = _mm256_sub_pd(iz0,jz0);
531
532             /* Calculate squared distance and things based on it */
533             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
534
535             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
536
537             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
538
539             /* Load parameters for j particles */
540             vdwjidx0A        = 2*vdwtype[jnrA+0];
541             vdwjidx0B        = 2*vdwtype[jnrB+0];
542             vdwjidx0C        = 2*vdwtype[jnrC+0];
543             vdwjidx0D        = 2*vdwtype[jnrD+0];
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             r00              = _mm256_mul_pd(rsq00,rinv00);
550
551             /* Compute parameters for interactions between i and j atoms */
552             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
553                                             vdwioffsetptr0+vdwjidx0B,
554                                             vdwioffsetptr0+vdwjidx0C,
555                                             vdwioffsetptr0+vdwjidx0D,
556                                             &c6_00,&c12_00);
557
558             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
559                                                                   vdwgridioffsetptr0+vdwjidx0B,
560                                                                   vdwgridioffsetptr0+vdwjidx0C,
561                                                                   vdwgridioffsetptr0+vdwjidx0D);
562
563             /* Analytical LJ-PME */
564             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
565             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
566             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
567             exponent         = gmx_simd_exp_d(ewcljrsq);
568             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
569             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
570             /* f6A = 6 * C6grid * (1 - poly) */
571             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
572             /* f6B = C6grid * exponent * beta^6 */
573             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
574             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
575             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
576
577             fscal            = fvdw;
578
579             /* Calculate temporary vectorial force */
580             tx               = _mm256_mul_pd(fscal,dx00);
581             ty               = _mm256_mul_pd(fscal,dy00);
582             tz               = _mm256_mul_pd(fscal,dz00);
583
584             /* Update vectorial force */
585             fix0             = _mm256_add_pd(fix0,tx);
586             fiy0             = _mm256_add_pd(fiy0,ty);
587             fiz0             = _mm256_add_pd(fiz0,tz);
588
589             fjptrA             = f+j_coord_offsetA;
590             fjptrB             = f+j_coord_offsetB;
591             fjptrC             = f+j_coord_offsetC;
592             fjptrD             = f+j_coord_offsetD;
593             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
594
595             /* Inner loop uses 46 flops */
596         }
597
598         if(jidx<j_index_end)
599         {
600
601             /* Get j neighbor index, and coordinate index */
602             jnrlistA         = jjnr[jidx];
603             jnrlistB         = jjnr[jidx+1];
604             jnrlistC         = jjnr[jidx+2];
605             jnrlistD         = jjnr[jidx+3];
606             /* Sign of each element will be negative for non-real atoms.
607              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
608              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
609              */
610             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
611
612             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
613             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
614             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
615
616             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
617             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
618             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
619             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
620             j_coord_offsetA  = DIM*jnrA;
621             j_coord_offsetB  = DIM*jnrB;
622             j_coord_offsetC  = DIM*jnrC;
623             j_coord_offsetD  = DIM*jnrD;
624
625             /* load j atom coordinates */
626             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
627                                                  x+j_coord_offsetC,x+j_coord_offsetD,
628                                                  &jx0,&jy0,&jz0);
629
630             /* Calculate displacement vector */
631             dx00             = _mm256_sub_pd(ix0,jx0);
632             dy00             = _mm256_sub_pd(iy0,jy0);
633             dz00             = _mm256_sub_pd(iz0,jz0);
634
635             /* Calculate squared distance and things based on it */
636             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
637
638             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
639
640             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
641
642             /* Load parameters for j particles */
643             vdwjidx0A        = 2*vdwtype[jnrA+0];
644             vdwjidx0B        = 2*vdwtype[jnrB+0];
645             vdwjidx0C        = 2*vdwtype[jnrC+0];
646             vdwjidx0D        = 2*vdwtype[jnrD+0];
647
648             /**************************
649              * CALCULATE INTERACTIONS *
650              **************************/
651
652             r00              = _mm256_mul_pd(rsq00,rinv00);
653             r00              = _mm256_andnot_pd(dummy_mask,r00);
654
655             /* Compute parameters for interactions between i and j atoms */
656             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
657                                             vdwioffsetptr0+vdwjidx0B,
658                                             vdwioffsetptr0+vdwjidx0C,
659                                             vdwioffsetptr0+vdwjidx0D,
660                                             &c6_00,&c12_00);
661
662             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
663                                                                   vdwgridioffsetptr0+vdwjidx0B,
664                                                                   vdwgridioffsetptr0+vdwjidx0C,
665                                                                   vdwgridioffsetptr0+vdwjidx0D);
666
667             /* Analytical LJ-PME */
668             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
669             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
670             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
671             exponent         = gmx_simd_exp_d(ewcljrsq);
672             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
673             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
674             /* f6A = 6 * C6grid * (1 - poly) */
675             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
676             /* f6B = C6grid * exponent * beta^6 */
677             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
678             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
679             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
680
681             fscal            = fvdw;
682
683             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
684
685             /* Calculate temporary vectorial force */
686             tx               = _mm256_mul_pd(fscal,dx00);
687             ty               = _mm256_mul_pd(fscal,dy00);
688             tz               = _mm256_mul_pd(fscal,dz00);
689
690             /* Update vectorial force */
691             fix0             = _mm256_add_pd(fix0,tx);
692             fiy0             = _mm256_add_pd(fiy0,ty);
693             fiz0             = _mm256_add_pd(fiz0,tz);
694
695             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
696             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
697             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
698             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
699             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
700
701             /* Inner loop uses 47 flops */
702         }
703
704         /* End of innermost loop */
705
706         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
707                                                  f+i_coord_offset,fshift+i_shift_offset);
708
709         /* Increment number of inner iterations */
710         inneriter                  += j_index_end - j_index_start;
711
712         /* Outer loop uses 6 flops */
713     }
714
715     /* Increment number of outer iterations */
716     outeriter        += nri;
717
718     /* Update outer/inner flops */
719
720     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*47);
721 }