Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: None
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     real *           vdwgridioffsetptr0;
86     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     int              nvdwtype;
91     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
95     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
96     __m256d           c6grid_00;
97     real             *vdwgridparam;
98     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
99     __m256d           one_half  = _mm256_set1_pd(0.5);
100     __m256d           minus_one = _mm256_set1_pd(-1.0);
101     __m256d          dummy_mask,cutoff_mask;
102     __m128           tmpmask0,tmpmask1;
103     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
104     __m256d          one     = _mm256_set1_pd(1.0);
105     __m256d          two     = _mm256_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120     vdwgridparam     = fr->ljpme_c6grid;
121     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
122     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
123     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
124
125     rcutoff_scalar   = fr->rvdw;
126     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
127     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
128
129     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
130     rvdw             = _mm256_set1_pd(fr->rvdw);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163
164         fix0             = _mm256_setzero_pd();
165         fiy0             = _mm256_setzero_pd();
166         fiz0             = _mm256_setzero_pd();
167
168         /* Load parameters for i particles */
169         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
170         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         vvdwsum          = _mm256_setzero_pd();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186             j_coord_offsetC  = DIM*jnrC;
187             j_coord_offsetD  = DIM*jnrD;
188
189             /* load j atom coordinates */
190             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
191                                                  x+j_coord_offsetC,x+j_coord_offsetD,
192                                                  &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm256_sub_pd(ix0,jx0);
196             dy00             = _mm256_sub_pd(iy0,jy0);
197             dz00             = _mm256_sub_pd(iz0,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
201
202             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
203
204             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
205
206             /* Load parameters for j particles */
207             vdwjidx0A        = 2*vdwtype[jnrA+0];
208             vdwjidx0B        = 2*vdwtype[jnrB+0];
209             vdwjidx0C        = 2*vdwtype[jnrC+0];
210             vdwjidx0D        = 2*vdwtype[jnrD+0];
211
212             /**************************
213              * CALCULATE INTERACTIONS *
214              **************************/
215
216             if (gmx_mm256_any_lt(rsq00,rcutoff2))
217             {
218
219             r00              = _mm256_mul_pd(rsq00,rinv00);
220
221             /* Compute parameters for interactions between i and j atoms */
222             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
223                                             vdwioffsetptr0+vdwjidx0B,
224                                             vdwioffsetptr0+vdwjidx0C,
225                                             vdwioffsetptr0+vdwjidx0D,
226                                             &c6_00,&c12_00);
227
228             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
229                                                                   vdwgridioffsetptr0+vdwjidx0B,
230                                                                   vdwgridioffsetptr0+vdwjidx0C,
231                                                                   vdwgridioffsetptr0+vdwjidx0D);
232
233             /* Analytical LJ-PME */
234             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
235             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
236             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
237             exponent         = gmx_simd_exp_d(ewcljrsq);
238             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
239             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
240             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
241             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
242             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
243             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
244                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
245             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
246             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
247
248             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
252             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
253
254             fscal            = fvdw;
255
256             fscal            = _mm256_and_pd(fscal,cutoff_mask);
257
258             /* Calculate temporary vectorial force */
259             tx               = _mm256_mul_pd(fscal,dx00);
260             ty               = _mm256_mul_pd(fscal,dy00);
261             tz               = _mm256_mul_pd(fscal,dz00);
262
263             /* Update vectorial force */
264             fix0             = _mm256_add_pd(fix0,tx);
265             fiy0             = _mm256_add_pd(fiy0,ty);
266             fiz0             = _mm256_add_pd(fiz0,tz);
267
268             fjptrA             = f+j_coord_offsetA;
269             fjptrB             = f+j_coord_offsetB;
270             fjptrC             = f+j_coord_offsetC;
271             fjptrD             = f+j_coord_offsetD;
272             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
273
274             }
275
276             /* Inner loop uses 62 flops */
277         }
278
279         if(jidx<j_index_end)
280         {
281
282             /* Get j neighbor index, and coordinate index */
283             jnrlistA         = jjnr[jidx];
284             jnrlistB         = jjnr[jidx+1];
285             jnrlistC         = jjnr[jidx+2];
286             jnrlistD         = jjnr[jidx+3];
287             /* Sign of each element will be negative for non-real atoms.
288              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
289              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
290              */
291             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
292
293             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
294             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
295             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
296
297             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
298             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
299             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
300             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
301             j_coord_offsetA  = DIM*jnrA;
302             j_coord_offsetB  = DIM*jnrB;
303             j_coord_offsetC  = DIM*jnrC;
304             j_coord_offsetD  = DIM*jnrD;
305
306             /* load j atom coordinates */
307             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
308                                                  x+j_coord_offsetC,x+j_coord_offsetD,
309                                                  &jx0,&jy0,&jz0);
310
311             /* Calculate displacement vector */
312             dx00             = _mm256_sub_pd(ix0,jx0);
313             dy00             = _mm256_sub_pd(iy0,jy0);
314             dz00             = _mm256_sub_pd(iz0,jz0);
315
316             /* Calculate squared distance and things based on it */
317             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
318
319             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
320
321             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
322
323             /* Load parameters for j particles */
324             vdwjidx0A        = 2*vdwtype[jnrA+0];
325             vdwjidx0B        = 2*vdwtype[jnrB+0];
326             vdwjidx0C        = 2*vdwtype[jnrC+0];
327             vdwjidx0D        = 2*vdwtype[jnrD+0];
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             if (gmx_mm256_any_lt(rsq00,rcutoff2))
334             {
335
336             r00              = _mm256_mul_pd(rsq00,rinv00);
337             r00              = _mm256_andnot_pd(dummy_mask,r00);
338
339             /* Compute parameters for interactions between i and j atoms */
340             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
341                                             vdwioffsetptr0+vdwjidx0B,
342                                             vdwioffsetptr0+vdwjidx0C,
343                                             vdwioffsetptr0+vdwjidx0D,
344                                             &c6_00,&c12_00);
345
346             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
347                                                                   vdwgridioffsetptr0+vdwjidx0B,
348                                                                   vdwgridioffsetptr0+vdwjidx0C,
349                                                                   vdwgridioffsetptr0+vdwjidx0D);
350
351             /* Analytical LJ-PME */
352             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
353             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
354             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
355             exponent         = gmx_simd_exp_d(ewcljrsq);
356             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
357             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
358             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
359             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
360             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
361             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
362                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
363             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
364             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
365
366             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
370             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
371             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
372
373             fscal            = fvdw;
374
375             fscal            = _mm256_and_pd(fscal,cutoff_mask);
376
377             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm256_mul_pd(fscal,dx00);
381             ty               = _mm256_mul_pd(fscal,dy00);
382             tz               = _mm256_mul_pd(fscal,dz00);
383
384             /* Update vectorial force */
385             fix0             = _mm256_add_pd(fix0,tx);
386             fiy0             = _mm256_add_pd(fiy0,ty);
387             fiz0             = _mm256_add_pd(fiz0,tz);
388
389             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
390             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
391             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
392             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
393             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
394
395             }
396
397             /* Inner loop uses 63 flops */
398         }
399
400         /* End of innermost loop */
401
402         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
403                                                  f+i_coord_offset,fshift+i_shift_offset);
404
405         ggid                        = gid[iidx];
406         /* Update potential energies */
407         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
408
409         /* Increment number of inner iterations */
410         inneriter                  += j_index_end - j_index_start;
411
412         /* Outer loop uses 7 flops */
413     }
414
415     /* Increment number of outer iterations */
416     outeriter        += nri;
417
418     /* Update outer/inner flops */
419
420     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*63);
421 }
422 /*
423  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_avx_256_double
424  * Electrostatics interaction: None
425  * VdW interaction:            LJEwald
426  * Geometry:                   Particle-Particle
427  * Calculate force/pot:        Force
428  */
429 void
430 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_avx_256_double
431                     (t_nblist                    * gmx_restrict       nlist,
432                      rvec                        * gmx_restrict          xx,
433                      rvec                        * gmx_restrict          ff,
434                      t_forcerec                  * gmx_restrict          fr,
435                      t_mdatoms                   * gmx_restrict     mdatoms,
436                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
437                      t_nrnb                      * gmx_restrict        nrnb)
438 {
439     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
440      * just 0 for non-waters.
441      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
442      * jnr indices corresponding to data put in the four positions in the SIMD register.
443      */
444     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
445     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
446     int              jnrA,jnrB,jnrC,jnrD;
447     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
448     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
449     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
450     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
451     real             rcutoff_scalar;
452     real             *shiftvec,*fshift,*x,*f;
453     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
454     real             scratch[4*DIM];
455     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
456     real *           vdwioffsetptr0;
457     real *           vdwgridioffsetptr0;
458     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
459     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
460     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
461     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
462     int              nvdwtype;
463     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
464     int              *vdwtype;
465     real             *vdwparam;
466     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
467     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
468     __m256d           c6grid_00;
469     real             *vdwgridparam;
470     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
471     __m256d           one_half  = _mm256_set1_pd(0.5);
472     __m256d           minus_one = _mm256_set1_pd(-1.0);
473     __m256d          dummy_mask,cutoff_mask;
474     __m128           tmpmask0,tmpmask1;
475     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
476     __m256d          one     = _mm256_set1_pd(1.0);
477     __m256d          two     = _mm256_set1_pd(2.0);
478     x                = xx[0];
479     f                = ff[0];
480
481     nri              = nlist->nri;
482     iinr             = nlist->iinr;
483     jindex           = nlist->jindex;
484     jjnr             = nlist->jjnr;
485     shiftidx         = nlist->shift;
486     gid              = nlist->gid;
487     shiftvec         = fr->shift_vec[0];
488     fshift           = fr->fshift[0];
489     nvdwtype         = fr->ntype;
490     vdwparam         = fr->nbfp;
491     vdwtype          = mdatoms->typeA;
492     vdwgridparam     = fr->ljpme_c6grid;
493     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
494     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
495     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
496
497     rcutoff_scalar   = fr->rvdw;
498     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
499     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
500
501     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
502     rvdw             = _mm256_set1_pd(fr->rvdw);
503
504     /* Avoid stupid compiler warnings */
505     jnrA = jnrB = jnrC = jnrD = 0;
506     j_coord_offsetA = 0;
507     j_coord_offsetB = 0;
508     j_coord_offsetC = 0;
509     j_coord_offsetD = 0;
510
511     outeriter        = 0;
512     inneriter        = 0;
513
514     for(iidx=0;iidx<4*DIM;iidx++)
515     {
516         scratch[iidx] = 0.0;
517     }
518
519     /* Start outer loop over neighborlists */
520     for(iidx=0; iidx<nri; iidx++)
521     {
522         /* Load shift vector for this list */
523         i_shift_offset   = DIM*shiftidx[iidx];
524
525         /* Load limits for loop over neighbors */
526         j_index_start    = jindex[iidx];
527         j_index_end      = jindex[iidx+1];
528
529         /* Get outer coordinate index */
530         inr              = iinr[iidx];
531         i_coord_offset   = DIM*inr;
532
533         /* Load i particle coords and add shift vector */
534         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
535
536         fix0             = _mm256_setzero_pd();
537         fiy0             = _mm256_setzero_pd();
538         fiz0             = _mm256_setzero_pd();
539
540         /* Load parameters for i particles */
541         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
542         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
543
544         /* Start inner kernel loop */
545         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
546         {
547
548             /* Get j neighbor index, and coordinate index */
549             jnrA             = jjnr[jidx];
550             jnrB             = jjnr[jidx+1];
551             jnrC             = jjnr[jidx+2];
552             jnrD             = jjnr[jidx+3];
553             j_coord_offsetA  = DIM*jnrA;
554             j_coord_offsetB  = DIM*jnrB;
555             j_coord_offsetC  = DIM*jnrC;
556             j_coord_offsetD  = DIM*jnrD;
557
558             /* load j atom coordinates */
559             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
560                                                  x+j_coord_offsetC,x+j_coord_offsetD,
561                                                  &jx0,&jy0,&jz0);
562
563             /* Calculate displacement vector */
564             dx00             = _mm256_sub_pd(ix0,jx0);
565             dy00             = _mm256_sub_pd(iy0,jy0);
566             dz00             = _mm256_sub_pd(iz0,jz0);
567
568             /* Calculate squared distance and things based on it */
569             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
570
571             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
572
573             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
574
575             /* Load parameters for j particles */
576             vdwjidx0A        = 2*vdwtype[jnrA+0];
577             vdwjidx0B        = 2*vdwtype[jnrB+0];
578             vdwjidx0C        = 2*vdwtype[jnrC+0];
579             vdwjidx0D        = 2*vdwtype[jnrD+0];
580
581             /**************************
582              * CALCULATE INTERACTIONS *
583              **************************/
584
585             if (gmx_mm256_any_lt(rsq00,rcutoff2))
586             {
587
588             r00              = _mm256_mul_pd(rsq00,rinv00);
589
590             /* Compute parameters for interactions between i and j atoms */
591             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
592                                             vdwioffsetptr0+vdwjidx0B,
593                                             vdwioffsetptr0+vdwjidx0C,
594                                             vdwioffsetptr0+vdwjidx0D,
595                                             &c6_00,&c12_00);
596
597             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
598                                                                   vdwgridioffsetptr0+vdwjidx0B,
599                                                                   vdwgridioffsetptr0+vdwjidx0C,
600                                                                   vdwgridioffsetptr0+vdwjidx0D);
601
602             /* Analytical LJ-PME */
603             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
604             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
605             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
606             exponent         = gmx_simd_exp_d(ewcljrsq);
607             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
608             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
609             /* f6A = 6 * C6grid * (1 - poly) */
610             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
611             /* f6B = C6grid * exponent * beta^6 */
612             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
613             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
614             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
615
616             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
617
618             fscal            = fvdw;
619
620             fscal            = _mm256_and_pd(fscal,cutoff_mask);
621
622             /* Calculate temporary vectorial force */
623             tx               = _mm256_mul_pd(fscal,dx00);
624             ty               = _mm256_mul_pd(fscal,dy00);
625             tz               = _mm256_mul_pd(fscal,dz00);
626
627             /* Update vectorial force */
628             fix0             = _mm256_add_pd(fix0,tx);
629             fiy0             = _mm256_add_pd(fiy0,ty);
630             fiz0             = _mm256_add_pd(fiz0,tz);
631
632             fjptrA             = f+j_coord_offsetA;
633             fjptrB             = f+j_coord_offsetB;
634             fjptrC             = f+j_coord_offsetC;
635             fjptrD             = f+j_coord_offsetD;
636             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
637
638             }
639
640             /* Inner loop uses 49 flops */
641         }
642
643         if(jidx<j_index_end)
644         {
645
646             /* Get j neighbor index, and coordinate index */
647             jnrlistA         = jjnr[jidx];
648             jnrlistB         = jjnr[jidx+1];
649             jnrlistC         = jjnr[jidx+2];
650             jnrlistD         = jjnr[jidx+3];
651             /* Sign of each element will be negative for non-real atoms.
652              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
653              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
654              */
655             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
656
657             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
658             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
659             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
660
661             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
662             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
663             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
664             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
665             j_coord_offsetA  = DIM*jnrA;
666             j_coord_offsetB  = DIM*jnrB;
667             j_coord_offsetC  = DIM*jnrC;
668             j_coord_offsetD  = DIM*jnrD;
669
670             /* load j atom coordinates */
671             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
672                                                  x+j_coord_offsetC,x+j_coord_offsetD,
673                                                  &jx0,&jy0,&jz0);
674
675             /* Calculate displacement vector */
676             dx00             = _mm256_sub_pd(ix0,jx0);
677             dy00             = _mm256_sub_pd(iy0,jy0);
678             dz00             = _mm256_sub_pd(iz0,jz0);
679
680             /* Calculate squared distance and things based on it */
681             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
682
683             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
684
685             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
686
687             /* Load parameters for j particles */
688             vdwjidx0A        = 2*vdwtype[jnrA+0];
689             vdwjidx0B        = 2*vdwtype[jnrB+0];
690             vdwjidx0C        = 2*vdwtype[jnrC+0];
691             vdwjidx0D        = 2*vdwtype[jnrD+0];
692
693             /**************************
694              * CALCULATE INTERACTIONS *
695              **************************/
696
697             if (gmx_mm256_any_lt(rsq00,rcutoff2))
698             {
699
700             r00              = _mm256_mul_pd(rsq00,rinv00);
701             r00              = _mm256_andnot_pd(dummy_mask,r00);
702
703             /* Compute parameters for interactions between i and j atoms */
704             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
705                                             vdwioffsetptr0+vdwjidx0B,
706                                             vdwioffsetptr0+vdwjidx0C,
707                                             vdwioffsetptr0+vdwjidx0D,
708                                             &c6_00,&c12_00);
709
710             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
711                                                                   vdwgridioffsetptr0+vdwjidx0B,
712                                                                   vdwgridioffsetptr0+vdwjidx0C,
713                                                                   vdwgridioffsetptr0+vdwjidx0D);
714
715             /* Analytical LJ-PME */
716             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
717             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
718             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
719             exponent         = gmx_simd_exp_d(ewcljrsq);
720             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
721             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
722             /* f6A = 6 * C6grid * (1 - poly) */
723             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
724             /* f6B = C6grid * exponent * beta^6 */
725             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
726             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
727             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
728
729             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
730
731             fscal            = fvdw;
732
733             fscal            = _mm256_and_pd(fscal,cutoff_mask);
734
735             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
736
737             /* Calculate temporary vectorial force */
738             tx               = _mm256_mul_pd(fscal,dx00);
739             ty               = _mm256_mul_pd(fscal,dy00);
740             tz               = _mm256_mul_pd(fscal,dz00);
741
742             /* Update vectorial force */
743             fix0             = _mm256_add_pd(fix0,tx);
744             fiy0             = _mm256_add_pd(fiy0,ty);
745             fiz0             = _mm256_add_pd(fiz0,tz);
746
747             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
748             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
749             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
750             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
751             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
752
753             }
754
755             /* Inner loop uses 50 flops */
756         }
757
758         /* End of innermost loop */
759
760         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
761                                                  f+i_coord_offset,fshift+i_shift_offset);
762
763         /* Increment number of inner iterations */
764         inneriter                  += j_index_end - j_index_start;
765
766         /* Outer loop uses 6 flops */
767     }
768
769     /* Increment number of outer iterations */
770     outeriter        += nri;
771
772     /* Update outer/inner flops */
773
774     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*50);
775 }