7cbba9203d091721885ca30f78b8752f1ef38ebc
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: None
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     int              nvdwtype;
90     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
94     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
98     real             *vftab;
99     __m256d          dummy_mask,cutoff_mask;
100     __m128           tmpmask0,tmpmask1;
101     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
102     __m256d          one     = _mm256_set1_pd(1.0);
103     __m256d          two     = _mm256_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     vftab            = kernel_data->table_vdw->data;
120     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm256_setzero_pd();
155         fiy0             = _mm256_setzero_pd();
156         fiz0             = _mm256_setzero_pd();
157
158         /* Load parameters for i particles */
159         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         vvdwsum          = _mm256_setzero_pd();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175             j_coord_offsetC  = DIM*jnrC;
176             j_coord_offsetD  = DIM*jnrD;
177
178             /* load j atom coordinates */
179             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                                  x+j_coord_offsetC,x+j_coord_offsetD,
181                                                  &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm256_sub_pd(ix0,jx0);
185             dy00             = _mm256_sub_pd(iy0,jy0);
186             dz00             = _mm256_sub_pd(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
190
191             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
192
193             /* Load parameters for j particles */
194             vdwjidx0A        = 2*vdwtype[jnrA+0];
195             vdwjidx0B        = 2*vdwtype[jnrB+0];
196             vdwjidx0C        = 2*vdwtype[jnrC+0];
197             vdwjidx0D        = 2*vdwtype[jnrD+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             r00              = _mm256_mul_pd(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
207                                             vdwioffsetptr0+vdwjidx0B,
208                                             vdwioffsetptr0+vdwjidx0C,
209                                             vdwioffsetptr0+vdwjidx0D,
210                                             &c6_00,&c12_00);
211
212             /* Calculate table index by multiplying r with table scale and truncate to integer */
213             rt               = _mm256_mul_pd(r00,vftabscale);
214             vfitab           = _mm256_cvttpd_epi32(rt);
215             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
216             vfitab           = _mm_slli_epi32(vfitab,3);
217
218             /* CUBIC SPLINE TABLE DISPERSION */
219             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
220             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
221             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
222             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
223             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
224             Heps             = _mm256_mul_pd(vfeps,H);
225             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
226             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
227             vvdw6            = _mm256_mul_pd(c6_00,VV);
228             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
229             fvdw6            = _mm256_mul_pd(c6_00,FF);
230
231             /* CUBIC SPLINE TABLE REPULSION */
232             vfitab           = _mm_add_epi32(vfitab,ifour);
233             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
234             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
235             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
236             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
237             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
238             Heps             = _mm256_mul_pd(vfeps,H);
239             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
240             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
241             vvdw12           = _mm256_mul_pd(c12_00,VV);
242             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
243             fvdw12           = _mm256_mul_pd(c12_00,FF);
244             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
245             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
249
250             fscal            = fvdw;
251
252             /* Calculate temporary vectorial force */
253             tx               = _mm256_mul_pd(fscal,dx00);
254             ty               = _mm256_mul_pd(fscal,dy00);
255             tz               = _mm256_mul_pd(fscal,dz00);
256
257             /* Update vectorial force */
258             fix0             = _mm256_add_pd(fix0,tx);
259             fiy0             = _mm256_add_pd(fiy0,ty);
260             fiz0             = _mm256_add_pd(fiz0,tz);
261
262             fjptrA             = f+j_coord_offsetA;
263             fjptrB             = f+j_coord_offsetB;
264             fjptrC             = f+j_coord_offsetC;
265             fjptrD             = f+j_coord_offsetD;
266             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
267
268             /* Inner loop uses 56 flops */
269         }
270
271         if(jidx<j_index_end)
272         {
273
274             /* Get j neighbor index, and coordinate index */
275             jnrlistA         = jjnr[jidx];
276             jnrlistB         = jjnr[jidx+1];
277             jnrlistC         = jjnr[jidx+2];
278             jnrlistD         = jjnr[jidx+3];
279             /* Sign of each element will be negative for non-real atoms.
280              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
281              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
282              */
283             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
284
285             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
286             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
287             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
288
289             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
290             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
291             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
292             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
293             j_coord_offsetA  = DIM*jnrA;
294             j_coord_offsetB  = DIM*jnrB;
295             j_coord_offsetC  = DIM*jnrC;
296             j_coord_offsetD  = DIM*jnrD;
297
298             /* load j atom coordinates */
299             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
300                                                  x+j_coord_offsetC,x+j_coord_offsetD,
301                                                  &jx0,&jy0,&jz0);
302
303             /* Calculate displacement vector */
304             dx00             = _mm256_sub_pd(ix0,jx0);
305             dy00             = _mm256_sub_pd(iy0,jy0);
306             dz00             = _mm256_sub_pd(iz0,jz0);
307
308             /* Calculate squared distance and things based on it */
309             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
310
311             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
312
313             /* Load parameters for j particles */
314             vdwjidx0A        = 2*vdwtype[jnrA+0];
315             vdwjidx0B        = 2*vdwtype[jnrB+0];
316             vdwjidx0C        = 2*vdwtype[jnrC+0];
317             vdwjidx0D        = 2*vdwtype[jnrD+0];
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             r00              = _mm256_mul_pd(rsq00,rinv00);
324             r00              = _mm256_andnot_pd(dummy_mask,r00);
325
326             /* Compute parameters for interactions between i and j atoms */
327             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
328                                             vdwioffsetptr0+vdwjidx0B,
329                                             vdwioffsetptr0+vdwjidx0C,
330                                             vdwioffsetptr0+vdwjidx0D,
331                                             &c6_00,&c12_00);
332
333             /* Calculate table index by multiplying r with table scale and truncate to integer */
334             rt               = _mm256_mul_pd(r00,vftabscale);
335             vfitab           = _mm256_cvttpd_epi32(rt);
336             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
337             vfitab           = _mm_slli_epi32(vfitab,3);
338
339             /* CUBIC SPLINE TABLE DISPERSION */
340             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
341             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
342             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
343             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
344             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
345             Heps             = _mm256_mul_pd(vfeps,H);
346             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
347             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
348             vvdw6            = _mm256_mul_pd(c6_00,VV);
349             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
350             fvdw6            = _mm256_mul_pd(c6_00,FF);
351
352             /* CUBIC SPLINE TABLE REPULSION */
353             vfitab           = _mm_add_epi32(vfitab,ifour);
354             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
355             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
356             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
357             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
358             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
359             Heps             = _mm256_mul_pd(vfeps,H);
360             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
361             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
362             vvdw12           = _mm256_mul_pd(c12_00,VV);
363             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
364             fvdw12           = _mm256_mul_pd(c12_00,FF);
365             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
366             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
370             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
371
372             fscal            = fvdw;
373
374             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
375
376             /* Calculate temporary vectorial force */
377             tx               = _mm256_mul_pd(fscal,dx00);
378             ty               = _mm256_mul_pd(fscal,dy00);
379             tz               = _mm256_mul_pd(fscal,dz00);
380
381             /* Update vectorial force */
382             fix0             = _mm256_add_pd(fix0,tx);
383             fiy0             = _mm256_add_pd(fiy0,ty);
384             fiz0             = _mm256_add_pd(fiz0,tz);
385
386             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
387             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
388             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
389             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
390             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
391
392             /* Inner loop uses 57 flops */
393         }
394
395         /* End of innermost loop */
396
397         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
398                                                  f+i_coord_offset,fshift+i_shift_offset);
399
400         ggid                        = gid[iidx];
401         /* Update potential energies */
402         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
403
404         /* Increment number of inner iterations */
405         inneriter                  += j_index_end - j_index_start;
406
407         /* Outer loop uses 7 flops */
408     }
409
410     /* Increment number of outer iterations */
411     outeriter        += nri;
412
413     /* Update outer/inner flops */
414
415     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*57);
416 }
417 /*
418  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_256_double
419  * Electrostatics interaction: None
420  * VdW interaction:            CubicSplineTable
421  * Geometry:                   Particle-Particle
422  * Calculate force/pot:        Force
423  */
424 void
425 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_256_double
426                     (t_nblist                    * gmx_restrict       nlist,
427                      rvec                        * gmx_restrict          xx,
428                      rvec                        * gmx_restrict          ff,
429                      t_forcerec                  * gmx_restrict          fr,
430                      t_mdatoms                   * gmx_restrict     mdatoms,
431                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
432                      t_nrnb                      * gmx_restrict        nrnb)
433 {
434     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
435      * just 0 for non-waters.
436      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
437      * jnr indices corresponding to data put in the four positions in the SIMD register.
438      */
439     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
440     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
441     int              jnrA,jnrB,jnrC,jnrD;
442     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
443     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
444     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
445     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
446     real             rcutoff_scalar;
447     real             *shiftvec,*fshift,*x,*f;
448     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
449     real             scratch[4*DIM];
450     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
451     real *           vdwioffsetptr0;
452     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
453     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
454     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
455     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
456     int              nvdwtype;
457     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
458     int              *vdwtype;
459     real             *vdwparam;
460     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
461     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
462     __m128i          vfitab;
463     __m128i          ifour       = _mm_set1_epi32(4);
464     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
465     real             *vftab;
466     __m256d          dummy_mask,cutoff_mask;
467     __m128           tmpmask0,tmpmask1;
468     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
469     __m256d          one     = _mm256_set1_pd(1.0);
470     __m256d          two     = _mm256_set1_pd(2.0);
471     x                = xx[0];
472     f                = ff[0];
473
474     nri              = nlist->nri;
475     iinr             = nlist->iinr;
476     jindex           = nlist->jindex;
477     jjnr             = nlist->jjnr;
478     shiftidx         = nlist->shift;
479     gid              = nlist->gid;
480     shiftvec         = fr->shift_vec[0];
481     fshift           = fr->fshift[0];
482     nvdwtype         = fr->ntype;
483     vdwparam         = fr->nbfp;
484     vdwtype          = mdatoms->typeA;
485
486     vftab            = kernel_data->table_vdw->data;
487     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
488
489     /* Avoid stupid compiler warnings */
490     jnrA = jnrB = jnrC = jnrD = 0;
491     j_coord_offsetA = 0;
492     j_coord_offsetB = 0;
493     j_coord_offsetC = 0;
494     j_coord_offsetD = 0;
495
496     outeriter        = 0;
497     inneriter        = 0;
498
499     for(iidx=0;iidx<4*DIM;iidx++)
500     {
501         scratch[iidx] = 0.0;
502     }
503
504     /* Start outer loop over neighborlists */
505     for(iidx=0; iidx<nri; iidx++)
506     {
507         /* Load shift vector for this list */
508         i_shift_offset   = DIM*shiftidx[iidx];
509
510         /* Load limits for loop over neighbors */
511         j_index_start    = jindex[iidx];
512         j_index_end      = jindex[iidx+1];
513
514         /* Get outer coordinate index */
515         inr              = iinr[iidx];
516         i_coord_offset   = DIM*inr;
517
518         /* Load i particle coords and add shift vector */
519         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
520
521         fix0             = _mm256_setzero_pd();
522         fiy0             = _mm256_setzero_pd();
523         fiz0             = _mm256_setzero_pd();
524
525         /* Load parameters for i particles */
526         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
527
528         /* Start inner kernel loop */
529         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
530         {
531
532             /* Get j neighbor index, and coordinate index */
533             jnrA             = jjnr[jidx];
534             jnrB             = jjnr[jidx+1];
535             jnrC             = jjnr[jidx+2];
536             jnrD             = jjnr[jidx+3];
537             j_coord_offsetA  = DIM*jnrA;
538             j_coord_offsetB  = DIM*jnrB;
539             j_coord_offsetC  = DIM*jnrC;
540             j_coord_offsetD  = DIM*jnrD;
541
542             /* load j atom coordinates */
543             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
544                                                  x+j_coord_offsetC,x+j_coord_offsetD,
545                                                  &jx0,&jy0,&jz0);
546
547             /* Calculate displacement vector */
548             dx00             = _mm256_sub_pd(ix0,jx0);
549             dy00             = _mm256_sub_pd(iy0,jy0);
550             dz00             = _mm256_sub_pd(iz0,jz0);
551
552             /* Calculate squared distance and things based on it */
553             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
554
555             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
556
557             /* Load parameters for j particles */
558             vdwjidx0A        = 2*vdwtype[jnrA+0];
559             vdwjidx0B        = 2*vdwtype[jnrB+0];
560             vdwjidx0C        = 2*vdwtype[jnrC+0];
561             vdwjidx0D        = 2*vdwtype[jnrD+0];
562
563             /**************************
564              * CALCULATE INTERACTIONS *
565              **************************/
566
567             r00              = _mm256_mul_pd(rsq00,rinv00);
568
569             /* Compute parameters for interactions between i and j atoms */
570             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
571                                             vdwioffsetptr0+vdwjidx0B,
572                                             vdwioffsetptr0+vdwjidx0C,
573                                             vdwioffsetptr0+vdwjidx0D,
574                                             &c6_00,&c12_00);
575
576             /* Calculate table index by multiplying r with table scale and truncate to integer */
577             rt               = _mm256_mul_pd(r00,vftabscale);
578             vfitab           = _mm256_cvttpd_epi32(rt);
579             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
580             vfitab           = _mm_slli_epi32(vfitab,3);
581
582             /* CUBIC SPLINE TABLE DISPERSION */
583             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
584             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
585             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
586             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
587             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
588             Heps             = _mm256_mul_pd(vfeps,H);
589             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
590             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
591             fvdw6            = _mm256_mul_pd(c6_00,FF);
592
593             /* CUBIC SPLINE TABLE REPULSION */
594             vfitab           = _mm_add_epi32(vfitab,ifour);
595             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
596             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
597             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
598             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
599             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
600             Heps             = _mm256_mul_pd(vfeps,H);
601             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
602             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
603             fvdw12           = _mm256_mul_pd(c12_00,FF);
604             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
605
606             fscal            = fvdw;
607
608             /* Calculate temporary vectorial force */
609             tx               = _mm256_mul_pd(fscal,dx00);
610             ty               = _mm256_mul_pd(fscal,dy00);
611             tz               = _mm256_mul_pd(fscal,dz00);
612
613             /* Update vectorial force */
614             fix0             = _mm256_add_pd(fix0,tx);
615             fiy0             = _mm256_add_pd(fiy0,ty);
616             fiz0             = _mm256_add_pd(fiz0,tz);
617
618             fjptrA             = f+j_coord_offsetA;
619             fjptrB             = f+j_coord_offsetB;
620             fjptrC             = f+j_coord_offsetC;
621             fjptrD             = f+j_coord_offsetD;
622             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
623
624             /* Inner loop uses 48 flops */
625         }
626
627         if(jidx<j_index_end)
628         {
629
630             /* Get j neighbor index, and coordinate index */
631             jnrlistA         = jjnr[jidx];
632             jnrlistB         = jjnr[jidx+1];
633             jnrlistC         = jjnr[jidx+2];
634             jnrlistD         = jjnr[jidx+3];
635             /* Sign of each element will be negative for non-real atoms.
636              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
637              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
638              */
639             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
640
641             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
642             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
643             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
644
645             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
646             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
647             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
648             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
649             j_coord_offsetA  = DIM*jnrA;
650             j_coord_offsetB  = DIM*jnrB;
651             j_coord_offsetC  = DIM*jnrC;
652             j_coord_offsetD  = DIM*jnrD;
653
654             /* load j atom coordinates */
655             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
656                                                  x+j_coord_offsetC,x+j_coord_offsetD,
657                                                  &jx0,&jy0,&jz0);
658
659             /* Calculate displacement vector */
660             dx00             = _mm256_sub_pd(ix0,jx0);
661             dy00             = _mm256_sub_pd(iy0,jy0);
662             dz00             = _mm256_sub_pd(iz0,jz0);
663
664             /* Calculate squared distance and things based on it */
665             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
666
667             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
668
669             /* Load parameters for j particles */
670             vdwjidx0A        = 2*vdwtype[jnrA+0];
671             vdwjidx0B        = 2*vdwtype[jnrB+0];
672             vdwjidx0C        = 2*vdwtype[jnrC+0];
673             vdwjidx0D        = 2*vdwtype[jnrD+0];
674
675             /**************************
676              * CALCULATE INTERACTIONS *
677              **************************/
678
679             r00              = _mm256_mul_pd(rsq00,rinv00);
680             r00              = _mm256_andnot_pd(dummy_mask,r00);
681
682             /* Compute parameters for interactions between i and j atoms */
683             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
684                                             vdwioffsetptr0+vdwjidx0B,
685                                             vdwioffsetptr0+vdwjidx0C,
686                                             vdwioffsetptr0+vdwjidx0D,
687                                             &c6_00,&c12_00);
688
689             /* Calculate table index by multiplying r with table scale and truncate to integer */
690             rt               = _mm256_mul_pd(r00,vftabscale);
691             vfitab           = _mm256_cvttpd_epi32(rt);
692             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
693             vfitab           = _mm_slli_epi32(vfitab,3);
694
695             /* CUBIC SPLINE TABLE DISPERSION */
696             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
697             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
698             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
699             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
700             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
701             Heps             = _mm256_mul_pd(vfeps,H);
702             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
703             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
704             fvdw6            = _mm256_mul_pd(c6_00,FF);
705
706             /* CUBIC SPLINE TABLE REPULSION */
707             vfitab           = _mm_add_epi32(vfitab,ifour);
708             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
709             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
710             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
711             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
712             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
713             Heps             = _mm256_mul_pd(vfeps,H);
714             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
715             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
716             fvdw12           = _mm256_mul_pd(c12_00,FF);
717             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
718
719             fscal            = fvdw;
720
721             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
722
723             /* Calculate temporary vectorial force */
724             tx               = _mm256_mul_pd(fscal,dx00);
725             ty               = _mm256_mul_pd(fscal,dy00);
726             tz               = _mm256_mul_pd(fscal,dz00);
727
728             /* Update vectorial force */
729             fix0             = _mm256_add_pd(fix0,tx);
730             fiy0             = _mm256_add_pd(fiy0,ty);
731             fiz0             = _mm256_add_pd(fiz0,tz);
732
733             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
734             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
735             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
736             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
737             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
738
739             /* Inner loop uses 49 flops */
740         }
741
742         /* End of innermost loop */
743
744         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
745                                                  f+i_coord_offset,fshift+i_shift_offset);
746
747         /* Increment number of inner iterations */
748         inneriter                  += j_index_end - j_index_start;
749
750         /* Outer loop uses 6 flops */
751     }
752
753     /* Increment number of outer iterations */
754     outeriter        += nri;
755
756     /* Update outer/inner flops */
757
758     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*49);
759 }