Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: None
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m128i          vfitab;
98     __m128i          ifour       = _mm_set1_epi32(4);
99     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
100     real             *vftab;
101     __m256d          dummy_mask,cutoff_mask;
102     __m128           tmpmask0,tmpmask1;
103     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
104     __m256d          one     = _mm256_set1_pd(1.0);
105     __m256d          two     = _mm256_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_vdw->data;
122     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm256_setzero_pd();
157         fiy0             = _mm256_setzero_pd();
158         fiz0             = _mm256_setzero_pd();
159
160         /* Load parameters for i particles */
161         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         vvdwsum          = _mm256_setzero_pd();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             jnrC             = jjnr[jidx+2];
174             jnrD             = jjnr[jidx+3];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177             j_coord_offsetC  = DIM*jnrC;
178             j_coord_offsetD  = DIM*jnrD;
179
180             /* load j atom coordinates */
181             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                                  x+j_coord_offsetC,x+j_coord_offsetD,
183                                                  &jx0,&jy0,&jz0);
184
185             /* Calculate displacement vector */
186             dx00             = _mm256_sub_pd(ix0,jx0);
187             dy00             = _mm256_sub_pd(iy0,jy0);
188             dz00             = _mm256_sub_pd(iz0,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
192
193             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
194
195             /* Load parameters for j particles */
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198             vdwjidx0C        = 2*vdwtype[jnrC+0];
199             vdwjidx0D        = 2*vdwtype[jnrD+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = _mm256_mul_pd(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
209                                             vdwioffsetptr0+vdwjidx0B,
210                                             vdwioffsetptr0+vdwjidx0C,
211                                             vdwioffsetptr0+vdwjidx0D,
212                                             &c6_00,&c12_00);
213
214             /* Calculate table index by multiplying r with table scale and truncate to integer */
215             rt               = _mm256_mul_pd(r00,vftabscale);
216             vfitab           = _mm256_cvttpd_epi32(rt);
217             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
218             vfitab           = _mm_slli_epi32(vfitab,3);
219
220             /* CUBIC SPLINE TABLE DISPERSION */
221             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
222             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
223             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
224             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
225             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
226             Heps             = _mm256_mul_pd(vfeps,H);
227             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
228             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
229             vvdw6            = _mm256_mul_pd(c6_00,VV);
230             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
231             fvdw6            = _mm256_mul_pd(c6_00,FF);
232
233             /* CUBIC SPLINE TABLE REPULSION */
234             vfitab           = _mm_add_epi32(vfitab,ifour);
235             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
236             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
237             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
238             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
239             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
240             Heps             = _mm256_mul_pd(vfeps,H);
241             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
242             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
243             vvdw12           = _mm256_mul_pd(c12_00,VV);
244             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
245             fvdw12           = _mm256_mul_pd(c12_00,FF);
246             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
247             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
251
252             fscal            = fvdw;
253
254             /* Calculate temporary vectorial force */
255             tx               = _mm256_mul_pd(fscal,dx00);
256             ty               = _mm256_mul_pd(fscal,dy00);
257             tz               = _mm256_mul_pd(fscal,dz00);
258
259             /* Update vectorial force */
260             fix0             = _mm256_add_pd(fix0,tx);
261             fiy0             = _mm256_add_pd(fiy0,ty);
262             fiz0             = _mm256_add_pd(fiz0,tz);
263
264             fjptrA             = f+j_coord_offsetA;
265             fjptrB             = f+j_coord_offsetB;
266             fjptrC             = f+j_coord_offsetC;
267             fjptrD             = f+j_coord_offsetD;
268             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
269
270             /* Inner loop uses 56 flops */
271         }
272
273         if(jidx<j_index_end)
274         {
275
276             /* Get j neighbor index, and coordinate index */
277             jnrlistA         = jjnr[jidx];
278             jnrlistB         = jjnr[jidx+1];
279             jnrlistC         = jjnr[jidx+2];
280             jnrlistD         = jjnr[jidx+3];
281             /* Sign of each element will be negative for non-real atoms.
282              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
283              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
284              */
285             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
286
287             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
288             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
289             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
290
291             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
292             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
293             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
294             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
295             j_coord_offsetA  = DIM*jnrA;
296             j_coord_offsetB  = DIM*jnrB;
297             j_coord_offsetC  = DIM*jnrC;
298             j_coord_offsetD  = DIM*jnrD;
299
300             /* load j atom coordinates */
301             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
302                                                  x+j_coord_offsetC,x+j_coord_offsetD,
303                                                  &jx0,&jy0,&jz0);
304
305             /* Calculate displacement vector */
306             dx00             = _mm256_sub_pd(ix0,jx0);
307             dy00             = _mm256_sub_pd(iy0,jy0);
308             dz00             = _mm256_sub_pd(iz0,jz0);
309
310             /* Calculate squared distance and things based on it */
311             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
312
313             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
314
315             /* Load parameters for j particles */
316             vdwjidx0A        = 2*vdwtype[jnrA+0];
317             vdwjidx0B        = 2*vdwtype[jnrB+0];
318             vdwjidx0C        = 2*vdwtype[jnrC+0];
319             vdwjidx0D        = 2*vdwtype[jnrD+0];
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             r00              = _mm256_mul_pd(rsq00,rinv00);
326             r00              = _mm256_andnot_pd(dummy_mask,r00);
327
328             /* Compute parameters for interactions between i and j atoms */
329             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
330                                             vdwioffsetptr0+vdwjidx0B,
331                                             vdwioffsetptr0+vdwjidx0C,
332                                             vdwioffsetptr0+vdwjidx0D,
333                                             &c6_00,&c12_00);
334
335             /* Calculate table index by multiplying r with table scale and truncate to integer */
336             rt               = _mm256_mul_pd(r00,vftabscale);
337             vfitab           = _mm256_cvttpd_epi32(rt);
338             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
339             vfitab           = _mm_slli_epi32(vfitab,3);
340
341             /* CUBIC SPLINE TABLE DISPERSION */
342             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
343             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
344             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
345             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
346             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
347             Heps             = _mm256_mul_pd(vfeps,H);
348             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
349             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
350             vvdw6            = _mm256_mul_pd(c6_00,VV);
351             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
352             fvdw6            = _mm256_mul_pd(c6_00,FF);
353
354             /* CUBIC SPLINE TABLE REPULSION */
355             vfitab           = _mm_add_epi32(vfitab,ifour);
356             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
357             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
358             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
359             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
360             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
361             Heps             = _mm256_mul_pd(vfeps,H);
362             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
363             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
364             vvdw12           = _mm256_mul_pd(c12_00,VV);
365             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
366             fvdw12           = _mm256_mul_pd(c12_00,FF);
367             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
368             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
372             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
373
374             fscal            = fvdw;
375
376             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
377
378             /* Calculate temporary vectorial force */
379             tx               = _mm256_mul_pd(fscal,dx00);
380             ty               = _mm256_mul_pd(fscal,dy00);
381             tz               = _mm256_mul_pd(fscal,dz00);
382
383             /* Update vectorial force */
384             fix0             = _mm256_add_pd(fix0,tx);
385             fiy0             = _mm256_add_pd(fiy0,ty);
386             fiz0             = _mm256_add_pd(fiz0,tz);
387
388             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
389             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
390             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
391             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
392             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
393
394             /* Inner loop uses 57 flops */
395         }
396
397         /* End of innermost loop */
398
399         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
400                                                  f+i_coord_offset,fshift+i_shift_offset);
401
402         ggid                        = gid[iidx];
403         /* Update potential energies */
404         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
405
406         /* Increment number of inner iterations */
407         inneriter                  += j_index_end - j_index_start;
408
409         /* Outer loop uses 7 flops */
410     }
411
412     /* Increment number of outer iterations */
413     outeriter        += nri;
414
415     /* Update outer/inner flops */
416
417     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*57);
418 }
419 /*
420  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_256_double
421  * Electrostatics interaction: None
422  * VdW interaction:            CubicSplineTable
423  * Geometry:                   Particle-Particle
424  * Calculate force/pot:        Force
425  */
426 void
427 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_256_double
428                     (t_nblist                    * gmx_restrict       nlist,
429                      rvec                        * gmx_restrict          xx,
430                      rvec                        * gmx_restrict          ff,
431                      t_forcerec                  * gmx_restrict          fr,
432                      t_mdatoms                   * gmx_restrict     mdatoms,
433                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
434                      t_nrnb                      * gmx_restrict        nrnb)
435 {
436     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
437      * just 0 for non-waters.
438      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
439      * jnr indices corresponding to data put in the four positions in the SIMD register.
440      */
441     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
442     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
443     int              jnrA,jnrB,jnrC,jnrD;
444     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
445     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
446     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
447     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
448     real             rcutoff_scalar;
449     real             *shiftvec,*fshift,*x,*f;
450     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
451     real             scratch[4*DIM];
452     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
453     real *           vdwioffsetptr0;
454     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
455     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
456     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
457     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
458     int              nvdwtype;
459     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
460     int              *vdwtype;
461     real             *vdwparam;
462     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
463     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
464     __m128i          vfitab;
465     __m128i          ifour       = _mm_set1_epi32(4);
466     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
467     real             *vftab;
468     __m256d          dummy_mask,cutoff_mask;
469     __m128           tmpmask0,tmpmask1;
470     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
471     __m256d          one     = _mm256_set1_pd(1.0);
472     __m256d          two     = _mm256_set1_pd(2.0);
473     x                = xx[0];
474     f                = ff[0];
475
476     nri              = nlist->nri;
477     iinr             = nlist->iinr;
478     jindex           = nlist->jindex;
479     jjnr             = nlist->jjnr;
480     shiftidx         = nlist->shift;
481     gid              = nlist->gid;
482     shiftvec         = fr->shift_vec[0];
483     fshift           = fr->fshift[0];
484     nvdwtype         = fr->ntype;
485     vdwparam         = fr->nbfp;
486     vdwtype          = mdatoms->typeA;
487
488     vftab            = kernel_data->table_vdw->data;
489     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
490
491     /* Avoid stupid compiler warnings */
492     jnrA = jnrB = jnrC = jnrD = 0;
493     j_coord_offsetA = 0;
494     j_coord_offsetB = 0;
495     j_coord_offsetC = 0;
496     j_coord_offsetD = 0;
497
498     outeriter        = 0;
499     inneriter        = 0;
500
501     for(iidx=0;iidx<4*DIM;iidx++)
502     {
503         scratch[iidx] = 0.0;
504     }
505
506     /* Start outer loop over neighborlists */
507     for(iidx=0; iidx<nri; iidx++)
508     {
509         /* Load shift vector for this list */
510         i_shift_offset   = DIM*shiftidx[iidx];
511
512         /* Load limits for loop over neighbors */
513         j_index_start    = jindex[iidx];
514         j_index_end      = jindex[iidx+1];
515
516         /* Get outer coordinate index */
517         inr              = iinr[iidx];
518         i_coord_offset   = DIM*inr;
519
520         /* Load i particle coords and add shift vector */
521         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
522
523         fix0             = _mm256_setzero_pd();
524         fiy0             = _mm256_setzero_pd();
525         fiz0             = _mm256_setzero_pd();
526
527         /* Load parameters for i particles */
528         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
529
530         /* Start inner kernel loop */
531         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
532         {
533
534             /* Get j neighbor index, and coordinate index */
535             jnrA             = jjnr[jidx];
536             jnrB             = jjnr[jidx+1];
537             jnrC             = jjnr[jidx+2];
538             jnrD             = jjnr[jidx+3];
539             j_coord_offsetA  = DIM*jnrA;
540             j_coord_offsetB  = DIM*jnrB;
541             j_coord_offsetC  = DIM*jnrC;
542             j_coord_offsetD  = DIM*jnrD;
543
544             /* load j atom coordinates */
545             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
546                                                  x+j_coord_offsetC,x+j_coord_offsetD,
547                                                  &jx0,&jy0,&jz0);
548
549             /* Calculate displacement vector */
550             dx00             = _mm256_sub_pd(ix0,jx0);
551             dy00             = _mm256_sub_pd(iy0,jy0);
552             dz00             = _mm256_sub_pd(iz0,jz0);
553
554             /* Calculate squared distance and things based on it */
555             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
556
557             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
558
559             /* Load parameters for j particles */
560             vdwjidx0A        = 2*vdwtype[jnrA+0];
561             vdwjidx0B        = 2*vdwtype[jnrB+0];
562             vdwjidx0C        = 2*vdwtype[jnrC+0];
563             vdwjidx0D        = 2*vdwtype[jnrD+0];
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             r00              = _mm256_mul_pd(rsq00,rinv00);
570
571             /* Compute parameters for interactions between i and j atoms */
572             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
573                                             vdwioffsetptr0+vdwjidx0B,
574                                             vdwioffsetptr0+vdwjidx0C,
575                                             vdwioffsetptr0+vdwjidx0D,
576                                             &c6_00,&c12_00);
577
578             /* Calculate table index by multiplying r with table scale and truncate to integer */
579             rt               = _mm256_mul_pd(r00,vftabscale);
580             vfitab           = _mm256_cvttpd_epi32(rt);
581             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
582             vfitab           = _mm_slli_epi32(vfitab,3);
583
584             /* CUBIC SPLINE TABLE DISPERSION */
585             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
586             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
587             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
588             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
589             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
590             Heps             = _mm256_mul_pd(vfeps,H);
591             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
592             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
593             fvdw6            = _mm256_mul_pd(c6_00,FF);
594
595             /* CUBIC SPLINE TABLE REPULSION */
596             vfitab           = _mm_add_epi32(vfitab,ifour);
597             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
598             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
599             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
600             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
601             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
602             Heps             = _mm256_mul_pd(vfeps,H);
603             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
604             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
605             fvdw12           = _mm256_mul_pd(c12_00,FF);
606             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
607
608             fscal            = fvdw;
609
610             /* Calculate temporary vectorial force */
611             tx               = _mm256_mul_pd(fscal,dx00);
612             ty               = _mm256_mul_pd(fscal,dy00);
613             tz               = _mm256_mul_pd(fscal,dz00);
614
615             /* Update vectorial force */
616             fix0             = _mm256_add_pd(fix0,tx);
617             fiy0             = _mm256_add_pd(fiy0,ty);
618             fiz0             = _mm256_add_pd(fiz0,tz);
619
620             fjptrA             = f+j_coord_offsetA;
621             fjptrB             = f+j_coord_offsetB;
622             fjptrC             = f+j_coord_offsetC;
623             fjptrD             = f+j_coord_offsetD;
624             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
625
626             /* Inner loop uses 48 flops */
627         }
628
629         if(jidx<j_index_end)
630         {
631
632             /* Get j neighbor index, and coordinate index */
633             jnrlistA         = jjnr[jidx];
634             jnrlistB         = jjnr[jidx+1];
635             jnrlistC         = jjnr[jidx+2];
636             jnrlistD         = jjnr[jidx+3];
637             /* Sign of each element will be negative for non-real atoms.
638              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
639              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
640              */
641             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
642
643             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
644             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
645             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
646
647             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
648             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
649             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
650             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
651             j_coord_offsetA  = DIM*jnrA;
652             j_coord_offsetB  = DIM*jnrB;
653             j_coord_offsetC  = DIM*jnrC;
654             j_coord_offsetD  = DIM*jnrD;
655
656             /* load j atom coordinates */
657             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
658                                                  x+j_coord_offsetC,x+j_coord_offsetD,
659                                                  &jx0,&jy0,&jz0);
660
661             /* Calculate displacement vector */
662             dx00             = _mm256_sub_pd(ix0,jx0);
663             dy00             = _mm256_sub_pd(iy0,jy0);
664             dz00             = _mm256_sub_pd(iz0,jz0);
665
666             /* Calculate squared distance and things based on it */
667             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
668
669             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
670
671             /* Load parameters for j particles */
672             vdwjidx0A        = 2*vdwtype[jnrA+0];
673             vdwjidx0B        = 2*vdwtype[jnrB+0];
674             vdwjidx0C        = 2*vdwtype[jnrC+0];
675             vdwjidx0D        = 2*vdwtype[jnrD+0];
676
677             /**************************
678              * CALCULATE INTERACTIONS *
679              **************************/
680
681             r00              = _mm256_mul_pd(rsq00,rinv00);
682             r00              = _mm256_andnot_pd(dummy_mask,r00);
683
684             /* Compute parameters for interactions between i and j atoms */
685             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
686                                             vdwioffsetptr0+vdwjidx0B,
687                                             vdwioffsetptr0+vdwjidx0C,
688                                             vdwioffsetptr0+vdwjidx0D,
689                                             &c6_00,&c12_00);
690
691             /* Calculate table index by multiplying r with table scale and truncate to integer */
692             rt               = _mm256_mul_pd(r00,vftabscale);
693             vfitab           = _mm256_cvttpd_epi32(rt);
694             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
695             vfitab           = _mm_slli_epi32(vfitab,3);
696
697             /* CUBIC SPLINE TABLE DISPERSION */
698             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
699             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
700             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
701             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
702             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
703             Heps             = _mm256_mul_pd(vfeps,H);
704             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
705             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
706             fvdw6            = _mm256_mul_pd(c6_00,FF);
707
708             /* CUBIC SPLINE TABLE REPULSION */
709             vfitab           = _mm_add_epi32(vfitab,ifour);
710             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
711             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
712             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
713             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
714             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
715             Heps             = _mm256_mul_pd(vfeps,H);
716             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
717             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
718             fvdw12           = _mm256_mul_pd(c12_00,FF);
719             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
720
721             fscal            = fvdw;
722
723             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
724
725             /* Calculate temporary vectorial force */
726             tx               = _mm256_mul_pd(fscal,dx00);
727             ty               = _mm256_mul_pd(fscal,dy00);
728             tz               = _mm256_mul_pd(fscal,dz00);
729
730             /* Update vectorial force */
731             fix0             = _mm256_add_pd(fix0,tx);
732             fiy0             = _mm256_add_pd(fiy0,ty);
733             fiz0             = _mm256_add_pd(fiz0,tz);
734
735             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
736             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
737             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
738             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
739             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
740
741             /* Inner loop uses 49 flops */
742         }
743
744         /* End of innermost loop */
745
746         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
747                                                  f+i_coord_offset,fshift+i_shift_offset);
748
749         /* Increment number of inner iterations */
750         inneriter                  += j_index_end - j_index_start;
751
752         /* Outer loop uses 6 flops */
753     }
754
755     /* Increment number of outer iterations */
756     outeriter        += nri;
757
758     /* Update outer/inner flops */
759
760     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*49);
761 }