Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m128i          gbitab;
94     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
95     __m256d          minushalf = _mm256_set1_pd(-0.5);
96     real             *invsqrta,*dvda,*gbtab;
97     __m128i          vfitab;
98     __m128i          ifour       = _mm_set1_epi32(4);
99     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
100     real             *vftab;
101     __m256d          dummy_mask,cutoff_mask;
102     __m128           tmpmask0,tmpmask1;
103     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
104     __m256d          one     = _mm256_set1_pd(1.0);
105     __m256d          two     = _mm256_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm256_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119
120     invsqrta         = fr->invsqrta;
121     dvda             = fr->dvda;
122     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
123     gbtab            = fr->gbtab.data;
124     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm256_setzero_pd();
159         fiy0             = _mm256_setzero_pd();
160         fiz0             = _mm256_setzero_pd();
161
162         /* Load parameters for i particles */
163         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
164         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
165
166         /* Reset potential sums */
167         velecsum         = _mm256_setzero_pd();
168         vgbsum           = _mm256_setzero_pd();
169         dvdasum          = _mm256_setzero_pd();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             jnrC             = jjnr[jidx+2];
179             jnrD             = jjnr[jidx+3];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182             j_coord_offsetC  = DIM*jnrC;
183             j_coord_offsetD  = DIM*jnrD;
184
185             /* load j atom coordinates */
186             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
187                                                  x+j_coord_offsetC,x+j_coord_offsetD,
188                                                  &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm256_sub_pd(ix0,jx0);
192             dy00             = _mm256_sub_pd(iy0,jy0);
193             dz00             = _mm256_sub_pd(iz0,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
197
198             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
199
200             /* Load parameters for j particles */
201             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
202                                                                  charge+jnrC+0,charge+jnrD+0);
203             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
204                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             r00              = _mm256_mul_pd(rsq00,rinv00);
211
212             /* Compute parameters for interactions between i and j atoms */
213             qq00             = _mm256_mul_pd(iq0,jq0);
214
215             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
216             isaprod          = _mm256_mul_pd(isai0,isaj0);
217             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
218             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
219
220             /* Calculate generalized born table index - this is a separate table from the normal one,
221              * but we use the same procedure by multiplying r with scale and truncating to integer.
222              */
223             rt               = _mm256_mul_pd(r00,gbscale);
224             gbitab           = _mm256_cvttpd_epi32(rt);
225             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
226             gbitab           = _mm_slli_epi32(gbitab,2);
227             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
228             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
229             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
230             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
231             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
232             Heps             = _mm256_mul_pd(gbeps,H);
233             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
234             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
235             vgb              = _mm256_mul_pd(gbqqfactor,VV);
236
237             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
238             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
239             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
240             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
241             fjptrA           = dvda+jnrA;
242             fjptrB           = dvda+jnrB;
243             fjptrC           = dvda+jnrC;
244             fjptrD           = dvda+jnrD;
245             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
246                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
247             velec            = _mm256_mul_pd(qq00,rinv00);
248             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             velecsum         = _mm256_add_pd(velecsum,velec);
252             vgbsum           = _mm256_add_pd(vgbsum,vgb);
253
254             fscal            = felec;
255
256             /* Calculate temporary vectorial force */
257             tx               = _mm256_mul_pd(fscal,dx00);
258             ty               = _mm256_mul_pd(fscal,dy00);
259             tz               = _mm256_mul_pd(fscal,dz00);
260
261             /* Update vectorial force */
262             fix0             = _mm256_add_pd(fix0,tx);
263             fiy0             = _mm256_add_pd(fiy0,ty);
264             fiz0             = _mm256_add_pd(fiz0,tz);
265
266             fjptrA             = f+j_coord_offsetA;
267             fjptrB             = f+j_coord_offsetB;
268             fjptrC             = f+j_coord_offsetC;
269             fjptrD             = f+j_coord_offsetD;
270             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
271
272             /* Inner loop uses 57 flops */
273         }
274
275         if(jidx<j_index_end)
276         {
277
278             /* Get j neighbor index, and coordinate index */
279             jnrlistA         = jjnr[jidx];
280             jnrlistB         = jjnr[jidx+1];
281             jnrlistC         = jjnr[jidx+2];
282             jnrlistD         = jjnr[jidx+3];
283             /* Sign of each element will be negative for non-real atoms.
284              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
285              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
286              */
287             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
288
289             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
290             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
291             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
292
293             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
294             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
295             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
296             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
297             j_coord_offsetA  = DIM*jnrA;
298             j_coord_offsetB  = DIM*jnrB;
299             j_coord_offsetC  = DIM*jnrC;
300             j_coord_offsetD  = DIM*jnrD;
301
302             /* load j atom coordinates */
303             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
304                                                  x+j_coord_offsetC,x+j_coord_offsetD,
305                                                  &jx0,&jy0,&jz0);
306
307             /* Calculate displacement vector */
308             dx00             = _mm256_sub_pd(ix0,jx0);
309             dy00             = _mm256_sub_pd(iy0,jy0);
310             dz00             = _mm256_sub_pd(iz0,jz0);
311
312             /* Calculate squared distance and things based on it */
313             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
314
315             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
316
317             /* Load parameters for j particles */
318             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
319                                                                  charge+jnrC+0,charge+jnrD+0);
320             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
321                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
322
323             /**************************
324              * CALCULATE INTERACTIONS *
325              **************************/
326
327             r00              = _mm256_mul_pd(rsq00,rinv00);
328             r00              = _mm256_andnot_pd(dummy_mask,r00);
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq00             = _mm256_mul_pd(iq0,jq0);
332
333             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
334             isaprod          = _mm256_mul_pd(isai0,isaj0);
335             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
336             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
337
338             /* Calculate generalized born table index - this is a separate table from the normal one,
339              * but we use the same procedure by multiplying r with scale and truncating to integer.
340              */
341             rt               = _mm256_mul_pd(r00,gbscale);
342             gbitab           = _mm256_cvttpd_epi32(rt);
343             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
344             gbitab           = _mm_slli_epi32(gbitab,2);
345             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
346             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
347             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
348             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
349             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
350             Heps             = _mm256_mul_pd(gbeps,H);
351             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
352             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
353             vgb              = _mm256_mul_pd(gbqqfactor,VV);
354
355             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
356             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
357             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
358             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
359             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
360             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
361             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
362             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
363             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
364             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
365             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
366                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
367             velec            = _mm256_mul_pd(qq00,rinv00);
368             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velec            = _mm256_andnot_pd(dummy_mask,velec);
372             velecsum         = _mm256_add_pd(velecsum,velec);
373             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
374             vgbsum           = _mm256_add_pd(vgbsum,vgb);
375
376             fscal            = felec;
377
378             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
379
380             /* Calculate temporary vectorial force */
381             tx               = _mm256_mul_pd(fscal,dx00);
382             ty               = _mm256_mul_pd(fscal,dy00);
383             tz               = _mm256_mul_pd(fscal,dz00);
384
385             /* Update vectorial force */
386             fix0             = _mm256_add_pd(fix0,tx);
387             fiy0             = _mm256_add_pd(fiy0,ty);
388             fiz0             = _mm256_add_pd(fiz0,tz);
389
390             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
391             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
392             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
393             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
394             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
395
396             /* Inner loop uses 58 flops */
397         }
398
399         /* End of innermost loop */
400
401         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
402                                                  f+i_coord_offset,fshift+i_shift_offset);
403
404         ggid                        = gid[iidx];
405         /* Update potential energies */
406         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
407         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
408         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
409         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
410
411         /* Increment number of inner iterations */
412         inneriter                  += j_index_end - j_index_start;
413
414         /* Outer loop uses 9 flops */
415     }
416
417     /* Increment number of outer iterations */
418     outeriter        += nri;
419
420     /* Update outer/inner flops */
421
422     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*58);
423 }
424 /*
425  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_256_double
426  * Electrostatics interaction: GeneralizedBorn
427  * VdW interaction:            None
428  * Geometry:                   Particle-Particle
429  * Calculate force/pot:        Force
430  */
431 void
432 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_256_double
433                     (t_nblist                    * gmx_restrict       nlist,
434                      rvec                        * gmx_restrict          xx,
435                      rvec                        * gmx_restrict          ff,
436                      t_forcerec                  * gmx_restrict          fr,
437                      t_mdatoms                   * gmx_restrict     mdatoms,
438                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
439                      t_nrnb                      * gmx_restrict        nrnb)
440 {
441     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
442      * just 0 for non-waters.
443      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
444      * jnr indices corresponding to data put in the four positions in the SIMD register.
445      */
446     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
447     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
448     int              jnrA,jnrB,jnrC,jnrD;
449     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
450     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
451     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
452     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
453     real             rcutoff_scalar;
454     real             *shiftvec,*fshift,*x,*f;
455     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
456     real             scratch[4*DIM];
457     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
458     real *           vdwioffsetptr0;
459     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
460     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
461     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
462     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
463     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
464     real             *charge;
465     __m128i          gbitab;
466     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
467     __m256d          minushalf = _mm256_set1_pd(-0.5);
468     real             *invsqrta,*dvda,*gbtab;
469     __m128i          vfitab;
470     __m128i          ifour       = _mm_set1_epi32(4);
471     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
472     real             *vftab;
473     __m256d          dummy_mask,cutoff_mask;
474     __m128           tmpmask0,tmpmask1;
475     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
476     __m256d          one     = _mm256_set1_pd(1.0);
477     __m256d          two     = _mm256_set1_pd(2.0);
478     x                = xx[0];
479     f                = ff[0];
480
481     nri              = nlist->nri;
482     iinr             = nlist->iinr;
483     jindex           = nlist->jindex;
484     jjnr             = nlist->jjnr;
485     shiftidx         = nlist->shift;
486     gid              = nlist->gid;
487     shiftvec         = fr->shift_vec[0];
488     fshift           = fr->fshift[0];
489     facel            = _mm256_set1_pd(fr->epsfac);
490     charge           = mdatoms->chargeA;
491
492     invsqrta         = fr->invsqrta;
493     dvda             = fr->dvda;
494     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
495     gbtab            = fr->gbtab.data;
496     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
497
498     /* Avoid stupid compiler warnings */
499     jnrA = jnrB = jnrC = jnrD = 0;
500     j_coord_offsetA = 0;
501     j_coord_offsetB = 0;
502     j_coord_offsetC = 0;
503     j_coord_offsetD = 0;
504
505     outeriter        = 0;
506     inneriter        = 0;
507
508     for(iidx=0;iidx<4*DIM;iidx++)
509     {
510         scratch[iidx] = 0.0;
511     }
512
513     /* Start outer loop over neighborlists */
514     for(iidx=0; iidx<nri; iidx++)
515     {
516         /* Load shift vector for this list */
517         i_shift_offset   = DIM*shiftidx[iidx];
518
519         /* Load limits for loop over neighbors */
520         j_index_start    = jindex[iidx];
521         j_index_end      = jindex[iidx+1];
522
523         /* Get outer coordinate index */
524         inr              = iinr[iidx];
525         i_coord_offset   = DIM*inr;
526
527         /* Load i particle coords and add shift vector */
528         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
529
530         fix0             = _mm256_setzero_pd();
531         fiy0             = _mm256_setzero_pd();
532         fiz0             = _mm256_setzero_pd();
533
534         /* Load parameters for i particles */
535         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
536         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
537
538         dvdasum          = _mm256_setzero_pd();
539
540         /* Start inner kernel loop */
541         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
542         {
543
544             /* Get j neighbor index, and coordinate index */
545             jnrA             = jjnr[jidx];
546             jnrB             = jjnr[jidx+1];
547             jnrC             = jjnr[jidx+2];
548             jnrD             = jjnr[jidx+3];
549             j_coord_offsetA  = DIM*jnrA;
550             j_coord_offsetB  = DIM*jnrB;
551             j_coord_offsetC  = DIM*jnrC;
552             j_coord_offsetD  = DIM*jnrD;
553
554             /* load j atom coordinates */
555             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
556                                                  x+j_coord_offsetC,x+j_coord_offsetD,
557                                                  &jx0,&jy0,&jz0);
558
559             /* Calculate displacement vector */
560             dx00             = _mm256_sub_pd(ix0,jx0);
561             dy00             = _mm256_sub_pd(iy0,jy0);
562             dz00             = _mm256_sub_pd(iz0,jz0);
563
564             /* Calculate squared distance and things based on it */
565             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
566
567             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
568
569             /* Load parameters for j particles */
570             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
571                                                                  charge+jnrC+0,charge+jnrD+0);
572             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
573                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             r00              = _mm256_mul_pd(rsq00,rinv00);
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq00             = _mm256_mul_pd(iq0,jq0);
583
584             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
585             isaprod          = _mm256_mul_pd(isai0,isaj0);
586             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
587             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
588
589             /* Calculate generalized born table index - this is a separate table from the normal one,
590              * but we use the same procedure by multiplying r with scale and truncating to integer.
591              */
592             rt               = _mm256_mul_pd(r00,gbscale);
593             gbitab           = _mm256_cvttpd_epi32(rt);
594             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
595             gbitab           = _mm_slli_epi32(gbitab,2);
596             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
597             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
598             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
599             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
600             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
601             Heps             = _mm256_mul_pd(gbeps,H);
602             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
603             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
604             vgb              = _mm256_mul_pd(gbqqfactor,VV);
605
606             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
607             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
608             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
609             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
610             fjptrA           = dvda+jnrA;
611             fjptrB           = dvda+jnrB;
612             fjptrC           = dvda+jnrC;
613             fjptrD           = dvda+jnrD;
614             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
615                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
616             velec            = _mm256_mul_pd(qq00,rinv00);
617             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
618
619             fscal            = felec;
620
621             /* Calculate temporary vectorial force */
622             tx               = _mm256_mul_pd(fscal,dx00);
623             ty               = _mm256_mul_pd(fscal,dy00);
624             tz               = _mm256_mul_pd(fscal,dz00);
625
626             /* Update vectorial force */
627             fix0             = _mm256_add_pd(fix0,tx);
628             fiy0             = _mm256_add_pd(fiy0,ty);
629             fiz0             = _mm256_add_pd(fiz0,tz);
630
631             fjptrA             = f+j_coord_offsetA;
632             fjptrB             = f+j_coord_offsetB;
633             fjptrC             = f+j_coord_offsetC;
634             fjptrD             = f+j_coord_offsetD;
635             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
636
637             /* Inner loop uses 55 flops */
638         }
639
640         if(jidx<j_index_end)
641         {
642
643             /* Get j neighbor index, and coordinate index */
644             jnrlistA         = jjnr[jidx];
645             jnrlistB         = jjnr[jidx+1];
646             jnrlistC         = jjnr[jidx+2];
647             jnrlistD         = jjnr[jidx+3];
648             /* Sign of each element will be negative for non-real atoms.
649              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
650              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
651              */
652             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
653
654             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
655             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
656             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
657
658             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
659             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
660             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
661             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
662             j_coord_offsetA  = DIM*jnrA;
663             j_coord_offsetB  = DIM*jnrB;
664             j_coord_offsetC  = DIM*jnrC;
665             j_coord_offsetD  = DIM*jnrD;
666
667             /* load j atom coordinates */
668             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
669                                                  x+j_coord_offsetC,x+j_coord_offsetD,
670                                                  &jx0,&jy0,&jz0);
671
672             /* Calculate displacement vector */
673             dx00             = _mm256_sub_pd(ix0,jx0);
674             dy00             = _mm256_sub_pd(iy0,jy0);
675             dz00             = _mm256_sub_pd(iz0,jz0);
676
677             /* Calculate squared distance and things based on it */
678             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
679
680             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
681
682             /* Load parameters for j particles */
683             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
684                                                                  charge+jnrC+0,charge+jnrD+0);
685             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
686                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
687
688             /**************************
689              * CALCULATE INTERACTIONS *
690              **************************/
691
692             r00              = _mm256_mul_pd(rsq00,rinv00);
693             r00              = _mm256_andnot_pd(dummy_mask,r00);
694
695             /* Compute parameters for interactions between i and j atoms */
696             qq00             = _mm256_mul_pd(iq0,jq0);
697
698             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
699             isaprod          = _mm256_mul_pd(isai0,isaj0);
700             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
701             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
702
703             /* Calculate generalized born table index - this is a separate table from the normal one,
704              * but we use the same procedure by multiplying r with scale and truncating to integer.
705              */
706             rt               = _mm256_mul_pd(r00,gbscale);
707             gbitab           = _mm256_cvttpd_epi32(rt);
708             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
709             gbitab           = _mm_slli_epi32(gbitab,2);
710             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
711             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
712             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
713             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
714             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
715             Heps             = _mm256_mul_pd(gbeps,H);
716             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
717             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
718             vgb              = _mm256_mul_pd(gbqqfactor,VV);
719
720             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
721             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
722             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
723             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
724             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
725             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
726             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
727             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
728             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
729             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
730             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
731                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
732             velec            = _mm256_mul_pd(qq00,rinv00);
733             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
734
735             fscal            = felec;
736
737             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
738
739             /* Calculate temporary vectorial force */
740             tx               = _mm256_mul_pd(fscal,dx00);
741             ty               = _mm256_mul_pd(fscal,dy00);
742             tz               = _mm256_mul_pd(fscal,dz00);
743
744             /* Update vectorial force */
745             fix0             = _mm256_add_pd(fix0,tx);
746             fiy0             = _mm256_add_pd(fiy0,ty);
747             fiz0             = _mm256_add_pd(fiz0,tz);
748
749             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
750             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
751             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
752             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
753             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
754
755             /* Inner loop uses 56 flops */
756         }
757
758         /* End of innermost loop */
759
760         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
761                                                  f+i_coord_offset,fshift+i_shift_offset);
762
763         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
764         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
765
766         /* Increment number of inner iterations */
767         inneriter                  += j_index_end - j_index_start;
768
769         /* Outer loop uses 7 flops */
770     }
771
772     /* Increment number of outer iterations */
773     outeriter        += nri;
774
775     /* Update outer/inner flops */
776
777     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*56);
778 }