a64785a5631bb488475926f5c8689aac3b67cbd8
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128i          gbitab;
91     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
92     __m256d          minushalf = _mm256_set1_pd(-0.5);
93     real             *invsqrta,*dvda,*gbtab;
94     __m128i          vfitab;
95     __m128i          ifour       = _mm_set1_epi32(4);
96     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
97     real             *vftab;
98     __m256d          dummy_mask,cutoff_mask;
99     __m128           tmpmask0,tmpmask1;
100     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
101     __m256d          one     = _mm256_set1_pd(1.0);
102     __m256d          two     = _mm256_set1_pd(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm256_set1_pd(fr->ic->epsfac);
115     charge           = mdatoms->chargeA;
116
117     invsqrta         = fr->invsqrta;
118     dvda             = fr->dvda;
119     gbtabscale       = _mm256_set1_pd(fr->gbtab->scale);
120     gbtab            = fr->gbtab->data;
121     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = jnrC = jnrD = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127     j_coord_offsetC = 0;
128     j_coord_offsetD = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     for(iidx=0;iidx<4*DIM;iidx++)
134     {
135         scratch[iidx] = 0.0;
136     }
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154
155         fix0             = _mm256_setzero_pd();
156         fiy0             = _mm256_setzero_pd();
157         fiz0             = _mm256_setzero_pd();
158
159         /* Load parameters for i particles */
160         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
161         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
162
163         /* Reset potential sums */
164         velecsum         = _mm256_setzero_pd();
165         vgbsum           = _mm256_setzero_pd();
166         dvdasum          = _mm256_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             jnrC             = jjnr[jidx+2];
176             jnrD             = jjnr[jidx+3];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179             j_coord_offsetC  = DIM*jnrC;
180             j_coord_offsetD  = DIM*jnrD;
181
182             /* load j atom coordinates */
183             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
184                                                  x+j_coord_offsetC,x+j_coord_offsetD,
185                                                  &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm256_sub_pd(ix0,jx0);
189             dy00             = _mm256_sub_pd(iy0,jy0);
190             dz00             = _mm256_sub_pd(iz0,jz0);
191
192             /* Calculate squared distance and things based on it */
193             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
194
195             rinv00           = avx256_invsqrt_d(rsq00);
196
197             /* Load parameters for j particles */
198             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
199                                                                  charge+jnrC+0,charge+jnrD+0);
200             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
201                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             r00              = _mm256_mul_pd(rsq00,rinv00);
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq00             = _mm256_mul_pd(iq0,jq0);
211
212             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
213             isaprod          = _mm256_mul_pd(isai0,isaj0);
214             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
215             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
216
217             /* Calculate generalized born table index - this is a separate table from the normal one,
218              * but we use the same procedure by multiplying r with scale and truncating to integer.
219              */
220             rt               = _mm256_mul_pd(r00,gbscale);
221             gbitab           = _mm256_cvttpd_epi32(rt);
222             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
223             gbitab           = _mm_slli_epi32(gbitab,2);
224             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
225             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
226             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
227             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
228             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
229             Heps             = _mm256_mul_pd(gbeps,H);
230             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
231             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
232             vgb              = _mm256_mul_pd(gbqqfactor,VV);
233
234             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
235             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
236             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
237             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
238             fjptrA           = dvda+jnrA;
239             fjptrB           = dvda+jnrB;
240             fjptrC           = dvda+jnrC;
241             fjptrD           = dvda+jnrD;
242             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
243                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
244             velec            = _mm256_mul_pd(qq00,rinv00);
245             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             velecsum         = _mm256_add_pd(velecsum,velec);
249             vgbsum           = _mm256_add_pd(vgbsum,vgb);
250
251             fscal            = felec;
252
253             /* Calculate temporary vectorial force */
254             tx               = _mm256_mul_pd(fscal,dx00);
255             ty               = _mm256_mul_pd(fscal,dy00);
256             tz               = _mm256_mul_pd(fscal,dz00);
257
258             /* Update vectorial force */
259             fix0             = _mm256_add_pd(fix0,tx);
260             fiy0             = _mm256_add_pd(fiy0,ty);
261             fiz0             = _mm256_add_pd(fiz0,tz);
262
263             fjptrA             = f+j_coord_offsetA;
264             fjptrB             = f+j_coord_offsetB;
265             fjptrC             = f+j_coord_offsetC;
266             fjptrD             = f+j_coord_offsetD;
267             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
268
269             /* Inner loop uses 57 flops */
270         }
271
272         if(jidx<j_index_end)
273         {
274
275             /* Get j neighbor index, and coordinate index */
276             jnrlistA         = jjnr[jidx];
277             jnrlistB         = jjnr[jidx+1];
278             jnrlistC         = jjnr[jidx+2];
279             jnrlistD         = jjnr[jidx+3];
280             /* Sign of each element will be negative for non-real atoms.
281              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
282              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
283              */
284             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
285
286             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
287             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
288             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
289
290             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
291             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
292             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
293             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
294             j_coord_offsetA  = DIM*jnrA;
295             j_coord_offsetB  = DIM*jnrB;
296             j_coord_offsetC  = DIM*jnrC;
297             j_coord_offsetD  = DIM*jnrD;
298
299             /* load j atom coordinates */
300             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
301                                                  x+j_coord_offsetC,x+j_coord_offsetD,
302                                                  &jx0,&jy0,&jz0);
303
304             /* Calculate displacement vector */
305             dx00             = _mm256_sub_pd(ix0,jx0);
306             dy00             = _mm256_sub_pd(iy0,jy0);
307             dz00             = _mm256_sub_pd(iz0,jz0);
308
309             /* Calculate squared distance and things based on it */
310             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
311
312             rinv00           = avx256_invsqrt_d(rsq00);
313
314             /* Load parameters for j particles */
315             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
316                                                                  charge+jnrC+0,charge+jnrD+0);
317             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
318                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             r00              = _mm256_mul_pd(rsq00,rinv00);
325             r00              = _mm256_andnot_pd(dummy_mask,r00);
326
327             /* Compute parameters for interactions between i and j atoms */
328             qq00             = _mm256_mul_pd(iq0,jq0);
329
330             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
331             isaprod          = _mm256_mul_pd(isai0,isaj0);
332             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
333             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
334
335             /* Calculate generalized born table index - this is a separate table from the normal one,
336              * but we use the same procedure by multiplying r with scale and truncating to integer.
337              */
338             rt               = _mm256_mul_pd(r00,gbscale);
339             gbitab           = _mm256_cvttpd_epi32(rt);
340             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
341             gbitab           = _mm_slli_epi32(gbitab,2);
342             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
343             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
344             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
345             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
346             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
347             Heps             = _mm256_mul_pd(gbeps,H);
348             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
349             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
350             vgb              = _mm256_mul_pd(gbqqfactor,VV);
351
352             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
353             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
354             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
355             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
356             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
357             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
358             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
359             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
360             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
361             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
362             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
363                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
364             velec            = _mm256_mul_pd(qq00,rinv00);
365             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velec            = _mm256_andnot_pd(dummy_mask,velec);
369             velecsum         = _mm256_add_pd(velecsum,velec);
370             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
371             vgbsum           = _mm256_add_pd(vgbsum,vgb);
372
373             fscal            = felec;
374
375             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm256_mul_pd(fscal,dx00);
379             ty               = _mm256_mul_pd(fscal,dy00);
380             tz               = _mm256_mul_pd(fscal,dz00);
381
382             /* Update vectorial force */
383             fix0             = _mm256_add_pd(fix0,tx);
384             fiy0             = _mm256_add_pd(fiy0,ty);
385             fiz0             = _mm256_add_pd(fiz0,tz);
386
387             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
388             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
389             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
390             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
391             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
392
393             /* Inner loop uses 58 flops */
394         }
395
396         /* End of innermost loop */
397
398         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
399                                                  f+i_coord_offset,fshift+i_shift_offset);
400
401         ggid                        = gid[iidx];
402         /* Update potential energies */
403         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
404         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
405         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
406         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
407
408         /* Increment number of inner iterations */
409         inneriter                  += j_index_end - j_index_start;
410
411         /* Outer loop uses 9 flops */
412     }
413
414     /* Increment number of outer iterations */
415     outeriter        += nri;
416
417     /* Update outer/inner flops */
418
419     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*58);
420 }
421 /*
422  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_256_double
423  * Electrostatics interaction: GeneralizedBorn
424  * VdW interaction:            None
425  * Geometry:                   Particle-Particle
426  * Calculate force/pot:        Force
427  */
428 void
429 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_256_double
430                     (t_nblist                    * gmx_restrict       nlist,
431                      rvec                        * gmx_restrict          xx,
432                      rvec                        * gmx_restrict          ff,
433                      struct t_forcerec           * gmx_restrict          fr,
434                      t_mdatoms                   * gmx_restrict     mdatoms,
435                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
436                      t_nrnb                      * gmx_restrict        nrnb)
437 {
438     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
439      * just 0 for non-waters.
440      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
441      * jnr indices corresponding to data put in the four positions in the SIMD register.
442      */
443     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
444     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
445     int              jnrA,jnrB,jnrC,jnrD;
446     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
447     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
448     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
449     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
450     real             rcutoff_scalar;
451     real             *shiftvec,*fshift,*x,*f;
452     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
453     real             scratch[4*DIM];
454     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
455     real *           vdwioffsetptr0;
456     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
457     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
458     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
459     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
460     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
461     real             *charge;
462     __m128i          gbitab;
463     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
464     __m256d          minushalf = _mm256_set1_pd(-0.5);
465     real             *invsqrta,*dvda,*gbtab;
466     __m128i          vfitab;
467     __m128i          ifour       = _mm_set1_epi32(4);
468     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
469     real             *vftab;
470     __m256d          dummy_mask,cutoff_mask;
471     __m128           tmpmask0,tmpmask1;
472     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
473     __m256d          one     = _mm256_set1_pd(1.0);
474     __m256d          two     = _mm256_set1_pd(2.0);
475     x                = xx[0];
476     f                = ff[0];
477
478     nri              = nlist->nri;
479     iinr             = nlist->iinr;
480     jindex           = nlist->jindex;
481     jjnr             = nlist->jjnr;
482     shiftidx         = nlist->shift;
483     gid              = nlist->gid;
484     shiftvec         = fr->shift_vec[0];
485     fshift           = fr->fshift[0];
486     facel            = _mm256_set1_pd(fr->ic->epsfac);
487     charge           = mdatoms->chargeA;
488
489     invsqrta         = fr->invsqrta;
490     dvda             = fr->dvda;
491     gbtabscale       = _mm256_set1_pd(fr->gbtab->scale);
492     gbtab            = fr->gbtab->data;
493     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
494
495     /* Avoid stupid compiler warnings */
496     jnrA = jnrB = jnrC = jnrD = 0;
497     j_coord_offsetA = 0;
498     j_coord_offsetB = 0;
499     j_coord_offsetC = 0;
500     j_coord_offsetD = 0;
501
502     outeriter        = 0;
503     inneriter        = 0;
504
505     for(iidx=0;iidx<4*DIM;iidx++)
506     {
507         scratch[iidx] = 0.0;
508     }
509
510     /* Start outer loop over neighborlists */
511     for(iidx=0; iidx<nri; iidx++)
512     {
513         /* Load shift vector for this list */
514         i_shift_offset   = DIM*shiftidx[iidx];
515
516         /* Load limits for loop over neighbors */
517         j_index_start    = jindex[iidx];
518         j_index_end      = jindex[iidx+1];
519
520         /* Get outer coordinate index */
521         inr              = iinr[iidx];
522         i_coord_offset   = DIM*inr;
523
524         /* Load i particle coords and add shift vector */
525         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
526
527         fix0             = _mm256_setzero_pd();
528         fiy0             = _mm256_setzero_pd();
529         fiz0             = _mm256_setzero_pd();
530
531         /* Load parameters for i particles */
532         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
533         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
534
535         dvdasum          = _mm256_setzero_pd();
536
537         /* Start inner kernel loop */
538         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
539         {
540
541             /* Get j neighbor index, and coordinate index */
542             jnrA             = jjnr[jidx];
543             jnrB             = jjnr[jidx+1];
544             jnrC             = jjnr[jidx+2];
545             jnrD             = jjnr[jidx+3];
546             j_coord_offsetA  = DIM*jnrA;
547             j_coord_offsetB  = DIM*jnrB;
548             j_coord_offsetC  = DIM*jnrC;
549             j_coord_offsetD  = DIM*jnrD;
550
551             /* load j atom coordinates */
552             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
553                                                  x+j_coord_offsetC,x+j_coord_offsetD,
554                                                  &jx0,&jy0,&jz0);
555
556             /* Calculate displacement vector */
557             dx00             = _mm256_sub_pd(ix0,jx0);
558             dy00             = _mm256_sub_pd(iy0,jy0);
559             dz00             = _mm256_sub_pd(iz0,jz0);
560
561             /* Calculate squared distance and things based on it */
562             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
563
564             rinv00           = avx256_invsqrt_d(rsq00);
565
566             /* Load parameters for j particles */
567             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
568                                                                  charge+jnrC+0,charge+jnrD+0);
569             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
570                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             r00              = _mm256_mul_pd(rsq00,rinv00);
577
578             /* Compute parameters for interactions between i and j atoms */
579             qq00             = _mm256_mul_pd(iq0,jq0);
580
581             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
582             isaprod          = _mm256_mul_pd(isai0,isaj0);
583             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
584             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
585
586             /* Calculate generalized born table index - this is a separate table from the normal one,
587              * but we use the same procedure by multiplying r with scale and truncating to integer.
588              */
589             rt               = _mm256_mul_pd(r00,gbscale);
590             gbitab           = _mm256_cvttpd_epi32(rt);
591             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
592             gbitab           = _mm_slli_epi32(gbitab,2);
593             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
594             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
595             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
596             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
597             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
598             Heps             = _mm256_mul_pd(gbeps,H);
599             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
600             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
601             vgb              = _mm256_mul_pd(gbqqfactor,VV);
602
603             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
604             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
605             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
606             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
607             fjptrA           = dvda+jnrA;
608             fjptrB           = dvda+jnrB;
609             fjptrC           = dvda+jnrC;
610             fjptrD           = dvda+jnrD;
611             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
612                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
613             velec            = _mm256_mul_pd(qq00,rinv00);
614             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
615
616             fscal            = felec;
617
618             /* Calculate temporary vectorial force */
619             tx               = _mm256_mul_pd(fscal,dx00);
620             ty               = _mm256_mul_pd(fscal,dy00);
621             tz               = _mm256_mul_pd(fscal,dz00);
622
623             /* Update vectorial force */
624             fix0             = _mm256_add_pd(fix0,tx);
625             fiy0             = _mm256_add_pd(fiy0,ty);
626             fiz0             = _mm256_add_pd(fiz0,tz);
627
628             fjptrA             = f+j_coord_offsetA;
629             fjptrB             = f+j_coord_offsetB;
630             fjptrC             = f+j_coord_offsetC;
631             fjptrD             = f+j_coord_offsetD;
632             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
633
634             /* Inner loop uses 55 flops */
635         }
636
637         if(jidx<j_index_end)
638         {
639
640             /* Get j neighbor index, and coordinate index */
641             jnrlistA         = jjnr[jidx];
642             jnrlistB         = jjnr[jidx+1];
643             jnrlistC         = jjnr[jidx+2];
644             jnrlistD         = jjnr[jidx+3];
645             /* Sign of each element will be negative for non-real atoms.
646              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
647              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
648              */
649             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
650
651             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
652             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
653             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
654
655             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
656             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
657             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
658             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
659             j_coord_offsetA  = DIM*jnrA;
660             j_coord_offsetB  = DIM*jnrB;
661             j_coord_offsetC  = DIM*jnrC;
662             j_coord_offsetD  = DIM*jnrD;
663
664             /* load j atom coordinates */
665             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
666                                                  x+j_coord_offsetC,x+j_coord_offsetD,
667                                                  &jx0,&jy0,&jz0);
668
669             /* Calculate displacement vector */
670             dx00             = _mm256_sub_pd(ix0,jx0);
671             dy00             = _mm256_sub_pd(iy0,jy0);
672             dz00             = _mm256_sub_pd(iz0,jz0);
673
674             /* Calculate squared distance and things based on it */
675             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
676
677             rinv00           = avx256_invsqrt_d(rsq00);
678
679             /* Load parameters for j particles */
680             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
681                                                                  charge+jnrC+0,charge+jnrD+0);
682             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
683                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
684
685             /**************************
686              * CALCULATE INTERACTIONS *
687              **************************/
688
689             r00              = _mm256_mul_pd(rsq00,rinv00);
690             r00              = _mm256_andnot_pd(dummy_mask,r00);
691
692             /* Compute parameters for interactions between i and j atoms */
693             qq00             = _mm256_mul_pd(iq0,jq0);
694
695             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
696             isaprod          = _mm256_mul_pd(isai0,isaj0);
697             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
698             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
699
700             /* Calculate generalized born table index - this is a separate table from the normal one,
701              * but we use the same procedure by multiplying r with scale and truncating to integer.
702              */
703             rt               = _mm256_mul_pd(r00,gbscale);
704             gbitab           = _mm256_cvttpd_epi32(rt);
705             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
706             gbitab           = _mm_slli_epi32(gbitab,2);
707             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
708             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
709             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
710             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
711             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
712             Heps             = _mm256_mul_pd(gbeps,H);
713             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
714             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
715             vgb              = _mm256_mul_pd(gbqqfactor,VV);
716
717             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
718             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
719             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
720             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
721             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
722             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
723             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
724             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
725             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
726             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
727             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
728                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
729             velec            = _mm256_mul_pd(qq00,rinv00);
730             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
731
732             fscal            = felec;
733
734             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
735
736             /* Calculate temporary vectorial force */
737             tx               = _mm256_mul_pd(fscal,dx00);
738             ty               = _mm256_mul_pd(fscal,dy00);
739             tz               = _mm256_mul_pd(fscal,dz00);
740
741             /* Update vectorial force */
742             fix0             = _mm256_add_pd(fix0,tx);
743             fiy0             = _mm256_add_pd(fiy0,ty);
744             fiz0             = _mm256_add_pd(fiz0,tz);
745
746             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
747             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
748             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
749             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
750             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
751
752             /* Inner loop uses 56 flops */
753         }
754
755         /* End of innermost loop */
756
757         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
758                                                  f+i_coord_offset,fshift+i_shift_offset);
759
760         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
761         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
762
763         /* Increment number of inner iterations */
764         inneriter                  += j_index_end - j_index_start;
765
766         /* Outer loop uses 7 flops */
767     }
768
769     /* Increment number of outer iterations */
770     outeriter        += nri;
771
772     /* Update outer/inner flops */
773
774     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*56);
775 }