0c99f0e6b02ce9b5f457d08e24837af424fa5f55
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     __m128i          gbitab;
92     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
93     __m256d          minushalf = _mm256_set1_pd(-0.5);
94     real             *invsqrta,*dvda,*gbtab;
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
98     real             *vftab;
99     __m256d          dummy_mask,cutoff_mask;
100     __m128           tmpmask0,tmpmask1;
101     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
102     __m256d          one     = _mm256_set1_pd(1.0);
103     __m256d          two     = _mm256_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm256_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117
118     invsqrta         = fr->invsqrta;
119     dvda             = fr->dvda;
120     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
121     gbtab            = fr->gbtab.data;
122     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm256_setzero_pd();
157         fiy0             = _mm256_setzero_pd();
158         fiz0             = _mm256_setzero_pd();
159
160         /* Load parameters for i particles */
161         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
162         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
163
164         /* Reset potential sums */
165         velecsum         = _mm256_setzero_pd();
166         vgbsum           = _mm256_setzero_pd();
167         dvdasum          = _mm256_setzero_pd();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             jnrC             = jjnr[jidx+2];
177             jnrD             = jjnr[jidx+3];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180             j_coord_offsetC  = DIM*jnrC;
181             j_coord_offsetD  = DIM*jnrD;
182
183             /* load j atom coordinates */
184             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                                  x+j_coord_offsetC,x+j_coord_offsetD,
186                                                  &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm256_sub_pd(ix0,jx0);
190             dy00             = _mm256_sub_pd(iy0,jy0);
191             dz00             = _mm256_sub_pd(iz0,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
195
196             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
197
198             /* Load parameters for j particles */
199             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
200                                                                  charge+jnrC+0,charge+jnrD+0);
201             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
202                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
203
204             /**************************
205              * CALCULATE INTERACTIONS *
206              **************************/
207
208             r00              = _mm256_mul_pd(rsq00,rinv00);
209
210             /* Compute parameters for interactions between i and j atoms */
211             qq00             = _mm256_mul_pd(iq0,jq0);
212
213             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
214             isaprod          = _mm256_mul_pd(isai0,isaj0);
215             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
216             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
217
218             /* Calculate generalized born table index - this is a separate table from the normal one,
219              * but we use the same procedure by multiplying r with scale and truncating to integer.
220              */
221             rt               = _mm256_mul_pd(r00,gbscale);
222             gbitab           = _mm256_cvttpd_epi32(rt);
223             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
224             gbitab           = _mm_slli_epi32(gbitab,2);
225             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
226             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
227             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
228             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
229             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
230             Heps             = _mm256_mul_pd(gbeps,H);
231             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
232             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
233             vgb              = _mm256_mul_pd(gbqqfactor,VV);
234
235             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
236             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
237             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
238             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
239             fjptrA           = dvda+jnrA;
240             fjptrB           = dvda+jnrB;
241             fjptrC           = dvda+jnrC;
242             fjptrD           = dvda+jnrD;
243             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
244                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
245             velec            = _mm256_mul_pd(qq00,rinv00);
246             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
247
248             /* Update potential sum for this i atom from the interaction with this j atom. */
249             velecsum         = _mm256_add_pd(velecsum,velec);
250             vgbsum           = _mm256_add_pd(vgbsum,vgb);
251
252             fscal            = felec;
253
254             /* Calculate temporary vectorial force */
255             tx               = _mm256_mul_pd(fscal,dx00);
256             ty               = _mm256_mul_pd(fscal,dy00);
257             tz               = _mm256_mul_pd(fscal,dz00);
258
259             /* Update vectorial force */
260             fix0             = _mm256_add_pd(fix0,tx);
261             fiy0             = _mm256_add_pd(fiy0,ty);
262             fiz0             = _mm256_add_pd(fiz0,tz);
263
264             fjptrA             = f+j_coord_offsetA;
265             fjptrB             = f+j_coord_offsetB;
266             fjptrC             = f+j_coord_offsetC;
267             fjptrD             = f+j_coord_offsetD;
268             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
269
270             /* Inner loop uses 57 flops */
271         }
272
273         if(jidx<j_index_end)
274         {
275
276             /* Get j neighbor index, and coordinate index */
277             jnrlistA         = jjnr[jidx];
278             jnrlistB         = jjnr[jidx+1];
279             jnrlistC         = jjnr[jidx+2];
280             jnrlistD         = jjnr[jidx+3];
281             /* Sign of each element will be negative for non-real atoms.
282              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
283              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
284              */
285             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
286
287             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
288             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
289             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
290
291             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
292             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
293             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
294             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
295             j_coord_offsetA  = DIM*jnrA;
296             j_coord_offsetB  = DIM*jnrB;
297             j_coord_offsetC  = DIM*jnrC;
298             j_coord_offsetD  = DIM*jnrD;
299
300             /* load j atom coordinates */
301             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
302                                                  x+j_coord_offsetC,x+j_coord_offsetD,
303                                                  &jx0,&jy0,&jz0);
304
305             /* Calculate displacement vector */
306             dx00             = _mm256_sub_pd(ix0,jx0);
307             dy00             = _mm256_sub_pd(iy0,jy0);
308             dz00             = _mm256_sub_pd(iz0,jz0);
309
310             /* Calculate squared distance and things based on it */
311             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
312
313             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
314
315             /* Load parameters for j particles */
316             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
317                                                                  charge+jnrC+0,charge+jnrD+0);
318             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
319                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             r00              = _mm256_mul_pd(rsq00,rinv00);
326             r00              = _mm256_andnot_pd(dummy_mask,r00);
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq00             = _mm256_mul_pd(iq0,jq0);
330
331             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
332             isaprod          = _mm256_mul_pd(isai0,isaj0);
333             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
334             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
335
336             /* Calculate generalized born table index - this is a separate table from the normal one,
337              * but we use the same procedure by multiplying r with scale and truncating to integer.
338              */
339             rt               = _mm256_mul_pd(r00,gbscale);
340             gbitab           = _mm256_cvttpd_epi32(rt);
341             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
342             gbitab           = _mm_slli_epi32(gbitab,2);
343             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
344             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
345             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
346             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
347             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
348             Heps             = _mm256_mul_pd(gbeps,H);
349             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
350             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
351             vgb              = _mm256_mul_pd(gbqqfactor,VV);
352
353             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
354             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
355             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
356             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
357             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
358             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
359             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
360             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
361             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
362             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
363             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
364                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
365             velec            = _mm256_mul_pd(qq00,rinv00);
366             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             velec            = _mm256_andnot_pd(dummy_mask,velec);
370             velecsum         = _mm256_add_pd(velecsum,velec);
371             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
372             vgbsum           = _mm256_add_pd(vgbsum,vgb);
373
374             fscal            = felec;
375
376             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
377
378             /* Calculate temporary vectorial force */
379             tx               = _mm256_mul_pd(fscal,dx00);
380             ty               = _mm256_mul_pd(fscal,dy00);
381             tz               = _mm256_mul_pd(fscal,dz00);
382
383             /* Update vectorial force */
384             fix0             = _mm256_add_pd(fix0,tx);
385             fiy0             = _mm256_add_pd(fiy0,ty);
386             fiz0             = _mm256_add_pd(fiz0,tz);
387
388             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
389             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
390             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
391             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
392             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
393
394             /* Inner loop uses 58 flops */
395         }
396
397         /* End of innermost loop */
398
399         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
400                                                  f+i_coord_offset,fshift+i_shift_offset);
401
402         ggid                        = gid[iidx];
403         /* Update potential energies */
404         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
405         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
406         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
407         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
408
409         /* Increment number of inner iterations */
410         inneriter                  += j_index_end - j_index_start;
411
412         /* Outer loop uses 9 flops */
413     }
414
415     /* Increment number of outer iterations */
416     outeriter        += nri;
417
418     /* Update outer/inner flops */
419
420     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*58);
421 }
422 /*
423  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_256_double
424  * Electrostatics interaction: GeneralizedBorn
425  * VdW interaction:            None
426  * Geometry:                   Particle-Particle
427  * Calculate force/pot:        Force
428  */
429 void
430 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_256_double
431                     (t_nblist                    * gmx_restrict       nlist,
432                      rvec                        * gmx_restrict          xx,
433                      rvec                        * gmx_restrict          ff,
434                      t_forcerec                  * gmx_restrict          fr,
435                      t_mdatoms                   * gmx_restrict     mdatoms,
436                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
437                      t_nrnb                      * gmx_restrict        nrnb)
438 {
439     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
440      * just 0 for non-waters.
441      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
442      * jnr indices corresponding to data put in the four positions in the SIMD register.
443      */
444     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
445     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
446     int              jnrA,jnrB,jnrC,jnrD;
447     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
448     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
449     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
450     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
451     real             rcutoff_scalar;
452     real             *shiftvec,*fshift,*x,*f;
453     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
454     real             scratch[4*DIM];
455     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
456     real *           vdwioffsetptr0;
457     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
458     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
459     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
460     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
461     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
462     real             *charge;
463     __m128i          gbitab;
464     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
465     __m256d          minushalf = _mm256_set1_pd(-0.5);
466     real             *invsqrta,*dvda,*gbtab;
467     __m128i          vfitab;
468     __m128i          ifour       = _mm_set1_epi32(4);
469     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
470     real             *vftab;
471     __m256d          dummy_mask,cutoff_mask;
472     __m128           tmpmask0,tmpmask1;
473     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
474     __m256d          one     = _mm256_set1_pd(1.0);
475     __m256d          two     = _mm256_set1_pd(2.0);
476     x                = xx[0];
477     f                = ff[0];
478
479     nri              = nlist->nri;
480     iinr             = nlist->iinr;
481     jindex           = nlist->jindex;
482     jjnr             = nlist->jjnr;
483     shiftidx         = nlist->shift;
484     gid              = nlist->gid;
485     shiftvec         = fr->shift_vec[0];
486     fshift           = fr->fshift[0];
487     facel            = _mm256_set1_pd(fr->epsfac);
488     charge           = mdatoms->chargeA;
489
490     invsqrta         = fr->invsqrta;
491     dvda             = fr->dvda;
492     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
493     gbtab            = fr->gbtab.data;
494     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
495
496     /* Avoid stupid compiler warnings */
497     jnrA = jnrB = jnrC = jnrD = 0;
498     j_coord_offsetA = 0;
499     j_coord_offsetB = 0;
500     j_coord_offsetC = 0;
501     j_coord_offsetD = 0;
502
503     outeriter        = 0;
504     inneriter        = 0;
505
506     for(iidx=0;iidx<4*DIM;iidx++)
507     {
508         scratch[iidx] = 0.0;
509     }
510
511     /* Start outer loop over neighborlists */
512     for(iidx=0; iidx<nri; iidx++)
513     {
514         /* Load shift vector for this list */
515         i_shift_offset   = DIM*shiftidx[iidx];
516
517         /* Load limits for loop over neighbors */
518         j_index_start    = jindex[iidx];
519         j_index_end      = jindex[iidx+1];
520
521         /* Get outer coordinate index */
522         inr              = iinr[iidx];
523         i_coord_offset   = DIM*inr;
524
525         /* Load i particle coords and add shift vector */
526         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
527
528         fix0             = _mm256_setzero_pd();
529         fiy0             = _mm256_setzero_pd();
530         fiz0             = _mm256_setzero_pd();
531
532         /* Load parameters for i particles */
533         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
534         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
535
536         dvdasum          = _mm256_setzero_pd();
537
538         /* Start inner kernel loop */
539         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
540         {
541
542             /* Get j neighbor index, and coordinate index */
543             jnrA             = jjnr[jidx];
544             jnrB             = jjnr[jidx+1];
545             jnrC             = jjnr[jidx+2];
546             jnrD             = jjnr[jidx+3];
547             j_coord_offsetA  = DIM*jnrA;
548             j_coord_offsetB  = DIM*jnrB;
549             j_coord_offsetC  = DIM*jnrC;
550             j_coord_offsetD  = DIM*jnrD;
551
552             /* load j atom coordinates */
553             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
554                                                  x+j_coord_offsetC,x+j_coord_offsetD,
555                                                  &jx0,&jy0,&jz0);
556
557             /* Calculate displacement vector */
558             dx00             = _mm256_sub_pd(ix0,jx0);
559             dy00             = _mm256_sub_pd(iy0,jy0);
560             dz00             = _mm256_sub_pd(iz0,jz0);
561
562             /* Calculate squared distance and things based on it */
563             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
564
565             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
566
567             /* Load parameters for j particles */
568             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
569                                                                  charge+jnrC+0,charge+jnrD+0);
570             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
571                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             r00              = _mm256_mul_pd(rsq00,rinv00);
578
579             /* Compute parameters for interactions between i and j atoms */
580             qq00             = _mm256_mul_pd(iq0,jq0);
581
582             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
583             isaprod          = _mm256_mul_pd(isai0,isaj0);
584             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
585             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
586
587             /* Calculate generalized born table index - this is a separate table from the normal one,
588              * but we use the same procedure by multiplying r with scale and truncating to integer.
589              */
590             rt               = _mm256_mul_pd(r00,gbscale);
591             gbitab           = _mm256_cvttpd_epi32(rt);
592             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
593             gbitab           = _mm_slli_epi32(gbitab,2);
594             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
595             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
596             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
597             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
598             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
599             Heps             = _mm256_mul_pd(gbeps,H);
600             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
601             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
602             vgb              = _mm256_mul_pd(gbqqfactor,VV);
603
604             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
605             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
606             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
607             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
608             fjptrA           = dvda+jnrA;
609             fjptrB           = dvda+jnrB;
610             fjptrC           = dvda+jnrC;
611             fjptrD           = dvda+jnrD;
612             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
613                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
614             velec            = _mm256_mul_pd(qq00,rinv00);
615             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
616
617             fscal            = felec;
618
619             /* Calculate temporary vectorial force */
620             tx               = _mm256_mul_pd(fscal,dx00);
621             ty               = _mm256_mul_pd(fscal,dy00);
622             tz               = _mm256_mul_pd(fscal,dz00);
623
624             /* Update vectorial force */
625             fix0             = _mm256_add_pd(fix0,tx);
626             fiy0             = _mm256_add_pd(fiy0,ty);
627             fiz0             = _mm256_add_pd(fiz0,tz);
628
629             fjptrA             = f+j_coord_offsetA;
630             fjptrB             = f+j_coord_offsetB;
631             fjptrC             = f+j_coord_offsetC;
632             fjptrD             = f+j_coord_offsetD;
633             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
634
635             /* Inner loop uses 55 flops */
636         }
637
638         if(jidx<j_index_end)
639         {
640
641             /* Get j neighbor index, and coordinate index */
642             jnrlistA         = jjnr[jidx];
643             jnrlistB         = jjnr[jidx+1];
644             jnrlistC         = jjnr[jidx+2];
645             jnrlistD         = jjnr[jidx+3];
646             /* Sign of each element will be negative for non-real atoms.
647              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
648              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
649              */
650             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
651
652             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
653             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
654             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
655
656             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
657             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
658             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
659             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
660             j_coord_offsetA  = DIM*jnrA;
661             j_coord_offsetB  = DIM*jnrB;
662             j_coord_offsetC  = DIM*jnrC;
663             j_coord_offsetD  = DIM*jnrD;
664
665             /* load j atom coordinates */
666             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
667                                                  x+j_coord_offsetC,x+j_coord_offsetD,
668                                                  &jx0,&jy0,&jz0);
669
670             /* Calculate displacement vector */
671             dx00             = _mm256_sub_pd(ix0,jx0);
672             dy00             = _mm256_sub_pd(iy0,jy0);
673             dz00             = _mm256_sub_pd(iz0,jz0);
674
675             /* Calculate squared distance and things based on it */
676             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
677
678             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
679
680             /* Load parameters for j particles */
681             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
682                                                                  charge+jnrC+0,charge+jnrD+0);
683             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
684                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
685
686             /**************************
687              * CALCULATE INTERACTIONS *
688              **************************/
689
690             r00              = _mm256_mul_pd(rsq00,rinv00);
691             r00              = _mm256_andnot_pd(dummy_mask,r00);
692
693             /* Compute parameters for interactions between i and j atoms */
694             qq00             = _mm256_mul_pd(iq0,jq0);
695
696             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
697             isaprod          = _mm256_mul_pd(isai0,isaj0);
698             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
699             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
700
701             /* Calculate generalized born table index - this is a separate table from the normal one,
702              * but we use the same procedure by multiplying r with scale and truncating to integer.
703              */
704             rt               = _mm256_mul_pd(r00,gbscale);
705             gbitab           = _mm256_cvttpd_epi32(rt);
706             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
707             gbitab           = _mm_slli_epi32(gbitab,2);
708             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
709             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
710             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
711             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
712             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
713             Heps             = _mm256_mul_pd(gbeps,H);
714             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
715             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
716             vgb              = _mm256_mul_pd(gbqqfactor,VV);
717
718             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
719             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
720             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
721             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
722             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
723             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
724             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
725             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
726             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
727             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
728             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
729                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
730             velec            = _mm256_mul_pd(qq00,rinv00);
731             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
732
733             fscal            = felec;
734
735             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
736
737             /* Calculate temporary vectorial force */
738             tx               = _mm256_mul_pd(fscal,dx00);
739             ty               = _mm256_mul_pd(fscal,dy00);
740             tz               = _mm256_mul_pd(fscal,dz00);
741
742             /* Update vectorial force */
743             fix0             = _mm256_add_pd(fix0,tx);
744             fiy0             = _mm256_add_pd(fiy0,ty);
745             fiz0             = _mm256_add_pd(fiz0,tz);
746
747             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
748             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
749             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
750             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
751             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
752
753             /* Inner loop uses 56 flops */
754         }
755
756         /* End of innermost loop */
757
758         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
759                                                  f+i_coord_offset,fshift+i_shift_offset);
760
761         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
762         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
763
764         /* Increment number of inner iterations */
765         inneriter                  += j_index_end - j_index_start;
766
767         /* Outer loop uses 7 flops */
768     }
769
770     /* Increment number of outer iterations */
771     outeriter        += nri;
772
773     /* Update outer/inner flops */
774
775     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*56);
776 }