50524951e622e38fddb9bc4f99f40bcf8298adc5
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     __m128i          gbitab;
92     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
93     __m256d          minushalf = _mm256_set1_pd(-0.5);
94     real             *invsqrta,*dvda,*gbtab;
95     int              nvdwtype;
96     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
100     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m256d          dummy_mask,cutoff_mask;
106     __m128           tmpmask0,tmpmask1;
107     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
108     __m256d          one     = _mm256_set1_pd(1.0);
109     __m256d          two     = _mm256_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     invsqrta         = fr->invsqrta;
128     dvda             = fr->dvda;
129     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
130     gbtab            = fr->gbtab.data;
131     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
164
165         fix0             = _mm256_setzero_pd();
166         fiy0             = _mm256_setzero_pd();
167         fiz0             = _mm256_setzero_pd();
168
169         /* Load parameters for i particles */
170         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
171         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
172         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm256_setzero_pd();
176         vgbsum           = _mm256_setzero_pd();
177         vvdwsum          = _mm256_setzero_pd();
178         dvdasum          = _mm256_setzero_pd();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
196                                                  x+j_coord_offsetC,x+j_coord_offsetD,
197                                                  &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm256_sub_pd(ix0,jx0);
201             dy00             = _mm256_sub_pd(iy0,jy0);
202             dz00             = _mm256_sub_pd(iz0,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
206
207             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
208
209             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
210
211             /* Load parameters for j particles */
212             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
213                                                                  charge+jnrC+0,charge+jnrD+0);
214             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
215                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217             vdwjidx0B        = 2*vdwtype[jnrB+0];
218             vdwjidx0C        = 2*vdwtype[jnrC+0];
219             vdwjidx0D        = 2*vdwtype[jnrD+0];
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             r00              = _mm256_mul_pd(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm256_mul_pd(iq0,jq0);
229             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
230                                             vdwioffsetptr0+vdwjidx0B,
231                                             vdwioffsetptr0+vdwjidx0C,
232                                             vdwioffsetptr0+vdwjidx0D,
233                                             &c6_00,&c12_00);
234
235             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
236             isaprod          = _mm256_mul_pd(isai0,isaj0);
237             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
238             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
239
240             /* Calculate generalized born table index - this is a separate table from the normal one,
241              * but we use the same procedure by multiplying r with scale and truncating to integer.
242              */
243             rt               = _mm256_mul_pd(r00,gbscale);
244             gbitab           = _mm256_cvttpd_epi32(rt);
245             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
246             gbitab           = _mm_slli_epi32(gbitab,2);
247             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
248             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
249             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
250             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
251             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
252             Heps             = _mm256_mul_pd(gbeps,H);
253             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
254             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
255             vgb              = _mm256_mul_pd(gbqqfactor,VV);
256
257             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
258             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
259             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
260             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
261             fjptrA           = dvda+jnrA;
262             fjptrB           = dvda+jnrB;
263             fjptrC           = dvda+jnrC;
264             fjptrD           = dvda+jnrD;
265             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
266                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
267             velec            = _mm256_mul_pd(qq00,rinv00);
268             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
269
270             /* LENNARD-JONES DISPERSION/REPULSION */
271
272             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
273             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
274             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
275             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
276             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velecsum         = _mm256_add_pd(velecsum,velec);
280             vgbsum           = _mm256_add_pd(vgbsum,vgb);
281             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
282
283             fscal            = _mm256_add_pd(felec,fvdw);
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm256_mul_pd(fscal,dx00);
287             ty               = _mm256_mul_pd(fscal,dy00);
288             tz               = _mm256_mul_pd(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm256_add_pd(fix0,tx);
292             fiy0             = _mm256_add_pd(fiy0,ty);
293             fiz0             = _mm256_add_pd(fiz0,tz);
294
295             fjptrA             = f+j_coord_offsetA;
296             fjptrB             = f+j_coord_offsetB;
297             fjptrC             = f+j_coord_offsetC;
298             fjptrD             = f+j_coord_offsetD;
299             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
300
301             /* Inner loop uses 70 flops */
302         }
303
304         if(jidx<j_index_end)
305         {
306
307             /* Get j neighbor index, and coordinate index */
308             jnrlistA         = jjnr[jidx];
309             jnrlistB         = jjnr[jidx+1];
310             jnrlistC         = jjnr[jidx+2];
311             jnrlistD         = jjnr[jidx+3];
312             /* Sign of each element will be negative for non-real atoms.
313              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
314              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
315              */
316             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
317
318             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
319             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
320             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
321
322             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
323             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
324             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
325             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
326             j_coord_offsetA  = DIM*jnrA;
327             j_coord_offsetB  = DIM*jnrB;
328             j_coord_offsetC  = DIM*jnrC;
329             j_coord_offsetD  = DIM*jnrD;
330
331             /* load j atom coordinates */
332             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
333                                                  x+j_coord_offsetC,x+j_coord_offsetD,
334                                                  &jx0,&jy0,&jz0);
335
336             /* Calculate displacement vector */
337             dx00             = _mm256_sub_pd(ix0,jx0);
338             dy00             = _mm256_sub_pd(iy0,jy0);
339             dz00             = _mm256_sub_pd(iz0,jz0);
340
341             /* Calculate squared distance and things based on it */
342             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
343
344             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
345
346             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
347
348             /* Load parameters for j particles */
349             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
350                                                                  charge+jnrC+0,charge+jnrD+0);
351             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
352                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
353             vdwjidx0A        = 2*vdwtype[jnrA+0];
354             vdwjidx0B        = 2*vdwtype[jnrB+0];
355             vdwjidx0C        = 2*vdwtype[jnrC+0];
356             vdwjidx0D        = 2*vdwtype[jnrD+0];
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             r00              = _mm256_mul_pd(rsq00,rinv00);
363             r00              = _mm256_andnot_pd(dummy_mask,r00);
364
365             /* Compute parameters for interactions between i and j atoms */
366             qq00             = _mm256_mul_pd(iq0,jq0);
367             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
368                                             vdwioffsetptr0+vdwjidx0B,
369                                             vdwioffsetptr0+vdwjidx0C,
370                                             vdwioffsetptr0+vdwjidx0D,
371                                             &c6_00,&c12_00);
372
373             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
374             isaprod          = _mm256_mul_pd(isai0,isaj0);
375             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
376             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
377
378             /* Calculate generalized born table index - this is a separate table from the normal one,
379              * but we use the same procedure by multiplying r with scale and truncating to integer.
380              */
381             rt               = _mm256_mul_pd(r00,gbscale);
382             gbitab           = _mm256_cvttpd_epi32(rt);
383             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
384             gbitab           = _mm_slli_epi32(gbitab,2);
385             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
386             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
387             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
388             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
389             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
390             Heps             = _mm256_mul_pd(gbeps,H);
391             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
392             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
393             vgb              = _mm256_mul_pd(gbqqfactor,VV);
394
395             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
396             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
397             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
398             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
399             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
400             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
401             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
402             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
403             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
404             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
405             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
406                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
407             velec            = _mm256_mul_pd(qq00,rinv00);
408             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
409
410             /* LENNARD-JONES DISPERSION/REPULSION */
411
412             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
413             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
414             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
415             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
416             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
417
418             /* Update potential sum for this i atom from the interaction with this j atom. */
419             velec            = _mm256_andnot_pd(dummy_mask,velec);
420             velecsum         = _mm256_add_pd(velecsum,velec);
421             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
422             vgbsum           = _mm256_add_pd(vgbsum,vgb);
423             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
424             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
425
426             fscal            = _mm256_add_pd(felec,fvdw);
427
428             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
429
430             /* Calculate temporary vectorial force */
431             tx               = _mm256_mul_pd(fscal,dx00);
432             ty               = _mm256_mul_pd(fscal,dy00);
433             tz               = _mm256_mul_pd(fscal,dz00);
434
435             /* Update vectorial force */
436             fix0             = _mm256_add_pd(fix0,tx);
437             fiy0             = _mm256_add_pd(fiy0,ty);
438             fiz0             = _mm256_add_pd(fiz0,tz);
439
440             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
441             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
442             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
443             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
444             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
445
446             /* Inner loop uses 71 flops */
447         }
448
449         /* End of innermost loop */
450
451         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
452                                                  f+i_coord_offset,fshift+i_shift_offset);
453
454         ggid                        = gid[iidx];
455         /* Update potential energies */
456         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
457         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
458         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
459         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
460         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
461
462         /* Increment number of inner iterations */
463         inneriter                  += j_index_end - j_index_start;
464
465         /* Outer loop uses 10 flops */
466     }
467
468     /* Increment number of outer iterations */
469     outeriter        += nri;
470
471     /* Update outer/inner flops */
472
473     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
474 }
475 /*
476  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_double
477  * Electrostatics interaction: GeneralizedBorn
478  * VdW interaction:            LennardJones
479  * Geometry:                   Particle-Particle
480  * Calculate force/pot:        Force
481  */
482 void
483 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_double
484                     (t_nblist                    * gmx_restrict       nlist,
485                      rvec                        * gmx_restrict          xx,
486                      rvec                        * gmx_restrict          ff,
487                      t_forcerec                  * gmx_restrict          fr,
488                      t_mdatoms                   * gmx_restrict     mdatoms,
489                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
490                      t_nrnb                      * gmx_restrict        nrnb)
491 {
492     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
493      * just 0 for non-waters.
494      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
495      * jnr indices corresponding to data put in the four positions in the SIMD register.
496      */
497     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
498     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
499     int              jnrA,jnrB,jnrC,jnrD;
500     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
501     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
502     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
503     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
504     real             rcutoff_scalar;
505     real             *shiftvec,*fshift,*x,*f;
506     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
507     real             scratch[4*DIM];
508     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
509     real *           vdwioffsetptr0;
510     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
511     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
512     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
513     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
514     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
515     real             *charge;
516     __m128i          gbitab;
517     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
518     __m256d          minushalf = _mm256_set1_pd(-0.5);
519     real             *invsqrta,*dvda,*gbtab;
520     int              nvdwtype;
521     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
522     int              *vdwtype;
523     real             *vdwparam;
524     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
525     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
526     __m128i          vfitab;
527     __m128i          ifour       = _mm_set1_epi32(4);
528     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
529     real             *vftab;
530     __m256d          dummy_mask,cutoff_mask;
531     __m128           tmpmask0,tmpmask1;
532     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
533     __m256d          one     = _mm256_set1_pd(1.0);
534     __m256d          two     = _mm256_set1_pd(2.0);
535     x                = xx[0];
536     f                = ff[0];
537
538     nri              = nlist->nri;
539     iinr             = nlist->iinr;
540     jindex           = nlist->jindex;
541     jjnr             = nlist->jjnr;
542     shiftidx         = nlist->shift;
543     gid              = nlist->gid;
544     shiftvec         = fr->shift_vec[0];
545     fshift           = fr->fshift[0];
546     facel            = _mm256_set1_pd(fr->epsfac);
547     charge           = mdatoms->chargeA;
548     nvdwtype         = fr->ntype;
549     vdwparam         = fr->nbfp;
550     vdwtype          = mdatoms->typeA;
551
552     invsqrta         = fr->invsqrta;
553     dvda             = fr->dvda;
554     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
555     gbtab            = fr->gbtab.data;
556     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
557
558     /* Avoid stupid compiler warnings */
559     jnrA = jnrB = jnrC = jnrD = 0;
560     j_coord_offsetA = 0;
561     j_coord_offsetB = 0;
562     j_coord_offsetC = 0;
563     j_coord_offsetD = 0;
564
565     outeriter        = 0;
566     inneriter        = 0;
567
568     for(iidx=0;iidx<4*DIM;iidx++)
569     {
570         scratch[iidx] = 0.0;
571     }
572
573     /* Start outer loop over neighborlists */
574     for(iidx=0; iidx<nri; iidx++)
575     {
576         /* Load shift vector for this list */
577         i_shift_offset   = DIM*shiftidx[iidx];
578
579         /* Load limits for loop over neighbors */
580         j_index_start    = jindex[iidx];
581         j_index_end      = jindex[iidx+1];
582
583         /* Get outer coordinate index */
584         inr              = iinr[iidx];
585         i_coord_offset   = DIM*inr;
586
587         /* Load i particle coords and add shift vector */
588         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
589
590         fix0             = _mm256_setzero_pd();
591         fiy0             = _mm256_setzero_pd();
592         fiz0             = _mm256_setzero_pd();
593
594         /* Load parameters for i particles */
595         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
596         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
597         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
598
599         dvdasum          = _mm256_setzero_pd();
600
601         /* Start inner kernel loop */
602         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
603         {
604
605             /* Get j neighbor index, and coordinate index */
606             jnrA             = jjnr[jidx];
607             jnrB             = jjnr[jidx+1];
608             jnrC             = jjnr[jidx+2];
609             jnrD             = jjnr[jidx+3];
610             j_coord_offsetA  = DIM*jnrA;
611             j_coord_offsetB  = DIM*jnrB;
612             j_coord_offsetC  = DIM*jnrC;
613             j_coord_offsetD  = DIM*jnrD;
614
615             /* load j atom coordinates */
616             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
617                                                  x+j_coord_offsetC,x+j_coord_offsetD,
618                                                  &jx0,&jy0,&jz0);
619
620             /* Calculate displacement vector */
621             dx00             = _mm256_sub_pd(ix0,jx0);
622             dy00             = _mm256_sub_pd(iy0,jy0);
623             dz00             = _mm256_sub_pd(iz0,jz0);
624
625             /* Calculate squared distance and things based on it */
626             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
627
628             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
629
630             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
631
632             /* Load parameters for j particles */
633             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
634                                                                  charge+jnrC+0,charge+jnrD+0);
635             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
636                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
637             vdwjidx0A        = 2*vdwtype[jnrA+0];
638             vdwjidx0B        = 2*vdwtype[jnrB+0];
639             vdwjidx0C        = 2*vdwtype[jnrC+0];
640             vdwjidx0D        = 2*vdwtype[jnrD+0];
641
642             /**************************
643              * CALCULATE INTERACTIONS *
644              **************************/
645
646             r00              = _mm256_mul_pd(rsq00,rinv00);
647
648             /* Compute parameters for interactions between i and j atoms */
649             qq00             = _mm256_mul_pd(iq0,jq0);
650             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
651                                             vdwioffsetptr0+vdwjidx0B,
652                                             vdwioffsetptr0+vdwjidx0C,
653                                             vdwioffsetptr0+vdwjidx0D,
654                                             &c6_00,&c12_00);
655
656             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
657             isaprod          = _mm256_mul_pd(isai0,isaj0);
658             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
659             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
660
661             /* Calculate generalized born table index - this is a separate table from the normal one,
662              * but we use the same procedure by multiplying r with scale and truncating to integer.
663              */
664             rt               = _mm256_mul_pd(r00,gbscale);
665             gbitab           = _mm256_cvttpd_epi32(rt);
666             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
667             gbitab           = _mm_slli_epi32(gbitab,2);
668             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
669             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
670             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
671             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
672             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
673             Heps             = _mm256_mul_pd(gbeps,H);
674             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
675             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
676             vgb              = _mm256_mul_pd(gbqqfactor,VV);
677
678             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
679             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
680             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
681             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
682             fjptrA           = dvda+jnrA;
683             fjptrB           = dvda+jnrB;
684             fjptrC           = dvda+jnrC;
685             fjptrD           = dvda+jnrD;
686             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
687                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
688             velec            = _mm256_mul_pd(qq00,rinv00);
689             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
690
691             /* LENNARD-JONES DISPERSION/REPULSION */
692
693             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
694             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
695
696             fscal            = _mm256_add_pd(felec,fvdw);
697
698             /* Calculate temporary vectorial force */
699             tx               = _mm256_mul_pd(fscal,dx00);
700             ty               = _mm256_mul_pd(fscal,dy00);
701             tz               = _mm256_mul_pd(fscal,dz00);
702
703             /* Update vectorial force */
704             fix0             = _mm256_add_pd(fix0,tx);
705             fiy0             = _mm256_add_pd(fiy0,ty);
706             fiz0             = _mm256_add_pd(fiz0,tz);
707
708             fjptrA             = f+j_coord_offsetA;
709             fjptrB             = f+j_coord_offsetB;
710             fjptrC             = f+j_coord_offsetC;
711             fjptrD             = f+j_coord_offsetD;
712             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
713
714             /* Inner loop uses 63 flops */
715         }
716
717         if(jidx<j_index_end)
718         {
719
720             /* Get j neighbor index, and coordinate index */
721             jnrlistA         = jjnr[jidx];
722             jnrlistB         = jjnr[jidx+1];
723             jnrlistC         = jjnr[jidx+2];
724             jnrlistD         = jjnr[jidx+3];
725             /* Sign of each element will be negative for non-real atoms.
726              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
727              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
728              */
729             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
730
731             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
732             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
733             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
734
735             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
736             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
737             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
738             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
739             j_coord_offsetA  = DIM*jnrA;
740             j_coord_offsetB  = DIM*jnrB;
741             j_coord_offsetC  = DIM*jnrC;
742             j_coord_offsetD  = DIM*jnrD;
743
744             /* load j atom coordinates */
745             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
746                                                  x+j_coord_offsetC,x+j_coord_offsetD,
747                                                  &jx0,&jy0,&jz0);
748
749             /* Calculate displacement vector */
750             dx00             = _mm256_sub_pd(ix0,jx0);
751             dy00             = _mm256_sub_pd(iy0,jy0);
752             dz00             = _mm256_sub_pd(iz0,jz0);
753
754             /* Calculate squared distance and things based on it */
755             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
756
757             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
758
759             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
760
761             /* Load parameters for j particles */
762             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
763                                                                  charge+jnrC+0,charge+jnrD+0);
764             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
765                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
766             vdwjidx0A        = 2*vdwtype[jnrA+0];
767             vdwjidx0B        = 2*vdwtype[jnrB+0];
768             vdwjidx0C        = 2*vdwtype[jnrC+0];
769             vdwjidx0D        = 2*vdwtype[jnrD+0];
770
771             /**************************
772              * CALCULATE INTERACTIONS *
773              **************************/
774
775             r00              = _mm256_mul_pd(rsq00,rinv00);
776             r00              = _mm256_andnot_pd(dummy_mask,r00);
777
778             /* Compute parameters for interactions between i and j atoms */
779             qq00             = _mm256_mul_pd(iq0,jq0);
780             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
781                                             vdwioffsetptr0+vdwjidx0B,
782                                             vdwioffsetptr0+vdwjidx0C,
783                                             vdwioffsetptr0+vdwjidx0D,
784                                             &c6_00,&c12_00);
785
786             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
787             isaprod          = _mm256_mul_pd(isai0,isaj0);
788             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
789             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
790
791             /* Calculate generalized born table index - this is a separate table from the normal one,
792              * but we use the same procedure by multiplying r with scale and truncating to integer.
793              */
794             rt               = _mm256_mul_pd(r00,gbscale);
795             gbitab           = _mm256_cvttpd_epi32(rt);
796             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
797             gbitab           = _mm_slli_epi32(gbitab,2);
798             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
799             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
800             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
801             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
802             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
803             Heps             = _mm256_mul_pd(gbeps,H);
804             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
805             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
806             vgb              = _mm256_mul_pd(gbqqfactor,VV);
807
808             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
809             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
810             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
811             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
812             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
813             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
814             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
815             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
816             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
817             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
818             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
819                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
820             velec            = _mm256_mul_pd(qq00,rinv00);
821             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
822
823             /* LENNARD-JONES DISPERSION/REPULSION */
824
825             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
826             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
827
828             fscal            = _mm256_add_pd(felec,fvdw);
829
830             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
831
832             /* Calculate temporary vectorial force */
833             tx               = _mm256_mul_pd(fscal,dx00);
834             ty               = _mm256_mul_pd(fscal,dy00);
835             tz               = _mm256_mul_pd(fscal,dz00);
836
837             /* Update vectorial force */
838             fix0             = _mm256_add_pd(fix0,tx);
839             fiy0             = _mm256_add_pd(fiy0,ty);
840             fiz0             = _mm256_add_pd(fiz0,tz);
841
842             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
843             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
844             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
845             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
846             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
847
848             /* Inner loop uses 64 flops */
849         }
850
851         /* End of innermost loop */
852
853         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
854                                                  f+i_coord_offset,fshift+i_shift_offset);
855
856         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
857         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
858
859         /* Increment number of inner iterations */
860         inneriter                  += j_index_end - j_index_start;
861
862         /* Outer loop uses 7 flops */
863     }
864
865     /* Increment number of outer iterations */
866     outeriter        += nri;
867
868     /* Update outer/inner flops */
869
870     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
871 }