4001bda2fb17238205c3415d11f0f36221e03001
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m128i          gbitab;
94     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
95     __m256d          minushalf = _mm256_set1_pd(-0.5);
96     real             *invsqrta,*dvda,*gbtab;
97     int              nvdwtype;
98     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
102     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
103     __m128i          vfitab;
104     __m128i          ifour       = _mm_set1_epi32(4);
105     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
106     real             *vftab;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     invsqrta         = fr->invsqrta;
130     dvda             = fr->dvda;
131     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
132     gbtab            = fr->gbtab.data;
133     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     for(iidx=0;iidx<4*DIM;iidx++)
146     {
147         scratch[iidx] = 0.0;
148     }
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
166
167         fix0             = _mm256_setzero_pd();
168         fiy0             = _mm256_setzero_pd();
169         fiz0             = _mm256_setzero_pd();
170
171         /* Load parameters for i particles */
172         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
173         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
174         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
175
176         /* Reset potential sums */
177         velecsum         = _mm256_setzero_pd();
178         vgbsum           = _mm256_setzero_pd();
179         vvdwsum          = _mm256_setzero_pd();
180         dvdasum          = _mm256_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             jnrC             = jjnr[jidx+2];
190             jnrD             = jjnr[jidx+3];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195
196             /* load j atom coordinates */
197             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
198                                                  x+j_coord_offsetC,x+j_coord_offsetD,
199                                                  &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm256_sub_pd(ix0,jx0);
203             dy00             = _mm256_sub_pd(iy0,jy0);
204             dz00             = _mm256_sub_pd(iz0,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
208
209             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
210
211             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
215                                                                  charge+jnrC+0,charge+jnrD+0);
216             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
217                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
218             vdwjidx0A        = 2*vdwtype[jnrA+0];
219             vdwjidx0B        = 2*vdwtype[jnrB+0];
220             vdwjidx0C        = 2*vdwtype[jnrC+0];
221             vdwjidx0D        = 2*vdwtype[jnrD+0];
222
223             /**************************
224              * CALCULATE INTERACTIONS *
225              **************************/
226
227             r00              = _mm256_mul_pd(rsq00,rinv00);
228
229             /* Compute parameters for interactions between i and j atoms */
230             qq00             = _mm256_mul_pd(iq0,jq0);
231             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
232                                             vdwioffsetptr0+vdwjidx0B,
233                                             vdwioffsetptr0+vdwjidx0C,
234                                             vdwioffsetptr0+vdwjidx0D,
235                                             &c6_00,&c12_00);
236
237             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
238             isaprod          = _mm256_mul_pd(isai0,isaj0);
239             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
240             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
241
242             /* Calculate generalized born table index - this is a separate table from the normal one,
243              * but we use the same procedure by multiplying r with scale and truncating to integer.
244              */
245             rt               = _mm256_mul_pd(r00,gbscale);
246             gbitab           = _mm256_cvttpd_epi32(rt);
247             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
248             gbitab           = _mm_slli_epi32(gbitab,2);
249             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
250             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
251             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
252             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
253             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
254             Heps             = _mm256_mul_pd(gbeps,H);
255             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
256             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
257             vgb              = _mm256_mul_pd(gbqqfactor,VV);
258
259             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
260             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
261             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
262             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
263             fjptrA           = dvda+jnrA;
264             fjptrB           = dvda+jnrB;
265             fjptrC           = dvda+jnrC;
266             fjptrD           = dvda+jnrD;
267             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
268                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
269             velec            = _mm256_mul_pd(qq00,rinv00);
270             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
271
272             /* LENNARD-JONES DISPERSION/REPULSION */
273
274             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
275             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
276             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
277             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
278             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm256_add_pd(velecsum,velec);
282             vgbsum           = _mm256_add_pd(vgbsum,vgb);
283             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
284
285             fscal            = _mm256_add_pd(felec,fvdw);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm256_mul_pd(fscal,dx00);
289             ty               = _mm256_mul_pd(fscal,dy00);
290             tz               = _mm256_mul_pd(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm256_add_pd(fix0,tx);
294             fiy0             = _mm256_add_pd(fiy0,ty);
295             fiz0             = _mm256_add_pd(fiz0,tz);
296
297             fjptrA             = f+j_coord_offsetA;
298             fjptrB             = f+j_coord_offsetB;
299             fjptrC             = f+j_coord_offsetC;
300             fjptrD             = f+j_coord_offsetD;
301             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
302
303             /* Inner loop uses 70 flops */
304         }
305
306         if(jidx<j_index_end)
307         {
308
309             /* Get j neighbor index, and coordinate index */
310             jnrlistA         = jjnr[jidx];
311             jnrlistB         = jjnr[jidx+1];
312             jnrlistC         = jjnr[jidx+2];
313             jnrlistD         = jjnr[jidx+3];
314             /* Sign of each element will be negative for non-real atoms.
315              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
316              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
317              */
318             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
319
320             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
321             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
322             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
323
324             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
325             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
326             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
327             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
328             j_coord_offsetA  = DIM*jnrA;
329             j_coord_offsetB  = DIM*jnrB;
330             j_coord_offsetC  = DIM*jnrC;
331             j_coord_offsetD  = DIM*jnrD;
332
333             /* load j atom coordinates */
334             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
335                                                  x+j_coord_offsetC,x+j_coord_offsetD,
336                                                  &jx0,&jy0,&jz0);
337
338             /* Calculate displacement vector */
339             dx00             = _mm256_sub_pd(ix0,jx0);
340             dy00             = _mm256_sub_pd(iy0,jy0);
341             dz00             = _mm256_sub_pd(iz0,jz0);
342
343             /* Calculate squared distance and things based on it */
344             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
345
346             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
347
348             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
349
350             /* Load parameters for j particles */
351             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
352                                                                  charge+jnrC+0,charge+jnrD+0);
353             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
354                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
355             vdwjidx0A        = 2*vdwtype[jnrA+0];
356             vdwjidx0B        = 2*vdwtype[jnrB+0];
357             vdwjidx0C        = 2*vdwtype[jnrC+0];
358             vdwjidx0D        = 2*vdwtype[jnrD+0];
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             r00              = _mm256_mul_pd(rsq00,rinv00);
365             r00              = _mm256_andnot_pd(dummy_mask,r00);
366
367             /* Compute parameters for interactions between i and j atoms */
368             qq00             = _mm256_mul_pd(iq0,jq0);
369             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
370                                             vdwioffsetptr0+vdwjidx0B,
371                                             vdwioffsetptr0+vdwjidx0C,
372                                             vdwioffsetptr0+vdwjidx0D,
373                                             &c6_00,&c12_00);
374
375             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
376             isaprod          = _mm256_mul_pd(isai0,isaj0);
377             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
378             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
379
380             /* Calculate generalized born table index - this is a separate table from the normal one,
381              * but we use the same procedure by multiplying r with scale and truncating to integer.
382              */
383             rt               = _mm256_mul_pd(r00,gbscale);
384             gbitab           = _mm256_cvttpd_epi32(rt);
385             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
386             gbitab           = _mm_slli_epi32(gbitab,2);
387             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
388             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
389             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
390             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
391             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
392             Heps             = _mm256_mul_pd(gbeps,H);
393             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
394             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
395             vgb              = _mm256_mul_pd(gbqqfactor,VV);
396
397             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
398             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
399             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
400             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
401             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
402             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
403             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
404             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
405             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
406             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
407             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
408                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
409             velec            = _mm256_mul_pd(qq00,rinv00);
410             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
411
412             /* LENNARD-JONES DISPERSION/REPULSION */
413
414             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
415             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
416             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
417             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
418             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velec            = _mm256_andnot_pd(dummy_mask,velec);
422             velecsum         = _mm256_add_pd(velecsum,velec);
423             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
424             vgbsum           = _mm256_add_pd(vgbsum,vgb);
425             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
426             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
427
428             fscal            = _mm256_add_pd(felec,fvdw);
429
430             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
431
432             /* Calculate temporary vectorial force */
433             tx               = _mm256_mul_pd(fscal,dx00);
434             ty               = _mm256_mul_pd(fscal,dy00);
435             tz               = _mm256_mul_pd(fscal,dz00);
436
437             /* Update vectorial force */
438             fix0             = _mm256_add_pd(fix0,tx);
439             fiy0             = _mm256_add_pd(fiy0,ty);
440             fiz0             = _mm256_add_pd(fiz0,tz);
441
442             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
443             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
444             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
445             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
446             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
447
448             /* Inner loop uses 71 flops */
449         }
450
451         /* End of innermost loop */
452
453         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
454                                                  f+i_coord_offset,fshift+i_shift_offset);
455
456         ggid                        = gid[iidx];
457         /* Update potential energies */
458         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
459         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
460         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
461         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
462         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
463
464         /* Increment number of inner iterations */
465         inneriter                  += j_index_end - j_index_start;
466
467         /* Outer loop uses 10 flops */
468     }
469
470     /* Increment number of outer iterations */
471     outeriter        += nri;
472
473     /* Update outer/inner flops */
474
475     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
476 }
477 /*
478  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_double
479  * Electrostatics interaction: GeneralizedBorn
480  * VdW interaction:            LennardJones
481  * Geometry:                   Particle-Particle
482  * Calculate force/pot:        Force
483  */
484 void
485 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_double
486                     (t_nblist                    * gmx_restrict       nlist,
487                      rvec                        * gmx_restrict          xx,
488                      rvec                        * gmx_restrict          ff,
489                      t_forcerec                  * gmx_restrict          fr,
490                      t_mdatoms                   * gmx_restrict     mdatoms,
491                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
492                      t_nrnb                      * gmx_restrict        nrnb)
493 {
494     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
495      * just 0 for non-waters.
496      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
497      * jnr indices corresponding to data put in the four positions in the SIMD register.
498      */
499     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
500     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
501     int              jnrA,jnrB,jnrC,jnrD;
502     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
503     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
504     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
505     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
506     real             rcutoff_scalar;
507     real             *shiftvec,*fshift,*x,*f;
508     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
509     real             scratch[4*DIM];
510     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
511     real *           vdwioffsetptr0;
512     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
513     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
514     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
515     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
516     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
517     real             *charge;
518     __m128i          gbitab;
519     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
520     __m256d          minushalf = _mm256_set1_pd(-0.5);
521     real             *invsqrta,*dvda,*gbtab;
522     int              nvdwtype;
523     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
524     int              *vdwtype;
525     real             *vdwparam;
526     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
527     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
528     __m128i          vfitab;
529     __m128i          ifour       = _mm_set1_epi32(4);
530     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
531     real             *vftab;
532     __m256d          dummy_mask,cutoff_mask;
533     __m128           tmpmask0,tmpmask1;
534     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
535     __m256d          one     = _mm256_set1_pd(1.0);
536     __m256d          two     = _mm256_set1_pd(2.0);
537     x                = xx[0];
538     f                = ff[0];
539
540     nri              = nlist->nri;
541     iinr             = nlist->iinr;
542     jindex           = nlist->jindex;
543     jjnr             = nlist->jjnr;
544     shiftidx         = nlist->shift;
545     gid              = nlist->gid;
546     shiftvec         = fr->shift_vec[0];
547     fshift           = fr->fshift[0];
548     facel            = _mm256_set1_pd(fr->epsfac);
549     charge           = mdatoms->chargeA;
550     nvdwtype         = fr->ntype;
551     vdwparam         = fr->nbfp;
552     vdwtype          = mdatoms->typeA;
553
554     invsqrta         = fr->invsqrta;
555     dvda             = fr->dvda;
556     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
557     gbtab            = fr->gbtab.data;
558     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
559
560     /* Avoid stupid compiler warnings */
561     jnrA = jnrB = jnrC = jnrD = 0;
562     j_coord_offsetA = 0;
563     j_coord_offsetB = 0;
564     j_coord_offsetC = 0;
565     j_coord_offsetD = 0;
566
567     outeriter        = 0;
568     inneriter        = 0;
569
570     for(iidx=0;iidx<4*DIM;iidx++)
571     {
572         scratch[iidx] = 0.0;
573     }
574
575     /* Start outer loop over neighborlists */
576     for(iidx=0; iidx<nri; iidx++)
577     {
578         /* Load shift vector for this list */
579         i_shift_offset   = DIM*shiftidx[iidx];
580
581         /* Load limits for loop over neighbors */
582         j_index_start    = jindex[iidx];
583         j_index_end      = jindex[iidx+1];
584
585         /* Get outer coordinate index */
586         inr              = iinr[iidx];
587         i_coord_offset   = DIM*inr;
588
589         /* Load i particle coords and add shift vector */
590         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
591
592         fix0             = _mm256_setzero_pd();
593         fiy0             = _mm256_setzero_pd();
594         fiz0             = _mm256_setzero_pd();
595
596         /* Load parameters for i particles */
597         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
598         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
599         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
600
601         dvdasum          = _mm256_setzero_pd();
602
603         /* Start inner kernel loop */
604         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
605         {
606
607             /* Get j neighbor index, and coordinate index */
608             jnrA             = jjnr[jidx];
609             jnrB             = jjnr[jidx+1];
610             jnrC             = jjnr[jidx+2];
611             jnrD             = jjnr[jidx+3];
612             j_coord_offsetA  = DIM*jnrA;
613             j_coord_offsetB  = DIM*jnrB;
614             j_coord_offsetC  = DIM*jnrC;
615             j_coord_offsetD  = DIM*jnrD;
616
617             /* load j atom coordinates */
618             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
619                                                  x+j_coord_offsetC,x+j_coord_offsetD,
620                                                  &jx0,&jy0,&jz0);
621
622             /* Calculate displacement vector */
623             dx00             = _mm256_sub_pd(ix0,jx0);
624             dy00             = _mm256_sub_pd(iy0,jy0);
625             dz00             = _mm256_sub_pd(iz0,jz0);
626
627             /* Calculate squared distance and things based on it */
628             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
629
630             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
631
632             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
633
634             /* Load parameters for j particles */
635             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
636                                                                  charge+jnrC+0,charge+jnrD+0);
637             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
638                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
639             vdwjidx0A        = 2*vdwtype[jnrA+0];
640             vdwjidx0B        = 2*vdwtype[jnrB+0];
641             vdwjidx0C        = 2*vdwtype[jnrC+0];
642             vdwjidx0D        = 2*vdwtype[jnrD+0];
643
644             /**************************
645              * CALCULATE INTERACTIONS *
646              **************************/
647
648             r00              = _mm256_mul_pd(rsq00,rinv00);
649
650             /* Compute parameters for interactions between i and j atoms */
651             qq00             = _mm256_mul_pd(iq0,jq0);
652             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
653                                             vdwioffsetptr0+vdwjidx0B,
654                                             vdwioffsetptr0+vdwjidx0C,
655                                             vdwioffsetptr0+vdwjidx0D,
656                                             &c6_00,&c12_00);
657
658             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
659             isaprod          = _mm256_mul_pd(isai0,isaj0);
660             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
661             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
662
663             /* Calculate generalized born table index - this is a separate table from the normal one,
664              * but we use the same procedure by multiplying r with scale and truncating to integer.
665              */
666             rt               = _mm256_mul_pd(r00,gbscale);
667             gbitab           = _mm256_cvttpd_epi32(rt);
668             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
669             gbitab           = _mm_slli_epi32(gbitab,2);
670             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
671             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
672             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
673             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
674             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
675             Heps             = _mm256_mul_pd(gbeps,H);
676             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
677             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
678             vgb              = _mm256_mul_pd(gbqqfactor,VV);
679
680             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
681             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
682             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
683             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
684             fjptrA           = dvda+jnrA;
685             fjptrB           = dvda+jnrB;
686             fjptrC           = dvda+jnrC;
687             fjptrD           = dvda+jnrD;
688             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
689                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
690             velec            = _mm256_mul_pd(qq00,rinv00);
691             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
692
693             /* LENNARD-JONES DISPERSION/REPULSION */
694
695             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
696             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
697
698             fscal            = _mm256_add_pd(felec,fvdw);
699
700             /* Calculate temporary vectorial force */
701             tx               = _mm256_mul_pd(fscal,dx00);
702             ty               = _mm256_mul_pd(fscal,dy00);
703             tz               = _mm256_mul_pd(fscal,dz00);
704
705             /* Update vectorial force */
706             fix0             = _mm256_add_pd(fix0,tx);
707             fiy0             = _mm256_add_pd(fiy0,ty);
708             fiz0             = _mm256_add_pd(fiz0,tz);
709
710             fjptrA             = f+j_coord_offsetA;
711             fjptrB             = f+j_coord_offsetB;
712             fjptrC             = f+j_coord_offsetC;
713             fjptrD             = f+j_coord_offsetD;
714             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
715
716             /* Inner loop uses 63 flops */
717         }
718
719         if(jidx<j_index_end)
720         {
721
722             /* Get j neighbor index, and coordinate index */
723             jnrlistA         = jjnr[jidx];
724             jnrlistB         = jjnr[jidx+1];
725             jnrlistC         = jjnr[jidx+2];
726             jnrlistD         = jjnr[jidx+3];
727             /* Sign of each element will be negative for non-real atoms.
728              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
729              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
730              */
731             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
732
733             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
734             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
735             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
736
737             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
738             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
739             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
740             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
741             j_coord_offsetA  = DIM*jnrA;
742             j_coord_offsetB  = DIM*jnrB;
743             j_coord_offsetC  = DIM*jnrC;
744             j_coord_offsetD  = DIM*jnrD;
745
746             /* load j atom coordinates */
747             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
748                                                  x+j_coord_offsetC,x+j_coord_offsetD,
749                                                  &jx0,&jy0,&jz0);
750
751             /* Calculate displacement vector */
752             dx00             = _mm256_sub_pd(ix0,jx0);
753             dy00             = _mm256_sub_pd(iy0,jy0);
754             dz00             = _mm256_sub_pd(iz0,jz0);
755
756             /* Calculate squared distance and things based on it */
757             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
758
759             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
760
761             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
762
763             /* Load parameters for j particles */
764             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
765                                                                  charge+jnrC+0,charge+jnrD+0);
766             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
767                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
768             vdwjidx0A        = 2*vdwtype[jnrA+0];
769             vdwjidx0B        = 2*vdwtype[jnrB+0];
770             vdwjidx0C        = 2*vdwtype[jnrC+0];
771             vdwjidx0D        = 2*vdwtype[jnrD+0];
772
773             /**************************
774              * CALCULATE INTERACTIONS *
775              **************************/
776
777             r00              = _mm256_mul_pd(rsq00,rinv00);
778             r00              = _mm256_andnot_pd(dummy_mask,r00);
779
780             /* Compute parameters for interactions between i and j atoms */
781             qq00             = _mm256_mul_pd(iq0,jq0);
782             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
783                                             vdwioffsetptr0+vdwjidx0B,
784                                             vdwioffsetptr0+vdwjidx0C,
785                                             vdwioffsetptr0+vdwjidx0D,
786                                             &c6_00,&c12_00);
787
788             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
789             isaprod          = _mm256_mul_pd(isai0,isaj0);
790             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
791             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
792
793             /* Calculate generalized born table index - this is a separate table from the normal one,
794              * but we use the same procedure by multiplying r with scale and truncating to integer.
795              */
796             rt               = _mm256_mul_pd(r00,gbscale);
797             gbitab           = _mm256_cvttpd_epi32(rt);
798             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
799             gbitab           = _mm_slli_epi32(gbitab,2);
800             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
801             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
802             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
803             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
804             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
805             Heps             = _mm256_mul_pd(gbeps,H);
806             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
807             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
808             vgb              = _mm256_mul_pd(gbqqfactor,VV);
809
810             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
811             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
812             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
813             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
814             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
815             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
816             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
817             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
818             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
819             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
820             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
821                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
822             velec            = _mm256_mul_pd(qq00,rinv00);
823             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
824
825             /* LENNARD-JONES DISPERSION/REPULSION */
826
827             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
828             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
829
830             fscal            = _mm256_add_pd(felec,fvdw);
831
832             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
833
834             /* Calculate temporary vectorial force */
835             tx               = _mm256_mul_pd(fscal,dx00);
836             ty               = _mm256_mul_pd(fscal,dy00);
837             tz               = _mm256_mul_pd(fscal,dz00);
838
839             /* Update vectorial force */
840             fix0             = _mm256_add_pd(fix0,tx);
841             fiy0             = _mm256_add_pd(fiy0,ty);
842             fiz0             = _mm256_add_pd(fiz0,tz);
843
844             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
845             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
846             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
847             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
848             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
849
850             /* Inner loop uses 64 flops */
851         }
852
853         /* End of innermost loop */
854
855         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
856                                                  f+i_coord_offset,fshift+i_shift_offset);
857
858         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
859         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
860
861         /* Increment number of inner iterations */
862         inneriter                  += j_index_end - j_index_start;
863
864         /* Outer loop uses 7 flops */
865     }
866
867     /* Increment number of outer iterations */
868     outeriter        += nri;
869
870     /* Update outer/inner flops */
871
872     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
873 }