132b4e69b3256fe15394c452a9b8c3a0d4dfed30
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128i          gbitab;
91     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
92     __m256d          minushalf = _mm256_set1_pd(-0.5);
93     real             *invsqrta,*dvda,*gbtab;
94     int              nvdwtype;
95     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
99     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
100     __m128i          vfitab;
101     __m128i          ifour       = _mm_set1_epi32(4);
102     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
103     real             *vftab;
104     __m256d          dummy_mask,cutoff_mask;
105     __m128           tmpmask0,tmpmask1;
106     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
107     __m256d          one     = _mm256_set1_pd(1.0);
108     __m256d          two     = _mm256_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm256_set1_pd(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     invsqrta         = fr->invsqrta;
127     dvda             = fr->dvda;
128     gbtabscale       = _mm256_set1_pd(fr->gbtab->scale);
129     gbtab            = fr->gbtab->data;
130     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163
164         fix0             = _mm256_setzero_pd();
165         fiy0             = _mm256_setzero_pd();
166         fiz0             = _mm256_setzero_pd();
167
168         /* Load parameters for i particles */
169         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
170         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
171         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
172
173         /* Reset potential sums */
174         velecsum         = _mm256_setzero_pd();
175         vgbsum           = _mm256_setzero_pd();
176         vvdwsum          = _mm256_setzero_pd();
177         dvdasum          = _mm256_setzero_pd();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             jnrC             = jjnr[jidx+2];
187             jnrD             = jjnr[jidx+3];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190             j_coord_offsetC  = DIM*jnrC;
191             j_coord_offsetD  = DIM*jnrD;
192
193             /* load j atom coordinates */
194             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
195                                                  x+j_coord_offsetC,x+j_coord_offsetD,
196                                                  &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm256_sub_pd(ix0,jx0);
200             dy00             = _mm256_sub_pd(iy0,jy0);
201             dz00             = _mm256_sub_pd(iz0,jz0);
202
203             /* Calculate squared distance and things based on it */
204             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
205
206             rinv00           = avx256_invsqrt_d(rsq00);
207
208             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
209
210             /* Load parameters for j particles */
211             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
212                                                                  charge+jnrC+0,charge+jnrD+0);
213             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
214                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
215             vdwjidx0A        = 2*vdwtype[jnrA+0];
216             vdwjidx0B        = 2*vdwtype[jnrB+0];
217             vdwjidx0C        = 2*vdwtype[jnrC+0];
218             vdwjidx0D        = 2*vdwtype[jnrD+0];
219
220             /**************************
221              * CALCULATE INTERACTIONS *
222              **************************/
223
224             r00              = _mm256_mul_pd(rsq00,rinv00);
225
226             /* Compute parameters for interactions between i and j atoms */
227             qq00             = _mm256_mul_pd(iq0,jq0);
228             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
229                                             vdwioffsetptr0+vdwjidx0B,
230                                             vdwioffsetptr0+vdwjidx0C,
231                                             vdwioffsetptr0+vdwjidx0D,
232                                             &c6_00,&c12_00);
233
234             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
235             isaprod          = _mm256_mul_pd(isai0,isaj0);
236             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
237             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
238
239             /* Calculate generalized born table index - this is a separate table from the normal one,
240              * but we use the same procedure by multiplying r with scale and truncating to integer.
241              */
242             rt               = _mm256_mul_pd(r00,gbscale);
243             gbitab           = _mm256_cvttpd_epi32(rt);
244             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
245             gbitab           = _mm_slli_epi32(gbitab,2);
246             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
247             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
248             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
249             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
250             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
251             Heps             = _mm256_mul_pd(gbeps,H);
252             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
253             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
254             vgb              = _mm256_mul_pd(gbqqfactor,VV);
255
256             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
257             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
258             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
259             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
260             fjptrA           = dvda+jnrA;
261             fjptrB           = dvda+jnrB;
262             fjptrC           = dvda+jnrC;
263             fjptrD           = dvda+jnrD;
264             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
265                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
266             velec            = _mm256_mul_pd(qq00,rinv00);
267             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
268
269             /* LENNARD-JONES DISPERSION/REPULSION */
270
271             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
272             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
273             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
274             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
275             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
276
277             /* Update potential sum for this i atom from the interaction with this j atom. */
278             velecsum         = _mm256_add_pd(velecsum,velec);
279             vgbsum           = _mm256_add_pd(vgbsum,vgb);
280             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
281
282             fscal            = _mm256_add_pd(felec,fvdw);
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm256_mul_pd(fscal,dx00);
286             ty               = _mm256_mul_pd(fscal,dy00);
287             tz               = _mm256_mul_pd(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm256_add_pd(fix0,tx);
291             fiy0             = _mm256_add_pd(fiy0,ty);
292             fiz0             = _mm256_add_pd(fiz0,tz);
293
294             fjptrA             = f+j_coord_offsetA;
295             fjptrB             = f+j_coord_offsetB;
296             fjptrC             = f+j_coord_offsetC;
297             fjptrD             = f+j_coord_offsetD;
298             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
299
300             /* Inner loop uses 70 flops */
301         }
302
303         if(jidx<j_index_end)
304         {
305
306             /* Get j neighbor index, and coordinate index */
307             jnrlistA         = jjnr[jidx];
308             jnrlistB         = jjnr[jidx+1];
309             jnrlistC         = jjnr[jidx+2];
310             jnrlistD         = jjnr[jidx+3];
311             /* Sign of each element will be negative for non-real atoms.
312              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
313              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
314              */
315             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
316
317             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
318             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
319             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
320
321             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
322             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
323             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
324             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
325             j_coord_offsetA  = DIM*jnrA;
326             j_coord_offsetB  = DIM*jnrB;
327             j_coord_offsetC  = DIM*jnrC;
328             j_coord_offsetD  = DIM*jnrD;
329
330             /* load j atom coordinates */
331             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
332                                                  x+j_coord_offsetC,x+j_coord_offsetD,
333                                                  &jx0,&jy0,&jz0);
334
335             /* Calculate displacement vector */
336             dx00             = _mm256_sub_pd(ix0,jx0);
337             dy00             = _mm256_sub_pd(iy0,jy0);
338             dz00             = _mm256_sub_pd(iz0,jz0);
339
340             /* Calculate squared distance and things based on it */
341             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
342
343             rinv00           = avx256_invsqrt_d(rsq00);
344
345             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
346
347             /* Load parameters for j particles */
348             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
349                                                                  charge+jnrC+0,charge+jnrD+0);
350             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
351                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
352             vdwjidx0A        = 2*vdwtype[jnrA+0];
353             vdwjidx0B        = 2*vdwtype[jnrB+0];
354             vdwjidx0C        = 2*vdwtype[jnrC+0];
355             vdwjidx0D        = 2*vdwtype[jnrD+0];
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             r00              = _mm256_mul_pd(rsq00,rinv00);
362             r00              = _mm256_andnot_pd(dummy_mask,r00);
363
364             /* Compute parameters for interactions between i and j atoms */
365             qq00             = _mm256_mul_pd(iq0,jq0);
366             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
367                                             vdwioffsetptr0+vdwjidx0B,
368                                             vdwioffsetptr0+vdwjidx0C,
369                                             vdwioffsetptr0+vdwjidx0D,
370                                             &c6_00,&c12_00);
371
372             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
373             isaprod          = _mm256_mul_pd(isai0,isaj0);
374             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
375             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
376
377             /* Calculate generalized born table index - this is a separate table from the normal one,
378              * but we use the same procedure by multiplying r with scale and truncating to integer.
379              */
380             rt               = _mm256_mul_pd(r00,gbscale);
381             gbitab           = _mm256_cvttpd_epi32(rt);
382             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
383             gbitab           = _mm_slli_epi32(gbitab,2);
384             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
385             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
386             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
387             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
388             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
389             Heps             = _mm256_mul_pd(gbeps,H);
390             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
391             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
392             vgb              = _mm256_mul_pd(gbqqfactor,VV);
393
394             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
395             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
396             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
397             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
398             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
399             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
400             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
401             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
402             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
403             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
404             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
405                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
406             velec            = _mm256_mul_pd(qq00,rinv00);
407             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
408
409             /* LENNARD-JONES DISPERSION/REPULSION */
410
411             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
412             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
413             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
414             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
415             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
416
417             /* Update potential sum for this i atom from the interaction with this j atom. */
418             velec            = _mm256_andnot_pd(dummy_mask,velec);
419             velecsum         = _mm256_add_pd(velecsum,velec);
420             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
421             vgbsum           = _mm256_add_pd(vgbsum,vgb);
422             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
423             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
424
425             fscal            = _mm256_add_pd(felec,fvdw);
426
427             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
428
429             /* Calculate temporary vectorial force */
430             tx               = _mm256_mul_pd(fscal,dx00);
431             ty               = _mm256_mul_pd(fscal,dy00);
432             tz               = _mm256_mul_pd(fscal,dz00);
433
434             /* Update vectorial force */
435             fix0             = _mm256_add_pd(fix0,tx);
436             fiy0             = _mm256_add_pd(fiy0,ty);
437             fiz0             = _mm256_add_pd(fiz0,tz);
438
439             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
440             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
441             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
442             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
443             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
444
445             /* Inner loop uses 71 flops */
446         }
447
448         /* End of innermost loop */
449
450         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
451                                                  f+i_coord_offset,fshift+i_shift_offset);
452
453         ggid                        = gid[iidx];
454         /* Update potential energies */
455         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
456         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
457         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
458         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
459         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
460
461         /* Increment number of inner iterations */
462         inneriter                  += j_index_end - j_index_start;
463
464         /* Outer loop uses 10 flops */
465     }
466
467     /* Increment number of outer iterations */
468     outeriter        += nri;
469
470     /* Update outer/inner flops */
471
472     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
473 }
474 /*
475  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_double
476  * Electrostatics interaction: GeneralizedBorn
477  * VdW interaction:            LennardJones
478  * Geometry:                   Particle-Particle
479  * Calculate force/pot:        Force
480  */
481 void
482 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_double
483                     (t_nblist                    * gmx_restrict       nlist,
484                      rvec                        * gmx_restrict          xx,
485                      rvec                        * gmx_restrict          ff,
486                      struct t_forcerec           * gmx_restrict          fr,
487                      t_mdatoms                   * gmx_restrict     mdatoms,
488                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
489                      t_nrnb                      * gmx_restrict        nrnb)
490 {
491     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
492      * just 0 for non-waters.
493      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
494      * jnr indices corresponding to data put in the four positions in the SIMD register.
495      */
496     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
497     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
498     int              jnrA,jnrB,jnrC,jnrD;
499     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
500     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
501     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
502     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
503     real             rcutoff_scalar;
504     real             *shiftvec,*fshift,*x,*f;
505     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
506     real             scratch[4*DIM];
507     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
508     real *           vdwioffsetptr0;
509     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
510     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
511     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
512     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
513     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
514     real             *charge;
515     __m128i          gbitab;
516     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
517     __m256d          minushalf = _mm256_set1_pd(-0.5);
518     real             *invsqrta,*dvda,*gbtab;
519     int              nvdwtype;
520     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
521     int              *vdwtype;
522     real             *vdwparam;
523     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
524     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
525     __m128i          vfitab;
526     __m128i          ifour       = _mm_set1_epi32(4);
527     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
528     real             *vftab;
529     __m256d          dummy_mask,cutoff_mask;
530     __m128           tmpmask0,tmpmask1;
531     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
532     __m256d          one     = _mm256_set1_pd(1.0);
533     __m256d          two     = _mm256_set1_pd(2.0);
534     x                = xx[0];
535     f                = ff[0];
536
537     nri              = nlist->nri;
538     iinr             = nlist->iinr;
539     jindex           = nlist->jindex;
540     jjnr             = nlist->jjnr;
541     shiftidx         = nlist->shift;
542     gid              = nlist->gid;
543     shiftvec         = fr->shift_vec[0];
544     fshift           = fr->fshift[0];
545     facel            = _mm256_set1_pd(fr->ic->epsfac);
546     charge           = mdatoms->chargeA;
547     nvdwtype         = fr->ntype;
548     vdwparam         = fr->nbfp;
549     vdwtype          = mdatoms->typeA;
550
551     invsqrta         = fr->invsqrta;
552     dvda             = fr->dvda;
553     gbtabscale       = _mm256_set1_pd(fr->gbtab->scale);
554     gbtab            = fr->gbtab->data;
555     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
556
557     /* Avoid stupid compiler warnings */
558     jnrA = jnrB = jnrC = jnrD = 0;
559     j_coord_offsetA = 0;
560     j_coord_offsetB = 0;
561     j_coord_offsetC = 0;
562     j_coord_offsetD = 0;
563
564     outeriter        = 0;
565     inneriter        = 0;
566
567     for(iidx=0;iidx<4*DIM;iidx++)
568     {
569         scratch[iidx] = 0.0;
570     }
571
572     /* Start outer loop over neighborlists */
573     for(iidx=0; iidx<nri; iidx++)
574     {
575         /* Load shift vector for this list */
576         i_shift_offset   = DIM*shiftidx[iidx];
577
578         /* Load limits for loop over neighbors */
579         j_index_start    = jindex[iidx];
580         j_index_end      = jindex[iidx+1];
581
582         /* Get outer coordinate index */
583         inr              = iinr[iidx];
584         i_coord_offset   = DIM*inr;
585
586         /* Load i particle coords and add shift vector */
587         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
588
589         fix0             = _mm256_setzero_pd();
590         fiy0             = _mm256_setzero_pd();
591         fiz0             = _mm256_setzero_pd();
592
593         /* Load parameters for i particles */
594         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
595         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
596         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
597
598         dvdasum          = _mm256_setzero_pd();
599
600         /* Start inner kernel loop */
601         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
602         {
603
604             /* Get j neighbor index, and coordinate index */
605             jnrA             = jjnr[jidx];
606             jnrB             = jjnr[jidx+1];
607             jnrC             = jjnr[jidx+2];
608             jnrD             = jjnr[jidx+3];
609             j_coord_offsetA  = DIM*jnrA;
610             j_coord_offsetB  = DIM*jnrB;
611             j_coord_offsetC  = DIM*jnrC;
612             j_coord_offsetD  = DIM*jnrD;
613
614             /* load j atom coordinates */
615             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
616                                                  x+j_coord_offsetC,x+j_coord_offsetD,
617                                                  &jx0,&jy0,&jz0);
618
619             /* Calculate displacement vector */
620             dx00             = _mm256_sub_pd(ix0,jx0);
621             dy00             = _mm256_sub_pd(iy0,jy0);
622             dz00             = _mm256_sub_pd(iz0,jz0);
623
624             /* Calculate squared distance and things based on it */
625             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
626
627             rinv00           = avx256_invsqrt_d(rsq00);
628
629             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
630
631             /* Load parameters for j particles */
632             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
633                                                                  charge+jnrC+0,charge+jnrD+0);
634             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
635                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
636             vdwjidx0A        = 2*vdwtype[jnrA+0];
637             vdwjidx0B        = 2*vdwtype[jnrB+0];
638             vdwjidx0C        = 2*vdwtype[jnrC+0];
639             vdwjidx0D        = 2*vdwtype[jnrD+0];
640
641             /**************************
642              * CALCULATE INTERACTIONS *
643              **************************/
644
645             r00              = _mm256_mul_pd(rsq00,rinv00);
646
647             /* Compute parameters for interactions between i and j atoms */
648             qq00             = _mm256_mul_pd(iq0,jq0);
649             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
650                                             vdwioffsetptr0+vdwjidx0B,
651                                             vdwioffsetptr0+vdwjidx0C,
652                                             vdwioffsetptr0+vdwjidx0D,
653                                             &c6_00,&c12_00);
654
655             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
656             isaprod          = _mm256_mul_pd(isai0,isaj0);
657             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
658             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
659
660             /* Calculate generalized born table index - this is a separate table from the normal one,
661              * but we use the same procedure by multiplying r with scale and truncating to integer.
662              */
663             rt               = _mm256_mul_pd(r00,gbscale);
664             gbitab           = _mm256_cvttpd_epi32(rt);
665             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
666             gbitab           = _mm_slli_epi32(gbitab,2);
667             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
668             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
669             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
670             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
671             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
672             Heps             = _mm256_mul_pd(gbeps,H);
673             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
674             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
675             vgb              = _mm256_mul_pd(gbqqfactor,VV);
676
677             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
678             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
679             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
680             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
681             fjptrA           = dvda+jnrA;
682             fjptrB           = dvda+jnrB;
683             fjptrC           = dvda+jnrC;
684             fjptrD           = dvda+jnrD;
685             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
686                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
687             velec            = _mm256_mul_pd(qq00,rinv00);
688             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
689
690             /* LENNARD-JONES DISPERSION/REPULSION */
691
692             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
693             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
694
695             fscal            = _mm256_add_pd(felec,fvdw);
696
697             /* Calculate temporary vectorial force */
698             tx               = _mm256_mul_pd(fscal,dx00);
699             ty               = _mm256_mul_pd(fscal,dy00);
700             tz               = _mm256_mul_pd(fscal,dz00);
701
702             /* Update vectorial force */
703             fix0             = _mm256_add_pd(fix0,tx);
704             fiy0             = _mm256_add_pd(fiy0,ty);
705             fiz0             = _mm256_add_pd(fiz0,tz);
706
707             fjptrA             = f+j_coord_offsetA;
708             fjptrB             = f+j_coord_offsetB;
709             fjptrC             = f+j_coord_offsetC;
710             fjptrD             = f+j_coord_offsetD;
711             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
712
713             /* Inner loop uses 63 flops */
714         }
715
716         if(jidx<j_index_end)
717         {
718
719             /* Get j neighbor index, and coordinate index */
720             jnrlistA         = jjnr[jidx];
721             jnrlistB         = jjnr[jidx+1];
722             jnrlistC         = jjnr[jidx+2];
723             jnrlistD         = jjnr[jidx+3];
724             /* Sign of each element will be negative for non-real atoms.
725              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
726              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
727              */
728             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
729
730             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
731             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
732             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
733
734             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
735             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
736             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
737             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
738             j_coord_offsetA  = DIM*jnrA;
739             j_coord_offsetB  = DIM*jnrB;
740             j_coord_offsetC  = DIM*jnrC;
741             j_coord_offsetD  = DIM*jnrD;
742
743             /* load j atom coordinates */
744             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
745                                                  x+j_coord_offsetC,x+j_coord_offsetD,
746                                                  &jx0,&jy0,&jz0);
747
748             /* Calculate displacement vector */
749             dx00             = _mm256_sub_pd(ix0,jx0);
750             dy00             = _mm256_sub_pd(iy0,jy0);
751             dz00             = _mm256_sub_pd(iz0,jz0);
752
753             /* Calculate squared distance and things based on it */
754             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
755
756             rinv00           = avx256_invsqrt_d(rsq00);
757
758             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
759
760             /* Load parameters for j particles */
761             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
762                                                                  charge+jnrC+0,charge+jnrD+0);
763             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
764                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
765             vdwjidx0A        = 2*vdwtype[jnrA+0];
766             vdwjidx0B        = 2*vdwtype[jnrB+0];
767             vdwjidx0C        = 2*vdwtype[jnrC+0];
768             vdwjidx0D        = 2*vdwtype[jnrD+0];
769
770             /**************************
771              * CALCULATE INTERACTIONS *
772              **************************/
773
774             r00              = _mm256_mul_pd(rsq00,rinv00);
775             r00              = _mm256_andnot_pd(dummy_mask,r00);
776
777             /* Compute parameters for interactions between i and j atoms */
778             qq00             = _mm256_mul_pd(iq0,jq0);
779             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
780                                             vdwioffsetptr0+vdwjidx0B,
781                                             vdwioffsetptr0+vdwjidx0C,
782                                             vdwioffsetptr0+vdwjidx0D,
783                                             &c6_00,&c12_00);
784
785             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
786             isaprod          = _mm256_mul_pd(isai0,isaj0);
787             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
788             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
789
790             /* Calculate generalized born table index - this is a separate table from the normal one,
791              * but we use the same procedure by multiplying r with scale and truncating to integer.
792              */
793             rt               = _mm256_mul_pd(r00,gbscale);
794             gbitab           = _mm256_cvttpd_epi32(rt);
795             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
796             gbitab           = _mm_slli_epi32(gbitab,2);
797             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
798             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
799             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
800             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
801             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
802             Heps             = _mm256_mul_pd(gbeps,H);
803             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
804             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
805             vgb              = _mm256_mul_pd(gbqqfactor,VV);
806
807             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
808             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
809             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
810             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
811             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
812             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
813             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
814             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
815             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
816             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
817             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
818                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
819             velec            = _mm256_mul_pd(qq00,rinv00);
820             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
821
822             /* LENNARD-JONES DISPERSION/REPULSION */
823
824             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
825             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
826
827             fscal            = _mm256_add_pd(felec,fvdw);
828
829             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
830
831             /* Calculate temporary vectorial force */
832             tx               = _mm256_mul_pd(fscal,dx00);
833             ty               = _mm256_mul_pd(fscal,dy00);
834             tz               = _mm256_mul_pd(fscal,dz00);
835
836             /* Update vectorial force */
837             fix0             = _mm256_add_pd(fix0,tx);
838             fiy0             = _mm256_add_pd(fiy0,ty);
839             fiz0             = _mm256_add_pd(fiz0,tz);
840
841             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
842             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
843             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
844             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
845             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
846
847             /* Inner loop uses 64 flops */
848         }
849
850         /* End of innermost loop */
851
852         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
853                                                  f+i_coord_offset,fshift+i_shift_offset);
854
855         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
856         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
857
858         /* Increment number of inner iterations */
859         inneriter                  += j_index_end - j_index_start;
860
861         /* Outer loop uses 7 flops */
862     }
863
864     /* Increment number of outer iterations */
865     outeriter        += nri;
866
867     /* Update outer/inner flops */
868
869     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
870 }