96c8e5587ad63fe9300ba01b8498e91407651bfa
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     __m128i          gbitab;
92     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
93     __m256d          minushalf = _mm256_set1_pd(-0.5);
94     real             *invsqrta,*dvda,*gbtab;
95     int              nvdwtype;
96     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
100     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m256d          dummy_mask,cutoff_mask;
106     __m128           tmpmask0,tmpmask1;
107     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
108     __m256d          one     = _mm256_set1_pd(1.0);
109     __m256d          two     = _mm256_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
129
130     invsqrta         = fr->invsqrta;
131     dvda             = fr->dvda;
132     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
133     gbtab            = fr->gbtab.data;
134     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
167
168         fix0             = _mm256_setzero_pd();
169         fiy0             = _mm256_setzero_pd();
170         fiz0             = _mm256_setzero_pd();
171
172         /* Load parameters for i particles */
173         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
174         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
175         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
176
177         /* Reset potential sums */
178         velecsum         = _mm256_setzero_pd();
179         vgbsum           = _mm256_setzero_pd();
180         vvdwsum          = _mm256_setzero_pd();
181         dvdasum          = _mm256_setzero_pd();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196
197             /* load j atom coordinates */
198             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
199                                                  x+j_coord_offsetC,x+j_coord_offsetD,
200                                                  &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm256_sub_pd(ix0,jx0);
204             dy00             = _mm256_sub_pd(iy0,jy0);
205             dz00             = _mm256_sub_pd(iz0,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
209
210             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
211
212             /* Load parameters for j particles */
213             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
214                                                                  charge+jnrC+0,charge+jnrD+0);
215             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
216                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
217             vdwjidx0A        = 2*vdwtype[jnrA+0];
218             vdwjidx0B        = 2*vdwtype[jnrB+0];
219             vdwjidx0C        = 2*vdwtype[jnrC+0];
220             vdwjidx0D        = 2*vdwtype[jnrD+0];
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             r00              = _mm256_mul_pd(rsq00,rinv00);
227
228             /* Compute parameters for interactions between i and j atoms */
229             qq00             = _mm256_mul_pd(iq0,jq0);
230             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
231                                             vdwioffsetptr0+vdwjidx0B,
232                                             vdwioffsetptr0+vdwjidx0C,
233                                             vdwioffsetptr0+vdwjidx0D,
234                                             &c6_00,&c12_00);
235
236             /* Calculate table index by multiplying r with table scale and truncate to integer */
237             rt               = _mm256_mul_pd(r00,vftabscale);
238             vfitab           = _mm256_cvttpd_epi32(rt);
239             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
240             vfitab           = _mm_slli_epi32(vfitab,3);
241
242             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
243             isaprod          = _mm256_mul_pd(isai0,isaj0);
244             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
245             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
246
247             /* Calculate generalized born table index - this is a separate table from the normal one,
248              * but we use the same procedure by multiplying r with scale and truncating to integer.
249              */
250             rt               = _mm256_mul_pd(r00,gbscale);
251             gbitab           = _mm256_cvttpd_epi32(rt);
252             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
253             gbitab           = _mm_slli_epi32(gbitab,2);
254             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
255             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
256             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
257             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
258             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
259             Heps             = _mm256_mul_pd(gbeps,H);
260             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
261             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
262             vgb              = _mm256_mul_pd(gbqqfactor,VV);
263
264             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
265             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
266             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
267             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
268             fjptrA           = dvda+jnrA;
269             fjptrB           = dvda+jnrB;
270             fjptrC           = dvda+jnrC;
271             fjptrD           = dvda+jnrD;
272             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
273                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
274             velec            = _mm256_mul_pd(qq00,rinv00);
275             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
276
277             /* CUBIC SPLINE TABLE DISPERSION */
278             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
279             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
280             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
281             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
282             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
283             Heps             = _mm256_mul_pd(vfeps,H);
284             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
285             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
286             vvdw6            = _mm256_mul_pd(c6_00,VV);
287             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
288             fvdw6            = _mm256_mul_pd(c6_00,FF);
289
290             /* CUBIC SPLINE TABLE REPULSION */
291             vfitab           = _mm_add_epi32(vfitab,ifour);
292             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
293             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
294             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
295             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
296             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
297             Heps             = _mm256_mul_pd(vfeps,H);
298             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
299             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
300             vvdw12           = _mm256_mul_pd(c12_00,VV);
301             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
302             fvdw12           = _mm256_mul_pd(c12_00,FF);
303             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
304             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             velecsum         = _mm256_add_pd(velecsum,velec);
308             vgbsum           = _mm256_add_pd(vgbsum,vgb);
309             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
310
311             fscal            = _mm256_add_pd(felec,fvdw);
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm256_mul_pd(fscal,dx00);
315             ty               = _mm256_mul_pd(fscal,dy00);
316             tz               = _mm256_mul_pd(fscal,dz00);
317
318             /* Update vectorial force */
319             fix0             = _mm256_add_pd(fix0,tx);
320             fiy0             = _mm256_add_pd(fiy0,ty);
321             fiz0             = _mm256_add_pd(fiz0,tz);
322
323             fjptrA             = f+j_coord_offsetA;
324             fjptrB             = f+j_coord_offsetB;
325             fjptrC             = f+j_coord_offsetC;
326             fjptrD             = f+j_coord_offsetD;
327             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
328
329             /* Inner loop uses 91 flops */
330         }
331
332         if(jidx<j_index_end)
333         {
334
335             /* Get j neighbor index, and coordinate index */
336             jnrlistA         = jjnr[jidx];
337             jnrlistB         = jjnr[jidx+1];
338             jnrlistC         = jjnr[jidx+2];
339             jnrlistD         = jjnr[jidx+3];
340             /* Sign of each element will be negative for non-real atoms.
341              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
342              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
343              */
344             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
345
346             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
347             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
348             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
349
350             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
351             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
352             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
353             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
354             j_coord_offsetA  = DIM*jnrA;
355             j_coord_offsetB  = DIM*jnrB;
356             j_coord_offsetC  = DIM*jnrC;
357             j_coord_offsetD  = DIM*jnrD;
358
359             /* load j atom coordinates */
360             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
361                                                  x+j_coord_offsetC,x+j_coord_offsetD,
362                                                  &jx0,&jy0,&jz0);
363
364             /* Calculate displacement vector */
365             dx00             = _mm256_sub_pd(ix0,jx0);
366             dy00             = _mm256_sub_pd(iy0,jy0);
367             dz00             = _mm256_sub_pd(iz0,jz0);
368
369             /* Calculate squared distance and things based on it */
370             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
371
372             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
373
374             /* Load parameters for j particles */
375             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
376                                                                  charge+jnrC+0,charge+jnrD+0);
377             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
378                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
379             vdwjidx0A        = 2*vdwtype[jnrA+0];
380             vdwjidx0B        = 2*vdwtype[jnrB+0];
381             vdwjidx0C        = 2*vdwtype[jnrC+0];
382             vdwjidx0D        = 2*vdwtype[jnrD+0];
383
384             /**************************
385              * CALCULATE INTERACTIONS *
386              **************************/
387
388             r00              = _mm256_mul_pd(rsq00,rinv00);
389             r00              = _mm256_andnot_pd(dummy_mask,r00);
390
391             /* Compute parameters for interactions between i and j atoms */
392             qq00             = _mm256_mul_pd(iq0,jq0);
393             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
394                                             vdwioffsetptr0+vdwjidx0B,
395                                             vdwioffsetptr0+vdwjidx0C,
396                                             vdwioffsetptr0+vdwjidx0D,
397                                             &c6_00,&c12_00);
398
399             /* Calculate table index by multiplying r with table scale and truncate to integer */
400             rt               = _mm256_mul_pd(r00,vftabscale);
401             vfitab           = _mm256_cvttpd_epi32(rt);
402             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
403             vfitab           = _mm_slli_epi32(vfitab,3);
404
405             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
406             isaprod          = _mm256_mul_pd(isai0,isaj0);
407             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
408             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
409
410             /* Calculate generalized born table index - this is a separate table from the normal one,
411              * but we use the same procedure by multiplying r with scale and truncating to integer.
412              */
413             rt               = _mm256_mul_pd(r00,gbscale);
414             gbitab           = _mm256_cvttpd_epi32(rt);
415             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
416             gbitab           = _mm_slli_epi32(gbitab,2);
417             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
418             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
419             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
420             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
421             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
422             Heps             = _mm256_mul_pd(gbeps,H);
423             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
424             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
425             vgb              = _mm256_mul_pd(gbqqfactor,VV);
426
427             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
428             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
429             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
430             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
431             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
432             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
433             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
434             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
435             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
436             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
437             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
438                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
439             velec            = _mm256_mul_pd(qq00,rinv00);
440             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
441
442             /* CUBIC SPLINE TABLE DISPERSION */
443             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
444             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
445             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
446             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
447             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
448             Heps             = _mm256_mul_pd(vfeps,H);
449             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
450             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
451             vvdw6            = _mm256_mul_pd(c6_00,VV);
452             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
453             fvdw6            = _mm256_mul_pd(c6_00,FF);
454
455             /* CUBIC SPLINE TABLE REPULSION */
456             vfitab           = _mm_add_epi32(vfitab,ifour);
457             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
458             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
459             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
460             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
461             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
462             Heps             = _mm256_mul_pd(vfeps,H);
463             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
464             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
465             vvdw12           = _mm256_mul_pd(c12_00,VV);
466             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
467             fvdw12           = _mm256_mul_pd(c12_00,FF);
468             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
469             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
470
471             /* Update potential sum for this i atom from the interaction with this j atom. */
472             velec            = _mm256_andnot_pd(dummy_mask,velec);
473             velecsum         = _mm256_add_pd(velecsum,velec);
474             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
475             vgbsum           = _mm256_add_pd(vgbsum,vgb);
476             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
477             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
478
479             fscal            = _mm256_add_pd(felec,fvdw);
480
481             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
482
483             /* Calculate temporary vectorial force */
484             tx               = _mm256_mul_pd(fscal,dx00);
485             ty               = _mm256_mul_pd(fscal,dy00);
486             tz               = _mm256_mul_pd(fscal,dz00);
487
488             /* Update vectorial force */
489             fix0             = _mm256_add_pd(fix0,tx);
490             fiy0             = _mm256_add_pd(fiy0,ty);
491             fiz0             = _mm256_add_pd(fiz0,tz);
492
493             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
494             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
495             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
496             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
497             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
498
499             /* Inner loop uses 92 flops */
500         }
501
502         /* End of innermost loop */
503
504         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
505                                                  f+i_coord_offset,fshift+i_shift_offset);
506
507         ggid                        = gid[iidx];
508         /* Update potential energies */
509         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
510         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
511         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
512         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
513         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
514
515         /* Increment number of inner iterations */
516         inneriter                  += j_index_end - j_index_start;
517
518         /* Outer loop uses 10 flops */
519     }
520
521     /* Increment number of outer iterations */
522     outeriter        += nri;
523
524     /* Update outer/inner flops */
525
526     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
527 }
528 /*
529  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_double
530  * Electrostatics interaction: GeneralizedBorn
531  * VdW interaction:            CubicSplineTable
532  * Geometry:                   Particle-Particle
533  * Calculate force/pot:        Force
534  */
535 void
536 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_double
537                     (t_nblist                    * gmx_restrict       nlist,
538                      rvec                        * gmx_restrict          xx,
539                      rvec                        * gmx_restrict          ff,
540                      t_forcerec                  * gmx_restrict          fr,
541                      t_mdatoms                   * gmx_restrict     mdatoms,
542                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
543                      t_nrnb                      * gmx_restrict        nrnb)
544 {
545     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
546      * just 0 for non-waters.
547      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
548      * jnr indices corresponding to data put in the four positions in the SIMD register.
549      */
550     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
551     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
552     int              jnrA,jnrB,jnrC,jnrD;
553     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
554     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
555     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
556     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
557     real             rcutoff_scalar;
558     real             *shiftvec,*fshift,*x,*f;
559     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
560     real             scratch[4*DIM];
561     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
562     real *           vdwioffsetptr0;
563     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
564     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
565     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
566     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
567     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
568     real             *charge;
569     __m128i          gbitab;
570     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
571     __m256d          minushalf = _mm256_set1_pd(-0.5);
572     real             *invsqrta,*dvda,*gbtab;
573     int              nvdwtype;
574     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
575     int              *vdwtype;
576     real             *vdwparam;
577     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
578     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
579     __m128i          vfitab;
580     __m128i          ifour       = _mm_set1_epi32(4);
581     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
582     real             *vftab;
583     __m256d          dummy_mask,cutoff_mask;
584     __m128           tmpmask0,tmpmask1;
585     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
586     __m256d          one     = _mm256_set1_pd(1.0);
587     __m256d          two     = _mm256_set1_pd(2.0);
588     x                = xx[0];
589     f                = ff[0];
590
591     nri              = nlist->nri;
592     iinr             = nlist->iinr;
593     jindex           = nlist->jindex;
594     jjnr             = nlist->jjnr;
595     shiftidx         = nlist->shift;
596     gid              = nlist->gid;
597     shiftvec         = fr->shift_vec[0];
598     fshift           = fr->fshift[0];
599     facel            = _mm256_set1_pd(fr->epsfac);
600     charge           = mdatoms->chargeA;
601     nvdwtype         = fr->ntype;
602     vdwparam         = fr->nbfp;
603     vdwtype          = mdatoms->typeA;
604
605     vftab            = kernel_data->table_vdw->data;
606     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
607
608     invsqrta         = fr->invsqrta;
609     dvda             = fr->dvda;
610     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
611     gbtab            = fr->gbtab.data;
612     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
613
614     /* Avoid stupid compiler warnings */
615     jnrA = jnrB = jnrC = jnrD = 0;
616     j_coord_offsetA = 0;
617     j_coord_offsetB = 0;
618     j_coord_offsetC = 0;
619     j_coord_offsetD = 0;
620
621     outeriter        = 0;
622     inneriter        = 0;
623
624     for(iidx=0;iidx<4*DIM;iidx++)
625     {
626         scratch[iidx] = 0.0;
627     }
628
629     /* Start outer loop over neighborlists */
630     for(iidx=0; iidx<nri; iidx++)
631     {
632         /* Load shift vector for this list */
633         i_shift_offset   = DIM*shiftidx[iidx];
634
635         /* Load limits for loop over neighbors */
636         j_index_start    = jindex[iidx];
637         j_index_end      = jindex[iidx+1];
638
639         /* Get outer coordinate index */
640         inr              = iinr[iidx];
641         i_coord_offset   = DIM*inr;
642
643         /* Load i particle coords and add shift vector */
644         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
645
646         fix0             = _mm256_setzero_pd();
647         fiy0             = _mm256_setzero_pd();
648         fiz0             = _mm256_setzero_pd();
649
650         /* Load parameters for i particles */
651         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
652         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
653         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
654
655         dvdasum          = _mm256_setzero_pd();
656
657         /* Start inner kernel loop */
658         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
659         {
660
661             /* Get j neighbor index, and coordinate index */
662             jnrA             = jjnr[jidx];
663             jnrB             = jjnr[jidx+1];
664             jnrC             = jjnr[jidx+2];
665             jnrD             = jjnr[jidx+3];
666             j_coord_offsetA  = DIM*jnrA;
667             j_coord_offsetB  = DIM*jnrB;
668             j_coord_offsetC  = DIM*jnrC;
669             j_coord_offsetD  = DIM*jnrD;
670
671             /* load j atom coordinates */
672             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
673                                                  x+j_coord_offsetC,x+j_coord_offsetD,
674                                                  &jx0,&jy0,&jz0);
675
676             /* Calculate displacement vector */
677             dx00             = _mm256_sub_pd(ix0,jx0);
678             dy00             = _mm256_sub_pd(iy0,jy0);
679             dz00             = _mm256_sub_pd(iz0,jz0);
680
681             /* Calculate squared distance and things based on it */
682             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
683
684             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
685
686             /* Load parameters for j particles */
687             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
688                                                                  charge+jnrC+0,charge+jnrD+0);
689             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
690                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
691             vdwjidx0A        = 2*vdwtype[jnrA+0];
692             vdwjidx0B        = 2*vdwtype[jnrB+0];
693             vdwjidx0C        = 2*vdwtype[jnrC+0];
694             vdwjidx0D        = 2*vdwtype[jnrD+0];
695
696             /**************************
697              * CALCULATE INTERACTIONS *
698              **************************/
699
700             r00              = _mm256_mul_pd(rsq00,rinv00);
701
702             /* Compute parameters for interactions between i and j atoms */
703             qq00             = _mm256_mul_pd(iq0,jq0);
704             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
705                                             vdwioffsetptr0+vdwjidx0B,
706                                             vdwioffsetptr0+vdwjidx0C,
707                                             vdwioffsetptr0+vdwjidx0D,
708                                             &c6_00,&c12_00);
709
710             /* Calculate table index by multiplying r with table scale and truncate to integer */
711             rt               = _mm256_mul_pd(r00,vftabscale);
712             vfitab           = _mm256_cvttpd_epi32(rt);
713             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
714             vfitab           = _mm_slli_epi32(vfitab,3);
715
716             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
717             isaprod          = _mm256_mul_pd(isai0,isaj0);
718             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
719             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
720
721             /* Calculate generalized born table index - this is a separate table from the normal one,
722              * but we use the same procedure by multiplying r with scale and truncating to integer.
723              */
724             rt               = _mm256_mul_pd(r00,gbscale);
725             gbitab           = _mm256_cvttpd_epi32(rt);
726             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
727             gbitab           = _mm_slli_epi32(gbitab,2);
728             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
729             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
730             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
731             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
732             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
733             Heps             = _mm256_mul_pd(gbeps,H);
734             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
735             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
736             vgb              = _mm256_mul_pd(gbqqfactor,VV);
737
738             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
739             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
740             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
741             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
742             fjptrA           = dvda+jnrA;
743             fjptrB           = dvda+jnrB;
744             fjptrC           = dvda+jnrC;
745             fjptrD           = dvda+jnrD;
746             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
747                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
748             velec            = _mm256_mul_pd(qq00,rinv00);
749             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
750
751             /* CUBIC SPLINE TABLE DISPERSION */
752             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
753             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
754             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
755             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
756             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
757             Heps             = _mm256_mul_pd(vfeps,H);
758             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
759             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
760             fvdw6            = _mm256_mul_pd(c6_00,FF);
761
762             /* CUBIC SPLINE TABLE REPULSION */
763             vfitab           = _mm_add_epi32(vfitab,ifour);
764             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
765             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
766             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
767             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
768             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
769             Heps             = _mm256_mul_pd(vfeps,H);
770             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
771             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
772             fvdw12           = _mm256_mul_pd(c12_00,FF);
773             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
774
775             fscal            = _mm256_add_pd(felec,fvdw);
776
777             /* Calculate temporary vectorial force */
778             tx               = _mm256_mul_pd(fscal,dx00);
779             ty               = _mm256_mul_pd(fscal,dy00);
780             tz               = _mm256_mul_pd(fscal,dz00);
781
782             /* Update vectorial force */
783             fix0             = _mm256_add_pd(fix0,tx);
784             fiy0             = _mm256_add_pd(fiy0,ty);
785             fiz0             = _mm256_add_pd(fiz0,tz);
786
787             fjptrA             = f+j_coord_offsetA;
788             fjptrB             = f+j_coord_offsetB;
789             fjptrC             = f+j_coord_offsetC;
790             fjptrD             = f+j_coord_offsetD;
791             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
792
793             /* Inner loop uses 81 flops */
794         }
795
796         if(jidx<j_index_end)
797         {
798
799             /* Get j neighbor index, and coordinate index */
800             jnrlistA         = jjnr[jidx];
801             jnrlistB         = jjnr[jidx+1];
802             jnrlistC         = jjnr[jidx+2];
803             jnrlistD         = jjnr[jidx+3];
804             /* Sign of each element will be negative for non-real atoms.
805              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
806              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
807              */
808             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
809
810             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
811             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
812             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
813
814             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
815             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
816             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
817             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
818             j_coord_offsetA  = DIM*jnrA;
819             j_coord_offsetB  = DIM*jnrB;
820             j_coord_offsetC  = DIM*jnrC;
821             j_coord_offsetD  = DIM*jnrD;
822
823             /* load j atom coordinates */
824             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
825                                                  x+j_coord_offsetC,x+j_coord_offsetD,
826                                                  &jx0,&jy0,&jz0);
827
828             /* Calculate displacement vector */
829             dx00             = _mm256_sub_pd(ix0,jx0);
830             dy00             = _mm256_sub_pd(iy0,jy0);
831             dz00             = _mm256_sub_pd(iz0,jz0);
832
833             /* Calculate squared distance and things based on it */
834             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
835
836             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
837
838             /* Load parameters for j particles */
839             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
840                                                                  charge+jnrC+0,charge+jnrD+0);
841             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
842                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
843             vdwjidx0A        = 2*vdwtype[jnrA+0];
844             vdwjidx0B        = 2*vdwtype[jnrB+0];
845             vdwjidx0C        = 2*vdwtype[jnrC+0];
846             vdwjidx0D        = 2*vdwtype[jnrD+0];
847
848             /**************************
849              * CALCULATE INTERACTIONS *
850              **************************/
851
852             r00              = _mm256_mul_pd(rsq00,rinv00);
853             r00              = _mm256_andnot_pd(dummy_mask,r00);
854
855             /* Compute parameters for interactions between i and j atoms */
856             qq00             = _mm256_mul_pd(iq0,jq0);
857             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
858                                             vdwioffsetptr0+vdwjidx0B,
859                                             vdwioffsetptr0+vdwjidx0C,
860                                             vdwioffsetptr0+vdwjidx0D,
861                                             &c6_00,&c12_00);
862
863             /* Calculate table index by multiplying r with table scale and truncate to integer */
864             rt               = _mm256_mul_pd(r00,vftabscale);
865             vfitab           = _mm256_cvttpd_epi32(rt);
866             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
867             vfitab           = _mm_slli_epi32(vfitab,3);
868
869             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
870             isaprod          = _mm256_mul_pd(isai0,isaj0);
871             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
872             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
873
874             /* Calculate generalized born table index - this is a separate table from the normal one,
875              * but we use the same procedure by multiplying r with scale and truncating to integer.
876              */
877             rt               = _mm256_mul_pd(r00,gbscale);
878             gbitab           = _mm256_cvttpd_epi32(rt);
879             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
880             gbitab           = _mm_slli_epi32(gbitab,2);
881             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
882             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
883             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
884             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
885             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
886             Heps             = _mm256_mul_pd(gbeps,H);
887             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
888             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
889             vgb              = _mm256_mul_pd(gbqqfactor,VV);
890
891             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
892             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
893             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
894             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
895             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
896             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
897             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
898             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
899             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
900             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
901             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
902                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
903             velec            = _mm256_mul_pd(qq00,rinv00);
904             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
905
906             /* CUBIC SPLINE TABLE DISPERSION */
907             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
908             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
909             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
910             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
911             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
912             Heps             = _mm256_mul_pd(vfeps,H);
913             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
914             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
915             fvdw6            = _mm256_mul_pd(c6_00,FF);
916
917             /* CUBIC SPLINE TABLE REPULSION */
918             vfitab           = _mm_add_epi32(vfitab,ifour);
919             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
920             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
921             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
922             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
923             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
924             Heps             = _mm256_mul_pd(vfeps,H);
925             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
926             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
927             fvdw12           = _mm256_mul_pd(c12_00,FF);
928             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
929
930             fscal            = _mm256_add_pd(felec,fvdw);
931
932             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
933
934             /* Calculate temporary vectorial force */
935             tx               = _mm256_mul_pd(fscal,dx00);
936             ty               = _mm256_mul_pd(fscal,dy00);
937             tz               = _mm256_mul_pd(fscal,dz00);
938
939             /* Update vectorial force */
940             fix0             = _mm256_add_pd(fix0,tx);
941             fiy0             = _mm256_add_pd(fiy0,ty);
942             fiz0             = _mm256_add_pd(fiz0,tz);
943
944             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
945             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
946             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
947             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
948             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
949
950             /* Inner loop uses 82 flops */
951         }
952
953         /* End of innermost loop */
954
955         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
956                                                  f+i_coord_offset,fshift+i_shift_offset);
957
958         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
959         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
960
961         /* Increment number of inner iterations */
962         inneriter                  += j_index_end - j_index_start;
963
964         /* Outer loop uses 7 flops */
965     }
966
967     /* Increment number of outer iterations */
968     outeriter        += nri;
969
970     /* Update outer/inner flops */
971
972     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
973 }