Remove topology support for implicit solvation
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128i          gbitab;
91     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
92     __m256d          minushalf = _mm256_set1_pd(-0.5);
93     real             *invsqrta,*dvda,*gbtab;
94     int              nvdwtype;
95     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
99     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
100     __m128i          vfitab;
101     __m128i          ifour       = _mm_set1_epi32(4);
102     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
103     real             *vftab;
104     __m256d          dummy_mask,cutoff_mask;
105     __m128           tmpmask0,tmpmask1;
106     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
107     __m256d          one     = _mm256_set1_pd(1.0);
108     __m256d          two     = _mm256_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm256_set1_pd(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
128
129     invsqrta         = fr->invsqrta;
130     dvda             = fr->dvda;
131     gbtabscale       = _mm256_set1_pd(fr->gbtab->scale);
132     gbtab            = fr->gbtab->data;
133     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     for(iidx=0;iidx<4*DIM;iidx++)
146     {
147         scratch[iidx] = 0.0;
148     }
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
166
167         fix0             = _mm256_setzero_pd();
168         fiy0             = _mm256_setzero_pd();
169         fiz0             = _mm256_setzero_pd();
170
171         /* Load parameters for i particles */
172         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
173         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
174         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
175
176         /* Reset potential sums */
177         velecsum         = _mm256_setzero_pd();
178         vgbsum           = _mm256_setzero_pd();
179         vvdwsum          = _mm256_setzero_pd();
180         dvdasum          = _mm256_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             jnrC             = jjnr[jidx+2];
190             jnrD             = jjnr[jidx+3];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195
196             /* load j atom coordinates */
197             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
198                                                  x+j_coord_offsetC,x+j_coord_offsetD,
199                                                  &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm256_sub_pd(ix0,jx0);
203             dy00             = _mm256_sub_pd(iy0,jy0);
204             dz00             = _mm256_sub_pd(iz0,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
208
209             rinv00           = avx256_invsqrt_d(rsq00);
210
211             /* Load parameters for j particles */
212             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
213                                                                  charge+jnrC+0,charge+jnrD+0);
214             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
215                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217             vdwjidx0B        = 2*vdwtype[jnrB+0];
218             vdwjidx0C        = 2*vdwtype[jnrC+0];
219             vdwjidx0D        = 2*vdwtype[jnrD+0];
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             r00              = _mm256_mul_pd(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm256_mul_pd(iq0,jq0);
229             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
230                                             vdwioffsetptr0+vdwjidx0B,
231                                             vdwioffsetptr0+vdwjidx0C,
232                                             vdwioffsetptr0+vdwjidx0D,
233                                             &c6_00,&c12_00);
234
235             /* Calculate table index by multiplying r with table scale and truncate to integer */
236             rt               = _mm256_mul_pd(r00,vftabscale);
237             vfitab           = _mm256_cvttpd_epi32(rt);
238             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
239             vfitab           = _mm_slli_epi32(vfitab,3);
240
241             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
242             isaprod          = _mm256_mul_pd(isai0,isaj0);
243             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
244             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
245
246             /* Calculate generalized born table index - this is a separate table from the normal one,
247              * but we use the same procedure by multiplying r with scale and truncating to integer.
248              */
249             rt               = _mm256_mul_pd(r00,gbscale);
250             gbitab           = _mm256_cvttpd_epi32(rt);
251             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
252             gbitab           = _mm_slli_epi32(gbitab,2);
253             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
254             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
255             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
256             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
257             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
258             Heps             = _mm256_mul_pd(gbeps,H);
259             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
260             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
261             vgb              = _mm256_mul_pd(gbqqfactor,VV);
262
263             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
264             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
265             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
266             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
267             fjptrA           = dvda+jnrA;
268             fjptrB           = dvda+jnrB;
269             fjptrC           = dvda+jnrC;
270             fjptrD           = dvda+jnrD;
271             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
272                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
273             velec            = _mm256_mul_pd(qq00,rinv00);
274             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
275
276             /* CUBIC SPLINE TABLE DISPERSION */
277             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
278             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
279             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
280             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
281             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
282             Heps             = _mm256_mul_pd(vfeps,H);
283             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
284             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
285             vvdw6            = _mm256_mul_pd(c6_00,VV);
286             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
287             fvdw6            = _mm256_mul_pd(c6_00,FF);
288
289             /* CUBIC SPLINE TABLE REPULSION */
290             vfitab           = _mm_add_epi32(vfitab,ifour);
291             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
292             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
293             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
294             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
295             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
296             Heps             = _mm256_mul_pd(vfeps,H);
297             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
298             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
299             vvdw12           = _mm256_mul_pd(c12_00,VV);
300             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
301             fvdw12           = _mm256_mul_pd(c12_00,FF);
302             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
303             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velecsum         = _mm256_add_pd(velecsum,velec);
307             vgbsum           = _mm256_add_pd(vgbsum,vgb);
308             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
309
310             fscal            = _mm256_add_pd(felec,fvdw);
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm256_mul_pd(fscal,dx00);
314             ty               = _mm256_mul_pd(fscal,dy00);
315             tz               = _mm256_mul_pd(fscal,dz00);
316
317             /* Update vectorial force */
318             fix0             = _mm256_add_pd(fix0,tx);
319             fiy0             = _mm256_add_pd(fiy0,ty);
320             fiz0             = _mm256_add_pd(fiz0,tz);
321
322             fjptrA             = f+j_coord_offsetA;
323             fjptrB             = f+j_coord_offsetB;
324             fjptrC             = f+j_coord_offsetC;
325             fjptrD             = f+j_coord_offsetD;
326             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
327
328             /* Inner loop uses 91 flops */
329         }
330
331         if(jidx<j_index_end)
332         {
333
334             /* Get j neighbor index, and coordinate index */
335             jnrlistA         = jjnr[jidx];
336             jnrlistB         = jjnr[jidx+1];
337             jnrlistC         = jjnr[jidx+2];
338             jnrlistD         = jjnr[jidx+3];
339             /* Sign of each element will be negative for non-real atoms.
340              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
341              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
342              */
343             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
344
345             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
346             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
347             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
348
349             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
350             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
351             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
352             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
353             j_coord_offsetA  = DIM*jnrA;
354             j_coord_offsetB  = DIM*jnrB;
355             j_coord_offsetC  = DIM*jnrC;
356             j_coord_offsetD  = DIM*jnrD;
357
358             /* load j atom coordinates */
359             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
360                                                  x+j_coord_offsetC,x+j_coord_offsetD,
361                                                  &jx0,&jy0,&jz0);
362
363             /* Calculate displacement vector */
364             dx00             = _mm256_sub_pd(ix0,jx0);
365             dy00             = _mm256_sub_pd(iy0,jy0);
366             dz00             = _mm256_sub_pd(iz0,jz0);
367
368             /* Calculate squared distance and things based on it */
369             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
370
371             rinv00           = avx256_invsqrt_d(rsq00);
372
373             /* Load parameters for j particles */
374             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
375                                                                  charge+jnrC+0,charge+jnrD+0);
376             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
377                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
378             vdwjidx0A        = 2*vdwtype[jnrA+0];
379             vdwjidx0B        = 2*vdwtype[jnrB+0];
380             vdwjidx0C        = 2*vdwtype[jnrC+0];
381             vdwjidx0D        = 2*vdwtype[jnrD+0];
382
383             /**************************
384              * CALCULATE INTERACTIONS *
385              **************************/
386
387             r00              = _mm256_mul_pd(rsq00,rinv00);
388             r00              = _mm256_andnot_pd(dummy_mask,r00);
389
390             /* Compute parameters for interactions between i and j atoms */
391             qq00             = _mm256_mul_pd(iq0,jq0);
392             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
393                                             vdwioffsetptr0+vdwjidx0B,
394                                             vdwioffsetptr0+vdwjidx0C,
395                                             vdwioffsetptr0+vdwjidx0D,
396                                             &c6_00,&c12_00);
397
398             /* Calculate table index by multiplying r with table scale and truncate to integer */
399             rt               = _mm256_mul_pd(r00,vftabscale);
400             vfitab           = _mm256_cvttpd_epi32(rt);
401             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
402             vfitab           = _mm_slli_epi32(vfitab,3);
403
404             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
405             isaprod          = _mm256_mul_pd(isai0,isaj0);
406             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
407             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
408
409             /* Calculate generalized born table index - this is a separate table from the normal one,
410              * but we use the same procedure by multiplying r with scale and truncating to integer.
411              */
412             rt               = _mm256_mul_pd(r00,gbscale);
413             gbitab           = _mm256_cvttpd_epi32(rt);
414             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
415             gbitab           = _mm_slli_epi32(gbitab,2);
416             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
417             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
418             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
419             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
420             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
421             Heps             = _mm256_mul_pd(gbeps,H);
422             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
423             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
424             vgb              = _mm256_mul_pd(gbqqfactor,VV);
425
426             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
427             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
428             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
429             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
430             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
431             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
432             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
433             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
434             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
435             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
436             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
437                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
438             velec            = _mm256_mul_pd(qq00,rinv00);
439             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
440
441             /* CUBIC SPLINE TABLE DISPERSION */
442             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
443             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
444             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
445             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
446             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
447             Heps             = _mm256_mul_pd(vfeps,H);
448             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
449             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
450             vvdw6            = _mm256_mul_pd(c6_00,VV);
451             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
452             fvdw6            = _mm256_mul_pd(c6_00,FF);
453
454             /* CUBIC SPLINE TABLE REPULSION */
455             vfitab           = _mm_add_epi32(vfitab,ifour);
456             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
457             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
458             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
459             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
460             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
461             Heps             = _mm256_mul_pd(vfeps,H);
462             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
463             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
464             vvdw12           = _mm256_mul_pd(c12_00,VV);
465             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
466             fvdw12           = _mm256_mul_pd(c12_00,FF);
467             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
468             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
469
470             /* Update potential sum for this i atom from the interaction with this j atom. */
471             velec            = _mm256_andnot_pd(dummy_mask,velec);
472             velecsum         = _mm256_add_pd(velecsum,velec);
473             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
474             vgbsum           = _mm256_add_pd(vgbsum,vgb);
475             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
476             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
477
478             fscal            = _mm256_add_pd(felec,fvdw);
479
480             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
481
482             /* Calculate temporary vectorial force */
483             tx               = _mm256_mul_pd(fscal,dx00);
484             ty               = _mm256_mul_pd(fscal,dy00);
485             tz               = _mm256_mul_pd(fscal,dz00);
486
487             /* Update vectorial force */
488             fix0             = _mm256_add_pd(fix0,tx);
489             fiy0             = _mm256_add_pd(fiy0,ty);
490             fiz0             = _mm256_add_pd(fiz0,tz);
491
492             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
493             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
494             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
495             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
496             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
497
498             /* Inner loop uses 92 flops */
499         }
500
501         /* End of innermost loop */
502
503         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
504                                                  f+i_coord_offset,fshift+i_shift_offset);
505
506         ggid                        = gid[iidx];
507         /* Update potential energies */
508         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
509         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
510         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
511         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
512         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
513
514         /* Increment number of inner iterations */
515         inneriter                  += j_index_end - j_index_start;
516
517         /* Outer loop uses 10 flops */
518     }
519
520     /* Increment number of outer iterations */
521     outeriter        += nri;
522
523     /* Update outer/inner flops */
524
525     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
526 }
527 /*
528  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_double
529  * Electrostatics interaction: GeneralizedBorn
530  * VdW interaction:            CubicSplineTable
531  * Geometry:                   Particle-Particle
532  * Calculate force/pot:        Force
533  */
534 void
535 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_double
536                     (t_nblist                    * gmx_restrict       nlist,
537                      rvec                        * gmx_restrict          xx,
538                      rvec                        * gmx_restrict          ff,
539                      struct t_forcerec           * gmx_restrict          fr,
540                      t_mdatoms                   * gmx_restrict     mdatoms,
541                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
542                      t_nrnb                      * gmx_restrict        nrnb)
543 {
544     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
545      * just 0 for non-waters.
546      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
547      * jnr indices corresponding to data put in the four positions in the SIMD register.
548      */
549     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
550     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
551     int              jnrA,jnrB,jnrC,jnrD;
552     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
553     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
554     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
555     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
556     real             rcutoff_scalar;
557     real             *shiftvec,*fshift,*x,*f;
558     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
559     real             scratch[4*DIM];
560     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
561     real *           vdwioffsetptr0;
562     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
563     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
564     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
565     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
566     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
567     real             *charge;
568     __m128i          gbitab;
569     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
570     __m256d          minushalf = _mm256_set1_pd(-0.5);
571     real             *invsqrta,*dvda,*gbtab;
572     int              nvdwtype;
573     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
574     int              *vdwtype;
575     real             *vdwparam;
576     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
577     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
578     __m128i          vfitab;
579     __m128i          ifour       = _mm_set1_epi32(4);
580     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
581     real             *vftab;
582     __m256d          dummy_mask,cutoff_mask;
583     __m128           tmpmask0,tmpmask1;
584     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
585     __m256d          one     = _mm256_set1_pd(1.0);
586     __m256d          two     = _mm256_set1_pd(2.0);
587     x                = xx[0];
588     f                = ff[0];
589
590     nri              = nlist->nri;
591     iinr             = nlist->iinr;
592     jindex           = nlist->jindex;
593     jjnr             = nlist->jjnr;
594     shiftidx         = nlist->shift;
595     gid              = nlist->gid;
596     shiftvec         = fr->shift_vec[0];
597     fshift           = fr->fshift[0];
598     facel            = _mm256_set1_pd(fr->ic->epsfac);
599     charge           = mdatoms->chargeA;
600     nvdwtype         = fr->ntype;
601     vdwparam         = fr->nbfp;
602     vdwtype          = mdatoms->typeA;
603
604     vftab            = kernel_data->table_vdw->data;
605     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
606
607     invsqrta         = fr->invsqrta;
608     dvda             = fr->dvda;
609     gbtabscale       = _mm256_set1_pd(fr->gbtab->scale);
610     gbtab            = fr->gbtab->data;
611     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
612
613     /* Avoid stupid compiler warnings */
614     jnrA = jnrB = jnrC = jnrD = 0;
615     j_coord_offsetA = 0;
616     j_coord_offsetB = 0;
617     j_coord_offsetC = 0;
618     j_coord_offsetD = 0;
619
620     outeriter        = 0;
621     inneriter        = 0;
622
623     for(iidx=0;iidx<4*DIM;iidx++)
624     {
625         scratch[iidx] = 0.0;
626     }
627
628     /* Start outer loop over neighborlists */
629     for(iidx=0; iidx<nri; iidx++)
630     {
631         /* Load shift vector for this list */
632         i_shift_offset   = DIM*shiftidx[iidx];
633
634         /* Load limits for loop over neighbors */
635         j_index_start    = jindex[iidx];
636         j_index_end      = jindex[iidx+1];
637
638         /* Get outer coordinate index */
639         inr              = iinr[iidx];
640         i_coord_offset   = DIM*inr;
641
642         /* Load i particle coords and add shift vector */
643         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
644
645         fix0             = _mm256_setzero_pd();
646         fiy0             = _mm256_setzero_pd();
647         fiz0             = _mm256_setzero_pd();
648
649         /* Load parameters for i particles */
650         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
651         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
652         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
653
654         dvdasum          = _mm256_setzero_pd();
655
656         /* Start inner kernel loop */
657         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
658         {
659
660             /* Get j neighbor index, and coordinate index */
661             jnrA             = jjnr[jidx];
662             jnrB             = jjnr[jidx+1];
663             jnrC             = jjnr[jidx+2];
664             jnrD             = jjnr[jidx+3];
665             j_coord_offsetA  = DIM*jnrA;
666             j_coord_offsetB  = DIM*jnrB;
667             j_coord_offsetC  = DIM*jnrC;
668             j_coord_offsetD  = DIM*jnrD;
669
670             /* load j atom coordinates */
671             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
672                                                  x+j_coord_offsetC,x+j_coord_offsetD,
673                                                  &jx0,&jy0,&jz0);
674
675             /* Calculate displacement vector */
676             dx00             = _mm256_sub_pd(ix0,jx0);
677             dy00             = _mm256_sub_pd(iy0,jy0);
678             dz00             = _mm256_sub_pd(iz0,jz0);
679
680             /* Calculate squared distance and things based on it */
681             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
682
683             rinv00           = avx256_invsqrt_d(rsq00);
684
685             /* Load parameters for j particles */
686             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
687                                                                  charge+jnrC+0,charge+jnrD+0);
688             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
689                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
690             vdwjidx0A        = 2*vdwtype[jnrA+0];
691             vdwjidx0B        = 2*vdwtype[jnrB+0];
692             vdwjidx0C        = 2*vdwtype[jnrC+0];
693             vdwjidx0D        = 2*vdwtype[jnrD+0];
694
695             /**************************
696              * CALCULATE INTERACTIONS *
697              **************************/
698
699             r00              = _mm256_mul_pd(rsq00,rinv00);
700
701             /* Compute parameters for interactions between i and j atoms */
702             qq00             = _mm256_mul_pd(iq0,jq0);
703             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
704                                             vdwioffsetptr0+vdwjidx0B,
705                                             vdwioffsetptr0+vdwjidx0C,
706                                             vdwioffsetptr0+vdwjidx0D,
707                                             &c6_00,&c12_00);
708
709             /* Calculate table index by multiplying r with table scale and truncate to integer */
710             rt               = _mm256_mul_pd(r00,vftabscale);
711             vfitab           = _mm256_cvttpd_epi32(rt);
712             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
713             vfitab           = _mm_slli_epi32(vfitab,3);
714
715             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
716             isaprod          = _mm256_mul_pd(isai0,isaj0);
717             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
718             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
719
720             /* Calculate generalized born table index - this is a separate table from the normal one,
721              * but we use the same procedure by multiplying r with scale and truncating to integer.
722              */
723             rt               = _mm256_mul_pd(r00,gbscale);
724             gbitab           = _mm256_cvttpd_epi32(rt);
725             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
726             gbitab           = _mm_slli_epi32(gbitab,2);
727             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
728             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
729             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
730             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
731             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
732             Heps             = _mm256_mul_pd(gbeps,H);
733             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
734             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
735             vgb              = _mm256_mul_pd(gbqqfactor,VV);
736
737             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
738             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
739             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
740             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
741             fjptrA           = dvda+jnrA;
742             fjptrB           = dvda+jnrB;
743             fjptrC           = dvda+jnrC;
744             fjptrD           = dvda+jnrD;
745             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
746                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
747             velec            = _mm256_mul_pd(qq00,rinv00);
748             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
749
750             /* CUBIC SPLINE TABLE DISPERSION */
751             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
752             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
753             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
754             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
755             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
756             Heps             = _mm256_mul_pd(vfeps,H);
757             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
758             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
759             fvdw6            = _mm256_mul_pd(c6_00,FF);
760
761             /* CUBIC SPLINE TABLE REPULSION */
762             vfitab           = _mm_add_epi32(vfitab,ifour);
763             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
764             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
765             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
766             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
767             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
768             Heps             = _mm256_mul_pd(vfeps,H);
769             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
770             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
771             fvdw12           = _mm256_mul_pd(c12_00,FF);
772             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
773
774             fscal            = _mm256_add_pd(felec,fvdw);
775
776             /* Calculate temporary vectorial force */
777             tx               = _mm256_mul_pd(fscal,dx00);
778             ty               = _mm256_mul_pd(fscal,dy00);
779             tz               = _mm256_mul_pd(fscal,dz00);
780
781             /* Update vectorial force */
782             fix0             = _mm256_add_pd(fix0,tx);
783             fiy0             = _mm256_add_pd(fiy0,ty);
784             fiz0             = _mm256_add_pd(fiz0,tz);
785
786             fjptrA             = f+j_coord_offsetA;
787             fjptrB             = f+j_coord_offsetB;
788             fjptrC             = f+j_coord_offsetC;
789             fjptrD             = f+j_coord_offsetD;
790             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
791
792             /* Inner loop uses 81 flops */
793         }
794
795         if(jidx<j_index_end)
796         {
797
798             /* Get j neighbor index, and coordinate index */
799             jnrlistA         = jjnr[jidx];
800             jnrlistB         = jjnr[jidx+1];
801             jnrlistC         = jjnr[jidx+2];
802             jnrlistD         = jjnr[jidx+3];
803             /* Sign of each element will be negative for non-real atoms.
804              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
805              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
806              */
807             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
808
809             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
810             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
811             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
812
813             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
814             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
815             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
816             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
817             j_coord_offsetA  = DIM*jnrA;
818             j_coord_offsetB  = DIM*jnrB;
819             j_coord_offsetC  = DIM*jnrC;
820             j_coord_offsetD  = DIM*jnrD;
821
822             /* load j atom coordinates */
823             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
824                                                  x+j_coord_offsetC,x+j_coord_offsetD,
825                                                  &jx0,&jy0,&jz0);
826
827             /* Calculate displacement vector */
828             dx00             = _mm256_sub_pd(ix0,jx0);
829             dy00             = _mm256_sub_pd(iy0,jy0);
830             dz00             = _mm256_sub_pd(iz0,jz0);
831
832             /* Calculate squared distance and things based on it */
833             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
834
835             rinv00           = avx256_invsqrt_d(rsq00);
836
837             /* Load parameters for j particles */
838             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
839                                                                  charge+jnrC+0,charge+jnrD+0);
840             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
841                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
842             vdwjidx0A        = 2*vdwtype[jnrA+0];
843             vdwjidx0B        = 2*vdwtype[jnrB+0];
844             vdwjidx0C        = 2*vdwtype[jnrC+0];
845             vdwjidx0D        = 2*vdwtype[jnrD+0];
846
847             /**************************
848              * CALCULATE INTERACTIONS *
849              **************************/
850
851             r00              = _mm256_mul_pd(rsq00,rinv00);
852             r00              = _mm256_andnot_pd(dummy_mask,r00);
853
854             /* Compute parameters for interactions between i and j atoms */
855             qq00             = _mm256_mul_pd(iq0,jq0);
856             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
857                                             vdwioffsetptr0+vdwjidx0B,
858                                             vdwioffsetptr0+vdwjidx0C,
859                                             vdwioffsetptr0+vdwjidx0D,
860                                             &c6_00,&c12_00);
861
862             /* Calculate table index by multiplying r with table scale and truncate to integer */
863             rt               = _mm256_mul_pd(r00,vftabscale);
864             vfitab           = _mm256_cvttpd_epi32(rt);
865             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
866             vfitab           = _mm_slli_epi32(vfitab,3);
867
868             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
869             isaprod          = _mm256_mul_pd(isai0,isaj0);
870             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
871             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
872
873             /* Calculate generalized born table index - this is a separate table from the normal one,
874              * but we use the same procedure by multiplying r with scale and truncating to integer.
875              */
876             rt               = _mm256_mul_pd(r00,gbscale);
877             gbitab           = _mm256_cvttpd_epi32(rt);
878             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
879             gbitab           = _mm_slli_epi32(gbitab,2);
880             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
881             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
882             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
883             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
884             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
885             Heps             = _mm256_mul_pd(gbeps,H);
886             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
887             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
888             vgb              = _mm256_mul_pd(gbqqfactor,VV);
889
890             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
891             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
892             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
893             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
894             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
895             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
896             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
897             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
898             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
899             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
900             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
901                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
902             velec            = _mm256_mul_pd(qq00,rinv00);
903             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
904
905             /* CUBIC SPLINE TABLE DISPERSION */
906             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
907             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
908             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
909             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
910             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
911             Heps             = _mm256_mul_pd(vfeps,H);
912             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
913             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
914             fvdw6            = _mm256_mul_pd(c6_00,FF);
915
916             /* CUBIC SPLINE TABLE REPULSION */
917             vfitab           = _mm_add_epi32(vfitab,ifour);
918             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
919             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
920             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
921             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
922             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
923             Heps             = _mm256_mul_pd(vfeps,H);
924             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
925             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
926             fvdw12           = _mm256_mul_pd(c12_00,FF);
927             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
928
929             fscal            = _mm256_add_pd(felec,fvdw);
930
931             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
932
933             /* Calculate temporary vectorial force */
934             tx               = _mm256_mul_pd(fscal,dx00);
935             ty               = _mm256_mul_pd(fscal,dy00);
936             tz               = _mm256_mul_pd(fscal,dz00);
937
938             /* Update vectorial force */
939             fix0             = _mm256_add_pd(fix0,tx);
940             fiy0             = _mm256_add_pd(fiy0,ty);
941             fiz0             = _mm256_add_pd(fiz0,tz);
942
943             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
944             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
945             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
946             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
947             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
948
949             /* Inner loop uses 82 flops */
950         }
951
952         /* End of innermost loop */
953
954         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
955                                                  f+i_coord_offset,fshift+i_shift_offset);
956
957         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
958         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
959
960         /* Increment number of inner iterations */
961         inneriter                  += j_index_end - j_index_start;
962
963         /* Outer loop uses 7 flops */
964     }
965
966     /* Increment number of outer iterations */
967     outeriter        += nri;
968
969     /* Update outer/inner flops */
970
971     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
972 }