Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     __m128i          gbitab;
78     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
79     __m256d          minushalf = _mm256_set1_pd(-0.5);
80     real             *invsqrta,*dvda,*gbtab;
81     int              nvdwtype;
82     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
83     int              *vdwtype;
84     real             *vdwparam;
85     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
86     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
87     __m128i          vfitab;
88     __m128i          ifour       = _mm_set1_epi32(4);
89     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
90     real             *vftab;
91     __m256d          dummy_mask,cutoff_mask;
92     __m128           tmpmask0,tmpmask1;
93     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
94     __m256d          one     = _mm256_set1_pd(1.0);
95     __m256d          two     = _mm256_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm256_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
115
116     invsqrta         = fr->invsqrta;
117     dvda             = fr->dvda;
118     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
119     gbtab            = fr->gbtab.data;
120     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm256_setzero_pd();
155         fiy0             = _mm256_setzero_pd();
156         fiz0             = _mm256_setzero_pd();
157
158         /* Load parameters for i particles */
159         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
160         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
161         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         velecsum         = _mm256_setzero_pd();
165         vgbsum           = _mm256_setzero_pd();
166         vvdwsum          = _mm256_setzero_pd();
167         dvdasum          = _mm256_setzero_pd();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             jnrC             = jjnr[jidx+2];
177             jnrD             = jjnr[jidx+3];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180             j_coord_offsetC  = DIM*jnrC;
181             j_coord_offsetD  = DIM*jnrD;
182
183             /* load j atom coordinates */
184             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                                  x+j_coord_offsetC,x+j_coord_offsetD,
186                                                  &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm256_sub_pd(ix0,jx0);
190             dy00             = _mm256_sub_pd(iy0,jy0);
191             dz00             = _mm256_sub_pd(iz0,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
195
196             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
197
198             /* Load parameters for j particles */
199             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
200                                                                  charge+jnrC+0,charge+jnrD+0);
201             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
202                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
203             vdwjidx0A        = 2*vdwtype[jnrA+0];
204             vdwjidx0B        = 2*vdwtype[jnrB+0];
205             vdwjidx0C        = 2*vdwtype[jnrC+0];
206             vdwjidx0D        = 2*vdwtype[jnrD+0];
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             r00              = _mm256_mul_pd(rsq00,rinv00);
213
214             /* Compute parameters for interactions between i and j atoms */
215             qq00             = _mm256_mul_pd(iq0,jq0);
216             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
217                                             vdwioffsetptr0+vdwjidx0B,
218                                             vdwioffsetptr0+vdwjidx0C,
219                                             vdwioffsetptr0+vdwjidx0D,
220                                             &c6_00,&c12_00);
221
222             /* Calculate table index by multiplying r with table scale and truncate to integer */
223             rt               = _mm256_mul_pd(r00,vftabscale);
224             vfitab           = _mm256_cvttpd_epi32(rt);
225             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
226             vfitab           = _mm_slli_epi32(vfitab,3);
227
228             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
229             isaprod          = _mm256_mul_pd(isai0,isaj0);
230             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
231             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
232
233             /* Calculate generalized born table index - this is a separate table from the normal one,
234              * but we use the same procedure by multiplying r with scale and truncating to integer.
235              */
236             rt               = _mm256_mul_pd(r00,gbscale);
237             gbitab           = _mm256_cvttpd_epi32(rt);
238             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
239             gbitab           = _mm_slli_epi32(gbitab,2);
240             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
241             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
242             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
243             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
244             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
245             Heps             = _mm256_mul_pd(gbeps,H);
246             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
247             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
248             vgb              = _mm256_mul_pd(gbqqfactor,VV);
249
250             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
251             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
252             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
253             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
254             fjptrA           = dvda+jnrA;
255             fjptrB           = dvda+jnrB;
256             fjptrC           = dvda+jnrC;
257             fjptrD           = dvda+jnrD;
258             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
259                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
260             velec            = _mm256_mul_pd(qq00,rinv00);
261             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
262
263             /* CUBIC SPLINE TABLE DISPERSION */
264             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
265             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
266             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
267             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
268             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
269             Heps             = _mm256_mul_pd(vfeps,H);
270             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
271             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
272             vvdw6            = _mm256_mul_pd(c6_00,VV);
273             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
274             fvdw6            = _mm256_mul_pd(c6_00,FF);
275
276             /* CUBIC SPLINE TABLE REPULSION */
277             vfitab           = _mm_add_epi32(vfitab,ifour);
278             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
279             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
280             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
281             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
282             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
283             Heps             = _mm256_mul_pd(vfeps,H);
284             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
285             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
286             vvdw12           = _mm256_mul_pd(c12_00,VV);
287             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
288             fvdw12           = _mm256_mul_pd(c12_00,FF);
289             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
290             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             velecsum         = _mm256_add_pd(velecsum,velec);
294             vgbsum           = _mm256_add_pd(vgbsum,vgb);
295             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
296
297             fscal            = _mm256_add_pd(felec,fvdw);
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm256_mul_pd(fscal,dx00);
301             ty               = _mm256_mul_pd(fscal,dy00);
302             tz               = _mm256_mul_pd(fscal,dz00);
303
304             /* Update vectorial force */
305             fix0             = _mm256_add_pd(fix0,tx);
306             fiy0             = _mm256_add_pd(fiy0,ty);
307             fiz0             = _mm256_add_pd(fiz0,tz);
308
309             fjptrA             = f+j_coord_offsetA;
310             fjptrB             = f+j_coord_offsetB;
311             fjptrC             = f+j_coord_offsetC;
312             fjptrD             = f+j_coord_offsetD;
313             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
314
315             /* Inner loop uses 91 flops */
316         }
317
318         if(jidx<j_index_end)
319         {
320
321             /* Get j neighbor index, and coordinate index */
322             jnrlistA         = jjnr[jidx];
323             jnrlistB         = jjnr[jidx+1];
324             jnrlistC         = jjnr[jidx+2];
325             jnrlistD         = jjnr[jidx+3];
326             /* Sign of each element will be negative for non-real atoms.
327              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
328              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
329              */
330             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
331
332             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
333             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
334             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
335
336             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
337             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
338             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
339             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
340             j_coord_offsetA  = DIM*jnrA;
341             j_coord_offsetB  = DIM*jnrB;
342             j_coord_offsetC  = DIM*jnrC;
343             j_coord_offsetD  = DIM*jnrD;
344
345             /* load j atom coordinates */
346             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
347                                                  x+j_coord_offsetC,x+j_coord_offsetD,
348                                                  &jx0,&jy0,&jz0);
349
350             /* Calculate displacement vector */
351             dx00             = _mm256_sub_pd(ix0,jx0);
352             dy00             = _mm256_sub_pd(iy0,jy0);
353             dz00             = _mm256_sub_pd(iz0,jz0);
354
355             /* Calculate squared distance and things based on it */
356             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
357
358             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
359
360             /* Load parameters for j particles */
361             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
362                                                                  charge+jnrC+0,charge+jnrD+0);
363             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
364                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
365             vdwjidx0A        = 2*vdwtype[jnrA+0];
366             vdwjidx0B        = 2*vdwtype[jnrB+0];
367             vdwjidx0C        = 2*vdwtype[jnrC+0];
368             vdwjidx0D        = 2*vdwtype[jnrD+0];
369
370             /**************************
371              * CALCULATE INTERACTIONS *
372              **************************/
373
374             r00              = _mm256_mul_pd(rsq00,rinv00);
375             r00              = _mm256_andnot_pd(dummy_mask,r00);
376
377             /* Compute parameters for interactions between i and j atoms */
378             qq00             = _mm256_mul_pd(iq0,jq0);
379             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
380                                             vdwioffsetptr0+vdwjidx0B,
381                                             vdwioffsetptr0+vdwjidx0C,
382                                             vdwioffsetptr0+vdwjidx0D,
383                                             &c6_00,&c12_00);
384
385             /* Calculate table index by multiplying r with table scale and truncate to integer */
386             rt               = _mm256_mul_pd(r00,vftabscale);
387             vfitab           = _mm256_cvttpd_epi32(rt);
388             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
389             vfitab           = _mm_slli_epi32(vfitab,3);
390
391             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
392             isaprod          = _mm256_mul_pd(isai0,isaj0);
393             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
394             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
395
396             /* Calculate generalized born table index - this is a separate table from the normal one,
397              * but we use the same procedure by multiplying r with scale and truncating to integer.
398              */
399             rt               = _mm256_mul_pd(r00,gbscale);
400             gbitab           = _mm256_cvttpd_epi32(rt);
401             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
402             gbitab           = _mm_slli_epi32(gbitab,2);
403             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
404             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
405             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
406             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
407             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
408             Heps             = _mm256_mul_pd(gbeps,H);
409             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
410             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
411             vgb              = _mm256_mul_pd(gbqqfactor,VV);
412
413             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
414             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
415             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
416             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
417             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
418             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
419             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
420             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
421             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
422             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
423                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
424             velec            = _mm256_mul_pd(qq00,rinv00);
425             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
426
427             /* CUBIC SPLINE TABLE DISPERSION */
428             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
429             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
430             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
431             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
432             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
433             Heps             = _mm256_mul_pd(vfeps,H);
434             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
435             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
436             vvdw6            = _mm256_mul_pd(c6_00,VV);
437             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
438             fvdw6            = _mm256_mul_pd(c6_00,FF);
439
440             /* CUBIC SPLINE TABLE REPULSION */
441             vfitab           = _mm_add_epi32(vfitab,ifour);
442             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
443             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
444             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
445             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
446             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
447             Heps             = _mm256_mul_pd(vfeps,H);
448             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
449             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
450             vvdw12           = _mm256_mul_pd(c12_00,VV);
451             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
452             fvdw12           = _mm256_mul_pd(c12_00,FF);
453             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
454             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
455
456             /* Update potential sum for this i atom from the interaction with this j atom. */
457             velec            = _mm256_andnot_pd(dummy_mask,velec);
458             velecsum         = _mm256_add_pd(velecsum,velec);
459             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
460             vgbsum           = _mm256_add_pd(vgbsum,vgb);
461             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
462             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
463
464             fscal            = _mm256_add_pd(felec,fvdw);
465
466             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
467
468             /* Calculate temporary vectorial force */
469             tx               = _mm256_mul_pd(fscal,dx00);
470             ty               = _mm256_mul_pd(fscal,dy00);
471             tz               = _mm256_mul_pd(fscal,dz00);
472
473             /* Update vectorial force */
474             fix0             = _mm256_add_pd(fix0,tx);
475             fiy0             = _mm256_add_pd(fiy0,ty);
476             fiz0             = _mm256_add_pd(fiz0,tz);
477
478             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
479             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
480             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
481             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
482             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
483
484             /* Inner loop uses 92 flops */
485         }
486
487         /* End of innermost loop */
488
489         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
490                                                  f+i_coord_offset,fshift+i_shift_offset);
491
492         ggid                        = gid[iidx];
493         /* Update potential energies */
494         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
495         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
496         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
497         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
498         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
499
500         /* Increment number of inner iterations */
501         inneriter                  += j_index_end - j_index_start;
502
503         /* Outer loop uses 10 flops */
504     }
505
506     /* Increment number of outer iterations */
507     outeriter        += nri;
508
509     /* Update outer/inner flops */
510
511     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
512 }
513 /*
514  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_double
515  * Electrostatics interaction: GeneralizedBorn
516  * VdW interaction:            CubicSplineTable
517  * Geometry:                   Particle-Particle
518  * Calculate force/pot:        Force
519  */
520 void
521 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_double
522                     (t_nblist * gmx_restrict                nlist,
523                      rvec * gmx_restrict                    xx,
524                      rvec * gmx_restrict                    ff,
525                      t_forcerec * gmx_restrict              fr,
526                      t_mdatoms * gmx_restrict               mdatoms,
527                      nb_kernel_data_t * gmx_restrict        kernel_data,
528                      t_nrnb * gmx_restrict                  nrnb)
529 {
530     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
531      * just 0 for non-waters.
532      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
533      * jnr indices corresponding to data put in the four positions in the SIMD register.
534      */
535     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
536     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
537     int              jnrA,jnrB,jnrC,jnrD;
538     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
539     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
540     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
541     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
542     real             rcutoff_scalar;
543     real             *shiftvec,*fshift,*x,*f;
544     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
545     real             scratch[4*DIM];
546     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
547     real *           vdwioffsetptr0;
548     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
549     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
550     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
551     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
552     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
553     real             *charge;
554     __m128i          gbitab;
555     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
556     __m256d          minushalf = _mm256_set1_pd(-0.5);
557     real             *invsqrta,*dvda,*gbtab;
558     int              nvdwtype;
559     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
560     int              *vdwtype;
561     real             *vdwparam;
562     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
563     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
564     __m128i          vfitab;
565     __m128i          ifour       = _mm_set1_epi32(4);
566     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
567     real             *vftab;
568     __m256d          dummy_mask,cutoff_mask;
569     __m128           tmpmask0,tmpmask1;
570     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
571     __m256d          one     = _mm256_set1_pd(1.0);
572     __m256d          two     = _mm256_set1_pd(2.0);
573     x                = xx[0];
574     f                = ff[0];
575
576     nri              = nlist->nri;
577     iinr             = nlist->iinr;
578     jindex           = nlist->jindex;
579     jjnr             = nlist->jjnr;
580     shiftidx         = nlist->shift;
581     gid              = nlist->gid;
582     shiftvec         = fr->shift_vec[0];
583     fshift           = fr->fshift[0];
584     facel            = _mm256_set1_pd(fr->epsfac);
585     charge           = mdatoms->chargeA;
586     nvdwtype         = fr->ntype;
587     vdwparam         = fr->nbfp;
588     vdwtype          = mdatoms->typeA;
589
590     vftab            = kernel_data->table_vdw->data;
591     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
592
593     invsqrta         = fr->invsqrta;
594     dvda             = fr->dvda;
595     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
596     gbtab            = fr->gbtab.data;
597     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
598
599     /* Avoid stupid compiler warnings */
600     jnrA = jnrB = jnrC = jnrD = 0;
601     j_coord_offsetA = 0;
602     j_coord_offsetB = 0;
603     j_coord_offsetC = 0;
604     j_coord_offsetD = 0;
605
606     outeriter        = 0;
607     inneriter        = 0;
608
609     for(iidx=0;iidx<4*DIM;iidx++)
610     {
611         scratch[iidx] = 0.0;
612     }
613
614     /* Start outer loop over neighborlists */
615     for(iidx=0; iidx<nri; iidx++)
616     {
617         /* Load shift vector for this list */
618         i_shift_offset   = DIM*shiftidx[iidx];
619
620         /* Load limits for loop over neighbors */
621         j_index_start    = jindex[iidx];
622         j_index_end      = jindex[iidx+1];
623
624         /* Get outer coordinate index */
625         inr              = iinr[iidx];
626         i_coord_offset   = DIM*inr;
627
628         /* Load i particle coords and add shift vector */
629         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
630
631         fix0             = _mm256_setzero_pd();
632         fiy0             = _mm256_setzero_pd();
633         fiz0             = _mm256_setzero_pd();
634
635         /* Load parameters for i particles */
636         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
637         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
638         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
639
640         dvdasum          = _mm256_setzero_pd();
641
642         /* Start inner kernel loop */
643         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
644         {
645
646             /* Get j neighbor index, and coordinate index */
647             jnrA             = jjnr[jidx];
648             jnrB             = jjnr[jidx+1];
649             jnrC             = jjnr[jidx+2];
650             jnrD             = jjnr[jidx+3];
651             j_coord_offsetA  = DIM*jnrA;
652             j_coord_offsetB  = DIM*jnrB;
653             j_coord_offsetC  = DIM*jnrC;
654             j_coord_offsetD  = DIM*jnrD;
655
656             /* load j atom coordinates */
657             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
658                                                  x+j_coord_offsetC,x+j_coord_offsetD,
659                                                  &jx0,&jy0,&jz0);
660
661             /* Calculate displacement vector */
662             dx00             = _mm256_sub_pd(ix0,jx0);
663             dy00             = _mm256_sub_pd(iy0,jy0);
664             dz00             = _mm256_sub_pd(iz0,jz0);
665
666             /* Calculate squared distance and things based on it */
667             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
668
669             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
670
671             /* Load parameters for j particles */
672             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
673                                                                  charge+jnrC+0,charge+jnrD+0);
674             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
675                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
676             vdwjidx0A        = 2*vdwtype[jnrA+0];
677             vdwjidx0B        = 2*vdwtype[jnrB+0];
678             vdwjidx0C        = 2*vdwtype[jnrC+0];
679             vdwjidx0D        = 2*vdwtype[jnrD+0];
680
681             /**************************
682              * CALCULATE INTERACTIONS *
683              **************************/
684
685             r00              = _mm256_mul_pd(rsq00,rinv00);
686
687             /* Compute parameters for interactions between i and j atoms */
688             qq00             = _mm256_mul_pd(iq0,jq0);
689             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
690                                             vdwioffsetptr0+vdwjidx0B,
691                                             vdwioffsetptr0+vdwjidx0C,
692                                             vdwioffsetptr0+vdwjidx0D,
693                                             &c6_00,&c12_00);
694
695             /* Calculate table index by multiplying r with table scale and truncate to integer */
696             rt               = _mm256_mul_pd(r00,vftabscale);
697             vfitab           = _mm256_cvttpd_epi32(rt);
698             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
699             vfitab           = _mm_slli_epi32(vfitab,3);
700
701             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
702             isaprod          = _mm256_mul_pd(isai0,isaj0);
703             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
704             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
705
706             /* Calculate generalized born table index - this is a separate table from the normal one,
707              * but we use the same procedure by multiplying r with scale and truncating to integer.
708              */
709             rt               = _mm256_mul_pd(r00,gbscale);
710             gbitab           = _mm256_cvttpd_epi32(rt);
711             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
712             gbitab           = _mm_slli_epi32(gbitab,2);
713             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
714             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
715             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
716             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
717             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
718             Heps             = _mm256_mul_pd(gbeps,H);
719             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
720             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
721             vgb              = _mm256_mul_pd(gbqqfactor,VV);
722
723             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
724             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
725             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
726             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
727             fjptrA           = dvda+jnrA;
728             fjptrB           = dvda+jnrB;
729             fjptrC           = dvda+jnrC;
730             fjptrD           = dvda+jnrD;
731             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
732                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
733             velec            = _mm256_mul_pd(qq00,rinv00);
734             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
735
736             /* CUBIC SPLINE TABLE DISPERSION */
737             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
738             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
739             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
740             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
741             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
742             Heps             = _mm256_mul_pd(vfeps,H);
743             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
744             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
745             fvdw6            = _mm256_mul_pd(c6_00,FF);
746
747             /* CUBIC SPLINE TABLE REPULSION */
748             vfitab           = _mm_add_epi32(vfitab,ifour);
749             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
750             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
751             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
752             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
753             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
754             Heps             = _mm256_mul_pd(vfeps,H);
755             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
756             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
757             fvdw12           = _mm256_mul_pd(c12_00,FF);
758             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
759
760             fscal            = _mm256_add_pd(felec,fvdw);
761
762             /* Calculate temporary vectorial force */
763             tx               = _mm256_mul_pd(fscal,dx00);
764             ty               = _mm256_mul_pd(fscal,dy00);
765             tz               = _mm256_mul_pd(fscal,dz00);
766
767             /* Update vectorial force */
768             fix0             = _mm256_add_pd(fix0,tx);
769             fiy0             = _mm256_add_pd(fiy0,ty);
770             fiz0             = _mm256_add_pd(fiz0,tz);
771
772             fjptrA             = f+j_coord_offsetA;
773             fjptrB             = f+j_coord_offsetB;
774             fjptrC             = f+j_coord_offsetC;
775             fjptrD             = f+j_coord_offsetD;
776             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
777
778             /* Inner loop uses 81 flops */
779         }
780
781         if(jidx<j_index_end)
782         {
783
784             /* Get j neighbor index, and coordinate index */
785             jnrlistA         = jjnr[jidx];
786             jnrlistB         = jjnr[jidx+1];
787             jnrlistC         = jjnr[jidx+2];
788             jnrlistD         = jjnr[jidx+3];
789             /* Sign of each element will be negative for non-real atoms.
790              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
791              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
792              */
793             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
794
795             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
796             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
797             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
798
799             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
800             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
801             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
802             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
803             j_coord_offsetA  = DIM*jnrA;
804             j_coord_offsetB  = DIM*jnrB;
805             j_coord_offsetC  = DIM*jnrC;
806             j_coord_offsetD  = DIM*jnrD;
807
808             /* load j atom coordinates */
809             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
810                                                  x+j_coord_offsetC,x+j_coord_offsetD,
811                                                  &jx0,&jy0,&jz0);
812
813             /* Calculate displacement vector */
814             dx00             = _mm256_sub_pd(ix0,jx0);
815             dy00             = _mm256_sub_pd(iy0,jy0);
816             dz00             = _mm256_sub_pd(iz0,jz0);
817
818             /* Calculate squared distance and things based on it */
819             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
820
821             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
822
823             /* Load parameters for j particles */
824             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
825                                                                  charge+jnrC+0,charge+jnrD+0);
826             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
827                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
828             vdwjidx0A        = 2*vdwtype[jnrA+0];
829             vdwjidx0B        = 2*vdwtype[jnrB+0];
830             vdwjidx0C        = 2*vdwtype[jnrC+0];
831             vdwjidx0D        = 2*vdwtype[jnrD+0];
832
833             /**************************
834              * CALCULATE INTERACTIONS *
835              **************************/
836
837             r00              = _mm256_mul_pd(rsq00,rinv00);
838             r00              = _mm256_andnot_pd(dummy_mask,r00);
839
840             /* Compute parameters for interactions between i and j atoms */
841             qq00             = _mm256_mul_pd(iq0,jq0);
842             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
843                                             vdwioffsetptr0+vdwjidx0B,
844                                             vdwioffsetptr0+vdwjidx0C,
845                                             vdwioffsetptr0+vdwjidx0D,
846                                             &c6_00,&c12_00);
847
848             /* Calculate table index by multiplying r with table scale and truncate to integer */
849             rt               = _mm256_mul_pd(r00,vftabscale);
850             vfitab           = _mm256_cvttpd_epi32(rt);
851             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
852             vfitab           = _mm_slli_epi32(vfitab,3);
853
854             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
855             isaprod          = _mm256_mul_pd(isai0,isaj0);
856             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
857             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
858
859             /* Calculate generalized born table index - this is a separate table from the normal one,
860              * but we use the same procedure by multiplying r with scale and truncating to integer.
861              */
862             rt               = _mm256_mul_pd(r00,gbscale);
863             gbitab           = _mm256_cvttpd_epi32(rt);
864             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
865             gbitab           = _mm_slli_epi32(gbitab,2);
866             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
867             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
868             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
869             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
870             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
871             Heps             = _mm256_mul_pd(gbeps,H);
872             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
873             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
874             vgb              = _mm256_mul_pd(gbqqfactor,VV);
875
876             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
877             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
878             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
879             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
880             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
881             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
882             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
883             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
884             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
885             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
886                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
887             velec            = _mm256_mul_pd(qq00,rinv00);
888             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
889
890             /* CUBIC SPLINE TABLE DISPERSION */
891             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
892             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
893             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
894             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
895             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
896             Heps             = _mm256_mul_pd(vfeps,H);
897             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
898             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
899             fvdw6            = _mm256_mul_pd(c6_00,FF);
900
901             /* CUBIC SPLINE TABLE REPULSION */
902             vfitab           = _mm_add_epi32(vfitab,ifour);
903             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
904             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
905             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
906             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
907             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
908             Heps             = _mm256_mul_pd(vfeps,H);
909             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
910             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
911             fvdw12           = _mm256_mul_pd(c12_00,FF);
912             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
913
914             fscal            = _mm256_add_pd(felec,fvdw);
915
916             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
917
918             /* Calculate temporary vectorial force */
919             tx               = _mm256_mul_pd(fscal,dx00);
920             ty               = _mm256_mul_pd(fscal,dy00);
921             tz               = _mm256_mul_pd(fscal,dz00);
922
923             /* Update vectorial force */
924             fix0             = _mm256_add_pd(fix0,tx);
925             fiy0             = _mm256_add_pd(fiy0,ty);
926             fiz0             = _mm256_add_pd(fiz0,tz);
927
928             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
929             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
930             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
931             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
932             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
933
934             /* Inner loop uses 82 flops */
935         }
936
937         /* End of innermost loop */
938
939         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
940                                                  f+i_coord_offset,fshift+i_shift_offset);
941
942         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
943         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
944
945         /* Increment number of inner iterations */
946         inneriter                  += j_index_end - j_index_start;
947
948         /* Outer loop uses 7 flops */
949     }
950
951     /* Increment number of outer iterations */
952     outeriter        += nri;
953
954     /* Update outer/inner flops */
955
956     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
957 }