Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwNone_GeomW4W4_avx_256_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4W4_VF_avx_256_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water4-Water4
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwNone_GeomW4W4_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr1;
84     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     real *           vdwioffsetptr2;
86     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     real *           vdwioffsetptr3;
88     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
89     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
90     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
91     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
92     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
93     int              vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
94     __m256d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
95     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
96     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
97     __m256d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
98     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
99     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
100     __m256d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
101     __m256d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
102     __m256d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
103     __m256d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
104     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
105     real             *charge;
106     __m128i          ewitab;
107     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
109     real             *ewtab;
110     __m256d          dummy_mask,cutoff_mask;
111     __m128           tmpmask0,tmpmask1;
112     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
113     __m256d          one     = _mm256_set1_pd(1.0);
114     __m256d          two     = _mm256_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm256_set1_pd(fr->ic->epsfac);
127     charge           = mdatoms->chargeA;
128
129     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
130     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
131     beta2            = _mm256_mul_pd(beta,beta);
132     beta3            = _mm256_mul_pd(beta,beta2);
133
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
141     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
142     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
143
144     jq1              = _mm256_set1_pd(charge[inr+1]);
145     jq2              = _mm256_set1_pd(charge[inr+2]);
146     jq3              = _mm256_set1_pd(charge[inr+3]);
147     qq11             = _mm256_mul_pd(iq1,jq1);
148     qq12             = _mm256_mul_pd(iq1,jq2);
149     qq13             = _mm256_mul_pd(iq1,jq3);
150     qq21             = _mm256_mul_pd(iq2,jq1);
151     qq22             = _mm256_mul_pd(iq2,jq2);
152     qq23             = _mm256_mul_pd(iq2,jq3);
153     qq31             = _mm256_mul_pd(iq3,jq1);
154     qq32             = _mm256_mul_pd(iq3,jq2);
155     qq33             = _mm256_mul_pd(iq3,jq3);
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = jnrC = jnrD = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161     j_coord_offsetC = 0;
162     j_coord_offsetD = 0;
163
164     outeriter        = 0;
165     inneriter        = 0;
166
167     for(iidx=0;iidx<4*DIM;iidx++)
168     {
169         scratch[iidx] = 0.0;
170     }
171
172     /* Start outer loop over neighborlists */
173     for(iidx=0; iidx<nri; iidx++)
174     {
175         /* Load shift vector for this list */
176         i_shift_offset   = DIM*shiftidx[iidx];
177
178         /* Load limits for loop over neighbors */
179         j_index_start    = jindex[iidx];
180         j_index_end      = jindex[iidx+1];
181
182         /* Get outer coordinate index */
183         inr              = iinr[iidx];
184         i_coord_offset   = DIM*inr;
185
186         /* Load i particle coords and add shift vector */
187         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
188                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
189
190         fix1             = _mm256_setzero_pd();
191         fiy1             = _mm256_setzero_pd();
192         fiz1             = _mm256_setzero_pd();
193         fix2             = _mm256_setzero_pd();
194         fiy2             = _mm256_setzero_pd();
195         fiz2             = _mm256_setzero_pd();
196         fix3             = _mm256_setzero_pd();
197         fiy3             = _mm256_setzero_pd();
198         fiz3             = _mm256_setzero_pd();
199
200         /* Reset potential sums */
201         velecsum         = _mm256_setzero_pd();
202
203         /* Start inner kernel loop */
204         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
205         {
206
207             /* Get j neighbor index, and coordinate index */
208             jnrA             = jjnr[jidx];
209             jnrB             = jjnr[jidx+1];
210             jnrC             = jjnr[jidx+2];
211             jnrD             = jjnr[jidx+3];
212             j_coord_offsetA  = DIM*jnrA;
213             j_coord_offsetB  = DIM*jnrB;
214             j_coord_offsetC  = DIM*jnrC;
215             j_coord_offsetD  = DIM*jnrD;
216
217             /* load j atom coordinates */
218             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
219                                                  x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
220                                                  &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
221
222             /* Calculate displacement vector */
223             dx11             = _mm256_sub_pd(ix1,jx1);
224             dy11             = _mm256_sub_pd(iy1,jy1);
225             dz11             = _mm256_sub_pd(iz1,jz1);
226             dx12             = _mm256_sub_pd(ix1,jx2);
227             dy12             = _mm256_sub_pd(iy1,jy2);
228             dz12             = _mm256_sub_pd(iz1,jz2);
229             dx13             = _mm256_sub_pd(ix1,jx3);
230             dy13             = _mm256_sub_pd(iy1,jy3);
231             dz13             = _mm256_sub_pd(iz1,jz3);
232             dx21             = _mm256_sub_pd(ix2,jx1);
233             dy21             = _mm256_sub_pd(iy2,jy1);
234             dz21             = _mm256_sub_pd(iz2,jz1);
235             dx22             = _mm256_sub_pd(ix2,jx2);
236             dy22             = _mm256_sub_pd(iy2,jy2);
237             dz22             = _mm256_sub_pd(iz2,jz2);
238             dx23             = _mm256_sub_pd(ix2,jx3);
239             dy23             = _mm256_sub_pd(iy2,jy3);
240             dz23             = _mm256_sub_pd(iz2,jz3);
241             dx31             = _mm256_sub_pd(ix3,jx1);
242             dy31             = _mm256_sub_pd(iy3,jy1);
243             dz31             = _mm256_sub_pd(iz3,jz1);
244             dx32             = _mm256_sub_pd(ix3,jx2);
245             dy32             = _mm256_sub_pd(iy3,jy2);
246             dz32             = _mm256_sub_pd(iz3,jz2);
247             dx33             = _mm256_sub_pd(ix3,jx3);
248             dy33             = _mm256_sub_pd(iy3,jy3);
249             dz33             = _mm256_sub_pd(iz3,jz3);
250
251             /* Calculate squared distance and things based on it */
252             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
253             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
254             rsq13            = gmx_mm256_calc_rsq_pd(dx13,dy13,dz13);
255             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
256             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
257             rsq23            = gmx_mm256_calc_rsq_pd(dx23,dy23,dz23);
258             rsq31            = gmx_mm256_calc_rsq_pd(dx31,dy31,dz31);
259             rsq32            = gmx_mm256_calc_rsq_pd(dx32,dy32,dz32);
260             rsq33            = gmx_mm256_calc_rsq_pd(dx33,dy33,dz33);
261
262             rinv11           = avx256_invsqrt_d(rsq11);
263             rinv12           = avx256_invsqrt_d(rsq12);
264             rinv13           = avx256_invsqrt_d(rsq13);
265             rinv21           = avx256_invsqrt_d(rsq21);
266             rinv22           = avx256_invsqrt_d(rsq22);
267             rinv23           = avx256_invsqrt_d(rsq23);
268             rinv31           = avx256_invsqrt_d(rsq31);
269             rinv32           = avx256_invsqrt_d(rsq32);
270             rinv33           = avx256_invsqrt_d(rsq33);
271
272             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
273             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
274             rinvsq13         = _mm256_mul_pd(rinv13,rinv13);
275             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
276             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
277             rinvsq23         = _mm256_mul_pd(rinv23,rinv23);
278             rinvsq31         = _mm256_mul_pd(rinv31,rinv31);
279             rinvsq32         = _mm256_mul_pd(rinv32,rinv32);
280             rinvsq33         = _mm256_mul_pd(rinv33,rinv33);
281
282             fjx1             = _mm256_setzero_pd();
283             fjy1             = _mm256_setzero_pd();
284             fjz1             = _mm256_setzero_pd();
285             fjx2             = _mm256_setzero_pd();
286             fjy2             = _mm256_setzero_pd();
287             fjz2             = _mm256_setzero_pd();
288             fjx3             = _mm256_setzero_pd();
289             fjy3             = _mm256_setzero_pd();
290             fjz3             = _mm256_setzero_pd();
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             r11              = _mm256_mul_pd(rsq11,rinv11);
297
298             /* EWALD ELECTROSTATICS */
299
300             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
301             ewrt             = _mm256_mul_pd(r11,ewtabscale);
302             ewitab           = _mm256_cvttpd_epi32(ewrt);
303             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
304             ewitab           = _mm_slli_epi32(ewitab,2);
305             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
306             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
307             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
308             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
309             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
310             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
311             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
312             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(rinv11,velec));
313             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velecsum         = _mm256_add_pd(velecsum,velec);
317
318             fscal            = felec;
319
320             /* Calculate temporary vectorial force */
321             tx               = _mm256_mul_pd(fscal,dx11);
322             ty               = _mm256_mul_pd(fscal,dy11);
323             tz               = _mm256_mul_pd(fscal,dz11);
324
325             /* Update vectorial force */
326             fix1             = _mm256_add_pd(fix1,tx);
327             fiy1             = _mm256_add_pd(fiy1,ty);
328             fiz1             = _mm256_add_pd(fiz1,tz);
329
330             fjx1             = _mm256_add_pd(fjx1,tx);
331             fjy1             = _mm256_add_pd(fjy1,ty);
332             fjz1             = _mm256_add_pd(fjz1,tz);
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             r12              = _mm256_mul_pd(rsq12,rinv12);
339
340             /* EWALD ELECTROSTATICS */
341
342             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
343             ewrt             = _mm256_mul_pd(r12,ewtabscale);
344             ewitab           = _mm256_cvttpd_epi32(ewrt);
345             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
346             ewitab           = _mm_slli_epi32(ewitab,2);
347             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
348             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
349             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
350             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
351             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
352             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
353             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
354             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(rinv12,velec));
355             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velecsum         = _mm256_add_pd(velecsum,velec);
359
360             fscal            = felec;
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm256_mul_pd(fscal,dx12);
364             ty               = _mm256_mul_pd(fscal,dy12);
365             tz               = _mm256_mul_pd(fscal,dz12);
366
367             /* Update vectorial force */
368             fix1             = _mm256_add_pd(fix1,tx);
369             fiy1             = _mm256_add_pd(fiy1,ty);
370             fiz1             = _mm256_add_pd(fiz1,tz);
371
372             fjx2             = _mm256_add_pd(fjx2,tx);
373             fjy2             = _mm256_add_pd(fjy2,ty);
374             fjz2             = _mm256_add_pd(fjz2,tz);
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             r13              = _mm256_mul_pd(rsq13,rinv13);
381
382             /* EWALD ELECTROSTATICS */
383
384             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
385             ewrt             = _mm256_mul_pd(r13,ewtabscale);
386             ewitab           = _mm256_cvttpd_epi32(ewrt);
387             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
388             ewitab           = _mm_slli_epi32(ewitab,2);
389             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
390             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
391             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
392             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
393             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
394             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
395             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
396             velec            = _mm256_mul_pd(qq13,_mm256_sub_pd(rinv13,velec));
397             felec            = _mm256_mul_pd(_mm256_mul_pd(qq13,rinv13),_mm256_sub_pd(rinvsq13,felec));
398
399             /* Update potential sum for this i atom from the interaction with this j atom. */
400             velecsum         = _mm256_add_pd(velecsum,velec);
401
402             fscal            = felec;
403
404             /* Calculate temporary vectorial force */
405             tx               = _mm256_mul_pd(fscal,dx13);
406             ty               = _mm256_mul_pd(fscal,dy13);
407             tz               = _mm256_mul_pd(fscal,dz13);
408
409             /* Update vectorial force */
410             fix1             = _mm256_add_pd(fix1,tx);
411             fiy1             = _mm256_add_pd(fiy1,ty);
412             fiz1             = _mm256_add_pd(fiz1,tz);
413
414             fjx3             = _mm256_add_pd(fjx3,tx);
415             fjy3             = _mm256_add_pd(fjy3,ty);
416             fjz3             = _mm256_add_pd(fjz3,tz);
417
418             /**************************
419              * CALCULATE INTERACTIONS *
420              **************************/
421
422             r21              = _mm256_mul_pd(rsq21,rinv21);
423
424             /* EWALD ELECTROSTATICS */
425
426             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
427             ewrt             = _mm256_mul_pd(r21,ewtabscale);
428             ewitab           = _mm256_cvttpd_epi32(ewrt);
429             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
430             ewitab           = _mm_slli_epi32(ewitab,2);
431             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
432             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
433             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
434             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
435             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
436             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
437             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
438             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(rinv21,velec));
439             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
440
441             /* Update potential sum for this i atom from the interaction with this j atom. */
442             velecsum         = _mm256_add_pd(velecsum,velec);
443
444             fscal            = felec;
445
446             /* Calculate temporary vectorial force */
447             tx               = _mm256_mul_pd(fscal,dx21);
448             ty               = _mm256_mul_pd(fscal,dy21);
449             tz               = _mm256_mul_pd(fscal,dz21);
450
451             /* Update vectorial force */
452             fix2             = _mm256_add_pd(fix2,tx);
453             fiy2             = _mm256_add_pd(fiy2,ty);
454             fiz2             = _mm256_add_pd(fiz2,tz);
455
456             fjx1             = _mm256_add_pd(fjx1,tx);
457             fjy1             = _mm256_add_pd(fjy1,ty);
458             fjz1             = _mm256_add_pd(fjz1,tz);
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             r22              = _mm256_mul_pd(rsq22,rinv22);
465
466             /* EWALD ELECTROSTATICS */
467
468             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
469             ewrt             = _mm256_mul_pd(r22,ewtabscale);
470             ewitab           = _mm256_cvttpd_epi32(ewrt);
471             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
472             ewitab           = _mm_slli_epi32(ewitab,2);
473             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
474             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
475             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
476             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
477             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
478             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
479             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
480             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(rinv22,velec));
481             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
482
483             /* Update potential sum for this i atom from the interaction with this j atom. */
484             velecsum         = _mm256_add_pd(velecsum,velec);
485
486             fscal            = felec;
487
488             /* Calculate temporary vectorial force */
489             tx               = _mm256_mul_pd(fscal,dx22);
490             ty               = _mm256_mul_pd(fscal,dy22);
491             tz               = _mm256_mul_pd(fscal,dz22);
492
493             /* Update vectorial force */
494             fix2             = _mm256_add_pd(fix2,tx);
495             fiy2             = _mm256_add_pd(fiy2,ty);
496             fiz2             = _mm256_add_pd(fiz2,tz);
497
498             fjx2             = _mm256_add_pd(fjx2,tx);
499             fjy2             = _mm256_add_pd(fjy2,ty);
500             fjz2             = _mm256_add_pd(fjz2,tz);
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             r23              = _mm256_mul_pd(rsq23,rinv23);
507
508             /* EWALD ELECTROSTATICS */
509
510             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
511             ewrt             = _mm256_mul_pd(r23,ewtabscale);
512             ewitab           = _mm256_cvttpd_epi32(ewrt);
513             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
514             ewitab           = _mm_slli_epi32(ewitab,2);
515             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
516             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
517             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
518             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
519             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
520             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
521             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
522             velec            = _mm256_mul_pd(qq23,_mm256_sub_pd(rinv23,velec));
523             felec            = _mm256_mul_pd(_mm256_mul_pd(qq23,rinv23),_mm256_sub_pd(rinvsq23,felec));
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             velecsum         = _mm256_add_pd(velecsum,velec);
527
528             fscal            = felec;
529
530             /* Calculate temporary vectorial force */
531             tx               = _mm256_mul_pd(fscal,dx23);
532             ty               = _mm256_mul_pd(fscal,dy23);
533             tz               = _mm256_mul_pd(fscal,dz23);
534
535             /* Update vectorial force */
536             fix2             = _mm256_add_pd(fix2,tx);
537             fiy2             = _mm256_add_pd(fiy2,ty);
538             fiz2             = _mm256_add_pd(fiz2,tz);
539
540             fjx3             = _mm256_add_pd(fjx3,tx);
541             fjy3             = _mm256_add_pd(fjy3,ty);
542             fjz3             = _mm256_add_pd(fjz3,tz);
543
544             /**************************
545              * CALCULATE INTERACTIONS *
546              **************************/
547
548             r31              = _mm256_mul_pd(rsq31,rinv31);
549
550             /* EWALD ELECTROSTATICS */
551
552             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
553             ewrt             = _mm256_mul_pd(r31,ewtabscale);
554             ewitab           = _mm256_cvttpd_epi32(ewrt);
555             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
556             ewitab           = _mm_slli_epi32(ewitab,2);
557             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
558             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
559             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
560             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
561             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
562             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
563             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
564             velec            = _mm256_mul_pd(qq31,_mm256_sub_pd(rinv31,velec));
565             felec            = _mm256_mul_pd(_mm256_mul_pd(qq31,rinv31),_mm256_sub_pd(rinvsq31,felec));
566
567             /* Update potential sum for this i atom from the interaction with this j atom. */
568             velecsum         = _mm256_add_pd(velecsum,velec);
569
570             fscal            = felec;
571
572             /* Calculate temporary vectorial force */
573             tx               = _mm256_mul_pd(fscal,dx31);
574             ty               = _mm256_mul_pd(fscal,dy31);
575             tz               = _mm256_mul_pd(fscal,dz31);
576
577             /* Update vectorial force */
578             fix3             = _mm256_add_pd(fix3,tx);
579             fiy3             = _mm256_add_pd(fiy3,ty);
580             fiz3             = _mm256_add_pd(fiz3,tz);
581
582             fjx1             = _mm256_add_pd(fjx1,tx);
583             fjy1             = _mm256_add_pd(fjy1,ty);
584             fjz1             = _mm256_add_pd(fjz1,tz);
585
586             /**************************
587              * CALCULATE INTERACTIONS *
588              **************************/
589
590             r32              = _mm256_mul_pd(rsq32,rinv32);
591
592             /* EWALD ELECTROSTATICS */
593
594             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
595             ewrt             = _mm256_mul_pd(r32,ewtabscale);
596             ewitab           = _mm256_cvttpd_epi32(ewrt);
597             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
598             ewitab           = _mm_slli_epi32(ewitab,2);
599             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
600             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
601             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
602             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
603             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
604             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
605             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
606             velec            = _mm256_mul_pd(qq32,_mm256_sub_pd(rinv32,velec));
607             felec            = _mm256_mul_pd(_mm256_mul_pd(qq32,rinv32),_mm256_sub_pd(rinvsq32,felec));
608
609             /* Update potential sum for this i atom from the interaction with this j atom. */
610             velecsum         = _mm256_add_pd(velecsum,velec);
611
612             fscal            = felec;
613
614             /* Calculate temporary vectorial force */
615             tx               = _mm256_mul_pd(fscal,dx32);
616             ty               = _mm256_mul_pd(fscal,dy32);
617             tz               = _mm256_mul_pd(fscal,dz32);
618
619             /* Update vectorial force */
620             fix3             = _mm256_add_pd(fix3,tx);
621             fiy3             = _mm256_add_pd(fiy3,ty);
622             fiz3             = _mm256_add_pd(fiz3,tz);
623
624             fjx2             = _mm256_add_pd(fjx2,tx);
625             fjy2             = _mm256_add_pd(fjy2,ty);
626             fjz2             = _mm256_add_pd(fjz2,tz);
627
628             /**************************
629              * CALCULATE INTERACTIONS *
630              **************************/
631
632             r33              = _mm256_mul_pd(rsq33,rinv33);
633
634             /* EWALD ELECTROSTATICS */
635
636             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
637             ewrt             = _mm256_mul_pd(r33,ewtabscale);
638             ewitab           = _mm256_cvttpd_epi32(ewrt);
639             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
640             ewitab           = _mm_slli_epi32(ewitab,2);
641             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
642             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
643             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
644             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
645             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
646             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
647             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
648             velec            = _mm256_mul_pd(qq33,_mm256_sub_pd(rinv33,velec));
649             felec            = _mm256_mul_pd(_mm256_mul_pd(qq33,rinv33),_mm256_sub_pd(rinvsq33,felec));
650
651             /* Update potential sum for this i atom from the interaction with this j atom. */
652             velecsum         = _mm256_add_pd(velecsum,velec);
653
654             fscal            = felec;
655
656             /* Calculate temporary vectorial force */
657             tx               = _mm256_mul_pd(fscal,dx33);
658             ty               = _mm256_mul_pd(fscal,dy33);
659             tz               = _mm256_mul_pd(fscal,dz33);
660
661             /* Update vectorial force */
662             fix3             = _mm256_add_pd(fix3,tx);
663             fiy3             = _mm256_add_pd(fiy3,ty);
664             fiz3             = _mm256_add_pd(fiz3,tz);
665
666             fjx3             = _mm256_add_pd(fjx3,tx);
667             fjy3             = _mm256_add_pd(fjy3,ty);
668             fjz3             = _mm256_add_pd(fjz3,tz);
669
670             fjptrA             = f+j_coord_offsetA;
671             fjptrB             = f+j_coord_offsetB;
672             fjptrC             = f+j_coord_offsetC;
673             fjptrD             = f+j_coord_offsetD;
674
675             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
676                                                       fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
677
678             /* Inner loop uses 369 flops */
679         }
680
681         if(jidx<j_index_end)
682         {
683
684             /* Get j neighbor index, and coordinate index */
685             jnrlistA         = jjnr[jidx];
686             jnrlistB         = jjnr[jidx+1];
687             jnrlistC         = jjnr[jidx+2];
688             jnrlistD         = jjnr[jidx+3];
689             /* Sign of each element will be negative for non-real atoms.
690              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
691              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
692              */
693             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
694
695             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
696             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
697             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
698
699             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
700             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
701             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
702             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
703             j_coord_offsetA  = DIM*jnrA;
704             j_coord_offsetB  = DIM*jnrB;
705             j_coord_offsetC  = DIM*jnrC;
706             j_coord_offsetD  = DIM*jnrD;
707
708             /* load j atom coordinates */
709             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
710                                                  x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
711                                                  &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
712
713             /* Calculate displacement vector */
714             dx11             = _mm256_sub_pd(ix1,jx1);
715             dy11             = _mm256_sub_pd(iy1,jy1);
716             dz11             = _mm256_sub_pd(iz1,jz1);
717             dx12             = _mm256_sub_pd(ix1,jx2);
718             dy12             = _mm256_sub_pd(iy1,jy2);
719             dz12             = _mm256_sub_pd(iz1,jz2);
720             dx13             = _mm256_sub_pd(ix1,jx3);
721             dy13             = _mm256_sub_pd(iy1,jy3);
722             dz13             = _mm256_sub_pd(iz1,jz3);
723             dx21             = _mm256_sub_pd(ix2,jx1);
724             dy21             = _mm256_sub_pd(iy2,jy1);
725             dz21             = _mm256_sub_pd(iz2,jz1);
726             dx22             = _mm256_sub_pd(ix2,jx2);
727             dy22             = _mm256_sub_pd(iy2,jy2);
728             dz22             = _mm256_sub_pd(iz2,jz2);
729             dx23             = _mm256_sub_pd(ix2,jx3);
730             dy23             = _mm256_sub_pd(iy2,jy3);
731             dz23             = _mm256_sub_pd(iz2,jz3);
732             dx31             = _mm256_sub_pd(ix3,jx1);
733             dy31             = _mm256_sub_pd(iy3,jy1);
734             dz31             = _mm256_sub_pd(iz3,jz1);
735             dx32             = _mm256_sub_pd(ix3,jx2);
736             dy32             = _mm256_sub_pd(iy3,jy2);
737             dz32             = _mm256_sub_pd(iz3,jz2);
738             dx33             = _mm256_sub_pd(ix3,jx3);
739             dy33             = _mm256_sub_pd(iy3,jy3);
740             dz33             = _mm256_sub_pd(iz3,jz3);
741
742             /* Calculate squared distance and things based on it */
743             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
744             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
745             rsq13            = gmx_mm256_calc_rsq_pd(dx13,dy13,dz13);
746             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
747             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
748             rsq23            = gmx_mm256_calc_rsq_pd(dx23,dy23,dz23);
749             rsq31            = gmx_mm256_calc_rsq_pd(dx31,dy31,dz31);
750             rsq32            = gmx_mm256_calc_rsq_pd(dx32,dy32,dz32);
751             rsq33            = gmx_mm256_calc_rsq_pd(dx33,dy33,dz33);
752
753             rinv11           = avx256_invsqrt_d(rsq11);
754             rinv12           = avx256_invsqrt_d(rsq12);
755             rinv13           = avx256_invsqrt_d(rsq13);
756             rinv21           = avx256_invsqrt_d(rsq21);
757             rinv22           = avx256_invsqrt_d(rsq22);
758             rinv23           = avx256_invsqrt_d(rsq23);
759             rinv31           = avx256_invsqrt_d(rsq31);
760             rinv32           = avx256_invsqrt_d(rsq32);
761             rinv33           = avx256_invsqrt_d(rsq33);
762
763             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
764             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
765             rinvsq13         = _mm256_mul_pd(rinv13,rinv13);
766             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
767             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
768             rinvsq23         = _mm256_mul_pd(rinv23,rinv23);
769             rinvsq31         = _mm256_mul_pd(rinv31,rinv31);
770             rinvsq32         = _mm256_mul_pd(rinv32,rinv32);
771             rinvsq33         = _mm256_mul_pd(rinv33,rinv33);
772
773             fjx1             = _mm256_setzero_pd();
774             fjy1             = _mm256_setzero_pd();
775             fjz1             = _mm256_setzero_pd();
776             fjx2             = _mm256_setzero_pd();
777             fjy2             = _mm256_setzero_pd();
778             fjz2             = _mm256_setzero_pd();
779             fjx3             = _mm256_setzero_pd();
780             fjy3             = _mm256_setzero_pd();
781             fjz3             = _mm256_setzero_pd();
782
783             /**************************
784              * CALCULATE INTERACTIONS *
785              **************************/
786
787             r11              = _mm256_mul_pd(rsq11,rinv11);
788             r11              = _mm256_andnot_pd(dummy_mask,r11);
789
790             /* EWALD ELECTROSTATICS */
791
792             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
793             ewrt             = _mm256_mul_pd(r11,ewtabscale);
794             ewitab           = _mm256_cvttpd_epi32(ewrt);
795             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
796             ewitab           = _mm_slli_epi32(ewitab,2);
797             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
798             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
799             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
800             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
801             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
802             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
803             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
804             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(rinv11,velec));
805             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
806
807             /* Update potential sum for this i atom from the interaction with this j atom. */
808             velec            = _mm256_andnot_pd(dummy_mask,velec);
809             velecsum         = _mm256_add_pd(velecsum,velec);
810
811             fscal            = felec;
812
813             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
814
815             /* Calculate temporary vectorial force */
816             tx               = _mm256_mul_pd(fscal,dx11);
817             ty               = _mm256_mul_pd(fscal,dy11);
818             tz               = _mm256_mul_pd(fscal,dz11);
819
820             /* Update vectorial force */
821             fix1             = _mm256_add_pd(fix1,tx);
822             fiy1             = _mm256_add_pd(fiy1,ty);
823             fiz1             = _mm256_add_pd(fiz1,tz);
824
825             fjx1             = _mm256_add_pd(fjx1,tx);
826             fjy1             = _mm256_add_pd(fjy1,ty);
827             fjz1             = _mm256_add_pd(fjz1,tz);
828
829             /**************************
830              * CALCULATE INTERACTIONS *
831              **************************/
832
833             r12              = _mm256_mul_pd(rsq12,rinv12);
834             r12              = _mm256_andnot_pd(dummy_mask,r12);
835
836             /* EWALD ELECTROSTATICS */
837
838             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
839             ewrt             = _mm256_mul_pd(r12,ewtabscale);
840             ewitab           = _mm256_cvttpd_epi32(ewrt);
841             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
842             ewitab           = _mm_slli_epi32(ewitab,2);
843             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
844             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
845             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
846             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
847             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
848             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
849             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
850             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(rinv12,velec));
851             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
852
853             /* Update potential sum for this i atom from the interaction with this j atom. */
854             velec            = _mm256_andnot_pd(dummy_mask,velec);
855             velecsum         = _mm256_add_pd(velecsum,velec);
856
857             fscal            = felec;
858
859             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
860
861             /* Calculate temporary vectorial force */
862             tx               = _mm256_mul_pd(fscal,dx12);
863             ty               = _mm256_mul_pd(fscal,dy12);
864             tz               = _mm256_mul_pd(fscal,dz12);
865
866             /* Update vectorial force */
867             fix1             = _mm256_add_pd(fix1,tx);
868             fiy1             = _mm256_add_pd(fiy1,ty);
869             fiz1             = _mm256_add_pd(fiz1,tz);
870
871             fjx2             = _mm256_add_pd(fjx2,tx);
872             fjy2             = _mm256_add_pd(fjy2,ty);
873             fjz2             = _mm256_add_pd(fjz2,tz);
874
875             /**************************
876              * CALCULATE INTERACTIONS *
877              **************************/
878
879             r13              = _mm256_mul_pd(rsq13,rinv13);
880             r13              = _mm256_andnot_pd(dummy_mask,r13);
881
882             /* EWALD ELECTROSTATICS */
883
884             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
885             ewrt             = _mm256_mul_pd(r13,ewtabscale);
886             ewitab           = _mm256_cvttpd_epi32(ewrt);
887             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
888             ewitab           = _mm_slli_epi32(ewitab,2);
889             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
890             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
891             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
892             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
893             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
894             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
895             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
896             velec            = _mm256_mul_pd(qq13,_mm256_sub_pd(rinv13,velec));
897             felec            = _mm256_mul_pd(_mm256_mul_pd(qq13,rinv13),_mm256_sub_pd(rinvsq13,felec));
898
899             /* Update potential sum for this i atom from the interaction with this j atom. */
900             velec            = _mm256_andnot_pd(dummy_mask,velec);
901             velecsum         = _mm256_add_pd(velecsum,velec);
902
903             fscal            = felec;
904
905             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
906
907             /* Calculate temporary vectorial force */
908             tx               = _mm256_mul_pd(fscal,dx13);
909             ty               = _mm256_mul_pd(fscal,dy13);
910             tz               = _mm256_mul_pd(fscal,dz13);
911
912             /* Update vectorial force */
913             fix1             = _mm256_add_pd(fix1,tx);
914             fiy1             = _mm256_add_pd(fiy1,ty);
915             fiz1             = _mm256_add_pd(fiz1,tz);
916
917             fjx3             = _mm256_add_pd(fjx3,tx);
918             fjy3             = _mm256_add_pd(fjy3,ty);
919             fjz3             = _mm256_add_pd(fjz3,tz);
920
921             /**************************
922              * CALCULATE INTERACTIONS *
923              **************************/
924
925             r21              = _mm256_mul_pd(rsq21,rinv21);
926             r21              = _mm256_andnot_pd(dummy_mask,r21);
927
928             /* EWALD ELECTROSTATICS */
929
930             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
931             ewrt             = _mm256_mul_pd(r21,ewtabscale);
932             ewitab           = _mm256_cvttpd_epi32(ewrt);
933             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
934             ewitab           = _mm_slli_epi32(ewitab,2);
935             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
936             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
937             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
938             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
939             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
940             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
941             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
942             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(rinv21,velec));
943             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
944
945             /* Update potential sum for this i atom from the interaction with this j atom. */
946             velec            = _mm256_andnot_pd(dummy_mask,velec);
947             velecsum         = _mm256_add_pd(velecsum,velec);
948
949             fscal            = felec;
950
951             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
952
953             /* Calculate temporary vectorial force */
954             tx               = _mm256_mul_pd(fscal,dx21);
955             ty               = _mm256_mul_pd(fscal,dy21);
956             tz               = _mm256_mul_pd(fscal,dz21);
957
958             /* Update vectorial force */
959             fix2             = _mm256_add_pd(fix2,tx);
960             fiy2             = _mm256_add_pd(fiy2,ty);
961             fiz2             = _mm256_add_pd(fiz2,tz);
962
963             fjx1             = _mm256_add_pd(fjx1,tx);
964             fjy1             = _mm256_add_pd(fjy1,ty);
965             fjz1             = _mm256_add_pd(fjz1,tz);
966
967             /**************************
968              * CALCULATE INTERACTIONS *
969              **************************/
970
971             r22              = _mm256_mul_pd(rsq22,rinv22);
972             r22              = _mm256_andnot_pd(dummy_mask,r22);
973
974             /* EWALD ELECTROSTATICS */
975
976             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
977             ewrt             = _mm256_mul_pd(r22,ewtabscale);
978             ewitab           = _mm256_cvttpd_epi32(ewrt);
979             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
980             ewitab           = _mm_slli_epi32(ewitab,2);
981             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
982             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
983             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
984             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
985             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
986             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
987             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
988             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(rinv22,velec));
989             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
990
991             /* Update potential sum for this i atom from the interaction with this j atom. */
992             velec            = _mm256_andnot_pd(dummy_mask,velec);
993             velecsum         = _mm256_add_pd(velecsum,velec);
994
995             fscal            = felec;
996
997             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
998
999             /* Calculate temporary vectorial force */
1000             tx               = _mm256_mul_pd(fscal,dx22);
1001             ty               = _mm256_mul_pd(fscal,dy22);
1002             tz               = _mm256_mul_pd(fscal,dz22);
1003
1004             /* Update vectorial force */
1005             fix2             = _mm256_add_pd(fix2,tx);
1006             fiy2             = _mm256_add_pd(fiy2,ty);
1007             fiz2             = _mm256_add_pd(fiz2,tz);
1008
1009             fjx2             = _mm256_add_pd(fjx2,tx);
1010             fjy2             = _mm256_add_pd(fjy2,ty);
1011             fjz2             = _mm256_add_pd(fjz2,tz);
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             r23              = _mm256_mul_pd(rsq23,rinv23);
1018             r23              = _mm256_andnot_pd(dummy_mask,r23);
1019
1020             /* EWALD ELECTROSTATICS */
1021
1022             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1023             ewrt             = _mm256_mul_pd(r23,ewtabscale);
1024             ewitab           = _mm256_cvttpd_epi32(ewrt);
1025             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1026             ewitab           = _mm_slli_epi32(ewitab,2);
1027             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1028             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1029             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1030             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1031             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1032             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1033             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1034             velec            = _mm256_mul_pd(qq23,_mm256_sub_pd(rinv23,velec));
1035             felec            = _mm256_mul_pd(_mm256_mul_pd(qq23,rinv23),_mm256_sub_pd(rinvsq23,felec));
1036
1037             /* Update potential sum for this i atom from the interaction with this j atom. */
1038             velec            = _mm256_andnot_pd(dummy_mask,velec);
1039             velecsum         = _mm256_add_pd(velecsum,velec);
1040
1041             fscal            = felec;
1042
1043             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1044
1045             /* Calculate temporary vectorial force */
1046             tx               = _mm256_mul_pd(fscal,dx23);
1047             ty               = _mm256_mul_pd(fscal,dy23);
1048             tz               = _mm256_mul_pd(fscal,dz23);
1049
1050             /* Update vectorial force */
1051             fix2             = _mm256_add_pd(fix2,tx);
1052             fiy2             = _mm256_add_pd(fiy2,ty);
1053             fiz2             = _mm256_add_pd(fiz2,tz);
1054
1055             fjx3             = _mm256_add_pd(fjx3,tx);
1056             fjy3             = _mm256_add_pd(fjy3,ty);
1057             fjz3             = _mm256_add_pd(fjz3,tz);
1058
1059             /**************************
1060              * CALCULATE INTERACTIONS *
1061              **************************/
1062
1063             r31              = _mm256_mul_pd(rsq31,rinv31);
1064             r31              = _mm256_andnot_pd(dummy_mask,r31);
1065
1066             /* EWALD ELECTROSTATICS */
1067
1068             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1069             ewrt             = _mm256_mul_pd(r31,ewtabscale);
1070             ewitab           = _mm256_cvttpd_epi32(ewrt);
1071             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1072             ewitab           = _mm_slli_epi32(ewitab,2);
1073             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1074             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1075             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1076             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1077             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1078             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1079             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1080             velec            = _mm256_mul_pd(qq31,_mm256_sub_pd(rinv31,velec));
1081             felec            = _mm256_mul_pd(_mm256_mul_pd(qq31,rinv31),_mm256_sub_pd(rinvsq31,felec));
1082
1083             /* Update potential sum for this i atom from the interaction with this j atom. */
1084             velec            = _mm256_andnot_pd(dummy_mask,velec);
1085             velecsum         = _mm256_add_pd(velecsum,velec);
1086
1087             fscal            = felec;
1088
1089             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1090
1091             /* Calculate temporary vectorial force */
1092             tx               = _mm256_mul_pd(fscal,dx31);
1093             ty               = _mm256_mul_pd(fscal,dy31);
1094             tz               = _mm256_mul_pd(fscal,dz31);
1095
1096             /* Update vectorial force */
1097             fix3             = _mm256_add_pd(fix3,tx);
1098             fiy3             = _mm256_add_pd(fiy3,ty);
1099             fiz3             = _mm256_add_pd(fiz3,tz);
1100
1101             fjx1             = _mm256_add_pd(fjx1,tx);
1102             fjy1             = _mm256_add_pd(fjy1,ty);
1103             fjz1             = _mm256_add_pd(fjz1,tz);
1104
1105             /**************************
1106              * CALCULATE INTERACTIONS *
1107              **************************/
1108
1109             r32              = _mm256_mul_pd(rsq32,rinv32);
1110             r32              = _mm256_andnot_pd(dummy_mask,r32);
1111
1112             /* EWALD ELECTROSTATICS */
1113
1114             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1115             ewrt             = _mm256_mul_pd(r32,ewtabscale);
1116             ewitab           = _mm256_cvttpd_epi32(ewrt);
1117             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1118             ewitab           = _mm_slli_epi32(ewitab,2);
1119             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1120             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1121             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1122             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1123             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1124             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1125             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1126             velec            = _mm256_mul_pd(qq32,_mm256_sub_pd(rinv32,velec));
1127             felec            = _mm256_mul_pd(_mm256_mul_pd(qq32,rinv32),_mm256_sub_pd(rinvsq32,felec));
1128
1129             /* Update potential sum for this i atom from the interaction with this j atom. */
1130             velec            = _mm256_andnot_pd(dummy_mask,velec);
1131             velecsum         = _mm256_add_pd(velecsum,velec);
1132
1133             fscal            = felec;
1134
1135             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1136
1137             /* Calculate temporary vectorial force */
1138             tx               = _mm256_mul_pd(fscal,dx32);
1139             ty               = _mm256_mul_pd(fscal,dy32);
1140             tz               = _mm256_mul_pd(fscal,dz32);
1141
1142             /* Update vectorial force */
1143             fix3             = _mm256_add_pd(fix3,tx);
1144             fiy3             = _mm256_add_pd(fiy3,ty);
1145             fiz3             = _mm256_add_pd(fiz3,tz);
1146
1147             fjx2             = _mm256_add_pd(fjx2,tx);
1148             fjy2             = _mm256_add_pd(fjy2,ty);
1149             fjz2             = _mm256_add_pd(fjz2,tz);
1150
1151             /**************************
1152              * CALCULATE INTERACTIONS *
1153              **************************/
1154
1155             r33              = _mm256_mul_pd(rsq33,rinv33);
1156             r33              = _mm256_andnot_pd(dummy_mask,r33);
1157
1158             /* EWALD ELECTROSTATICS */
1159
1160             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1161             ewrt             = _mm256_mul_pd(r33,ewtabscale);
1162             ewitab           = _mm256_cvttpd_epi32(ewrt);
1163             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1164             ewitab           = _mm_slli_epi32(ewitab,2);
1165             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1166             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1167             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1168             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1169             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1170             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1171             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1172             velec            = _mm256_mul_pd(qq33,_mm256_sub_pd(rinv33,velec));
1173             felec            = _mm256_mul_pd(_mm256_mul_pd(qq33,rinv33),_mm256_sub_pd(rinvsq33,felec));
1174
1175             /* Update potential sum for this i atom from the interaction with this j atom. */
1176             velec            = _mm256_andnot_pd(dummy_mask,velec);
1177             velecsum         = _mm256_add_pd(velecsum,velec);
1178
1179             fscal            = felec;
1180
1181             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1182
1183             /* Calculate temporary vectorial force */
1184             tx               = _mm256_mul_pd(fscal,dx33);
1185             ty               = _mm256_mul_pd(fscal,dy33);
1186             tz               = _mm256_mul_pd(fscal,dz33);
1187
1188             /* Update vectorial force */
1189             fix3             = _mm256_add_pd(fix3,tx);
1190             fiy3             = _mm256_add_pd(fiy3,ty);
1191             fiz3             = _mm256_add_pd(fiz3,tz);
1192
1193             fjx3             = _mm256_add_pd(fjx3,tx);
1194             fjy3             = _mm256_add_pd(fjy3,ty);
1195             fjz3             = _mm256_add_pd(fjz3,tz);
1196
1197             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1198             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1199             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1200             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1201
1202             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
1203                                                       fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1204
1205             /* Inner loop uses 378 flops */
1206         }
1207
1208         /* End of innermost loop */
1209
1210         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1211                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1212
1213         ggid                        = gid[iidx];
1214         /* Update potential energies */
1215         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1216
1217         /* Increment number of inner iterations */
1218         inneriter                  += j_index_end - j_index_start;
1219
1220         /* Outer loop uses 19 flops */
1221     }
1222
1223     /* Increment number of outer iterations */
1224     outeriter        += nri;
1225
1226     /* Update outer/inner flops */
1227
1228     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_VF,outeriter*19 + inneriter*378);
1229 }
1230 /*
1231  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4W4_F_avx_256_double
1232  * Electrostatics interaction: Ewald
1233  * VdW interaction:            None
1234  * Geometry:                   Water4-Water4
1235  * Calculate force/pot:        Force
1236  */
1237 void
1238 nb_kernel_ElecEw_VdwNone_GeomW4W4_F_avx_256_double
1239                     (t_nblist                    * gmx_restrict       nlist,
1240                      rvec                        * gmx_restrict          xx,
1241                      rvec                        * gmx_restrict          ff,
1242                      struct t_forcerec           * gmx_restrict          fr,
1243                      t_mdatoms                   * gmx_restrict     mdatoms,
1244                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1245                      t_nrnb                      * gmx_restrict        nrnb)
1246 {
1247     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1248      * just 0 for non-waters.
1249      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
1250      * jnr indices corresponding to data put in the four positions in the SIMD register.
1251      */
1252     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1253     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1254     int              jnrA,jnrB,jnrC,jnrD;
1255     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1256     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
1257     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1258     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1259     real             rcutoff_scalar;
1260     real             *shiftvec,*fshift,*x,*f;
1261     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1262     real             scratch[4*DIM];
1263     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1264     real *           vdwioffsetptr1;
1265     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1266     real *           vdwioffsetptr2;
1267     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1268     real *           vdwioffsetptr3;
1269     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1270     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1271     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1272     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1273     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1274     int              vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
1275     __m256d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1276     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1277     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1278     __m256d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1279     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1280     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1281     __m256d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1282     __m256d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1283     __m256d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1284     __m256d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1285     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
1286     real             *charge;
1287     __m128i          ewitab;
1288     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1289     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
1290     real             *ewtab;
1291     __m256d          dummy_mask,cutoff_mask;
1292     __m128           tmpmask0,tmpmask1;
1293     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
1294     __m256d          one     = _mm256_set1_pd(1.0);
1295     __m256d          two     = _mm256_set1_pd(2.0);
1296     x                = xx[0];
1297     f                = ff[0];
1298
1299     nri              = nlist->nri;
1300     iinr             = nlist->iinr;
1301     jindex           = nlist->jindex;
1302     jjnr             = nlist->jjnr;
1303     shiftidx         = nlist->shift;
1304     gid              = nlist->gid;
1305     shiftvec         = fr->shift_vec[0];
1306     fshift           = fr->fshift[0];
1307     facel            = _mm256_set1_pd(fr->ic->epsfac);
1308     charge           = mdatoms->chargeA;
1309
1310     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
1311     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
1312     beta2            = _mm256_mul_pd(beta,beta);
1313     beta3            = _mm256_mul_pd(beta,beta2);
1314
1315     ewtab            = fr->ic->tabq_coul_F;
1316     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
1317     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
1318
1319     /* Setup water-specific parameters */
1320     inr              = nlist->iinr[0];
1321     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
1322     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
1323     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
1324
1325     jq1              = _mm256_set1_pd(charge[inr+1]);
1326     jq2              = _mm256_set1_pd(charge[inr+2]);
1327     jq3              = _mm256_set1_pd(charge[inr+3]);
1328     qq11             = _mm256_mul_pd(iq1,jq1);
1329     qq12             = _mm256_mul_pd(iq1,jq2);
1330     qq13             = _mm256_mul_pd(iq1,jq3);
1331     qq21             = _mm256_mul_pd(iq2,jq1);
1332     qq22             = _mm256_mul_pd(iq2,jq2);
1333     qq23             = _mm256_mul_pd(iq2,jq3);
1334     qq31             = _mm256_mul_pd(iq3,jq1);
1335     qq32             = _mm256_mul_pd(iq3,jq2);
1336     qq33             = _mm256_mul_pd(iq3,jq3);
1337
1338     /* Avoid stupid compiler warnings */
1339     jnrA = jnrB = jnrC = jnrD = 0;
1340     j_coord_offsetA = 0;
1341     j_coord_offsetB = 0;
1342     j_coord_offsetC = 0;
1343     j_coord_offsetD = 0;
1344
1345     outeriter        = 0;
1346     inneriter        = 0;
1347
1348     for(iidx=0;iidx<4*DIM;iidx++)
1349     {
1350         scratch[iidx] = 0.0;
1351     }
1352
1353     /* Start outer loop over neighborlists */
1354     for(iidx=0; iidx<nri; iidx++)
1355     {
1356         /* Load shift vector for this list */
1357         i_shift_offset   = DIM*shiftidx[iidx];
1358
1359         /* Load limits for loop over neighbors */
1360         j_index_start    = jindex[iidx];
1361         j_index_end      = jindex[iidx+1];
1362
1363         /* Get outer coordinate index */
1364         inr              = iinr[iidx];
1365         i_coord_offset   = DIM*inr;
1366
1367         /* Load i particle coords and add shift vector */
1368         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
1369                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1370
1371         fix1             = _mm256_setzero_pd();
1372         fiy1             = _mm256_setzero_pd();
1373         fiz1             = _mm256_setzero_pd();
1374         fix2             = _mm256_setzero_pd();
1375         fiy2             = _mm256_setzero_pd();
1376         fiz2             = _mm256_setzero_pd();
1377         fix3             = _mm256_setzero_pd();
1378         fiy3             = _mm256_setzero_pd();
1379         fiz3             = _mm256_setzero_pd();
1380
1381         /* Start inner kernel loop */
1382         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1383         {
1384
1385             /* Get j neighbor index, and coordinate index */
1386             jnrA             = jjnr[jidx];
1387             jnrB             = jjnr[jidx+1];
1388             jnrC             = jjnr[jidx+2];
1389             jnrD             = jjnr[jidx+3];
1390             j_coord_offsetA  = DIM*jnrA;
1391             j_coord_offsetB  = DIM*jnrB;
1392             j_coord_offsetC  = DIM*jnrC;
1393             j_coord_offsetD  = DIM*jnrD;
1394
1395             /* load j atom coordinates */
1396             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
1397                                                  x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
1398                                                  &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
1399
1400             /* Calculate displacement vector */
1401             dx11             = _mm256_sub_pd(ix1,jx1);
1402             dy11             = _mm256_sub_pd(iy1,jy1);
1403             dz11             = _mm256_sub_pd(iz1,jz1);
1404             dx12             = _mm256_sub_pd(ix1,jx2);
1405             dy12             = _mm256_sub_pd(iy1,jy2);
1406             dz12             = _mm256_sub_pd(iz1,jz2);
1407             dx13             = _mm256_sub_pd(ix1,jx3);
1408             dy13             = _mm256_sub_pd(iy1,jy3);
1409             dz13             = _mm256_sub_pd(iz1,jz3);
1410             dx21             = _mm256_sub_pd(ix2,jx1);
1411             dy21             = _mm256_sub_pd(iy2,jy1);
1412             dz21             = _mm256_sub_pd(iz2,jz1);
1413             dx22             = _mm256_sub_pd(ix2,jx2);
1414             dy22             = _mm256_sub_pd(iy2,jy2);
1415             dz22             = _mm256_sub_pd(iz2,jz2);
1416             dx23             = _mm256_sub_pd(ix2,jx3);
1417             dy23             = _mm256_sub_pd(iy2,jy3);
1418             dz23             = _mm256_sub_pd(iz2,jz3);
1419             dx31             = _mm256_sub_pd(ix3,jx1);
1420             dy31             = _mm256_sub_pd(iy3,jy1);
1421             dz31             = _mm256_sub_pd(iz3,jz1);
1422             dx32             = _mm256_sub_pd(ix3,jx2);
1423             dy32             = _mm256_sub_pd(iy3,jy2);
1424             dz32             = _mm256_sub_pd(iz3,jz2);
1425             dx33             = _mm256_sub_pd(ix3,jx3);
1426             dy33             = _mm256_sub_pd(iy3,jy3);
1427             dz33             = _mm256_sub_pd(iz3,jz3);
1428
1429             /* Calculate squared distance and things based on it */
1430             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
1431             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
1432             rsq13            = gmx_mm256_calc_rsq_pd(dx13,dy13,dz13);
1433             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
1434             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
1435             rsq23            = gmx_mm256_calc_rsq_pd(dx23,dy23,dz23);
1436             rsq31            = gmx_mm256_calc_rsq_pd(dx31,dy31,dz31);
1437             rsq32            = gmx_mm256_calc_rsq_pd(dx32,dy32,dz32);
1438             rsq33            = gmx_mm256_calc_rsq_pd(dx33,dy33,dz33);
1439
1440             rinv11           = avx256_invsqrt_d(rsq11);
1441             rinv12           = avx256_invsqrt_d(rsq12);
1442             rinv13           = avx256_invsqrt_d(rsq13);
1443             rinv21           = avx256_invsqrt_d(rsq21);
1444             rinv22           = avx256_invsqrt_d(rsq22);
1445             rinv23           = avx256_invsqrt_d(rsq23);
1446             rinv31           = avx256_invsqrt_d(rsq31);
1447             rinv32           = avx256_invsqrt_d(rsq32);
1448             rinv33           = avx256_invsqrt_d(rsq33);
1449
1450             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
1451             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
1452             rinvsq13         = _mm256_mul_pd(rinv13,rinv13);
1453             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
1454             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
1455             rinvsq23         = _mm256_mul_pd(rinv23,rinv23);
1456             rinvsq31         = _mm256_mul_pd(rinv31,rinv31);
1457             rinvsq32         = _mm256_mul_pd(rinv32,rinv32);
1458             rinvsq33         = _mm256_mul_pd(rinv33,rinv33);
1459
1460             fjx1             = _mm256_setzero_pd();
1461             fjy1             = _mm256_setzero_pd();
1462             fjz1             = _mm256_setzero_pd();
1463             fjx2             = _mm256_setzero_pd();
1464             fjy2             = _mm256_setzero_pd();
1465             fjz2             = _mm256_setzero_pd();
1466             fjx3             = _mm256_setzero_pd();
1467             fjy3             = _mm256_setzero_pd();
1468             fjz3             = _mm256_setzero_pd();
1469
1470             /**************************
1471              * CALCULATE INTERACTIONS *
1472              **************************/
1473
1474             r11              = _mm256_mul_pd(rsq11,rinv11);
1475
1476             /* EWALD ELECTROSTATICS */
1477
1478             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1479             ewrt             = _mm256_mul_pd(r11,ewtabscale);
1480             ewitab           = _mm256_cvttpd_epi32(ewrt);
1481             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1482             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1483                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1484                                             &ewtabF,&ewtabFn);
1485             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1486             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1487
1488             fscal            = felec;
1489
1490             /* Calculate temporary vectorial force */
1491             tx               = _mm256_mul_pd(fscal,dx11);
1492             ty               = _mm256_mul_pd(fscal,dy11);
1493             tz               = _mm256_mul_pd(fscal,dz11);
1494
1495             /* Update vectorial force */
1496             fix1             = _mm256_add_pd(fix1,tx);
1497             fiy1             = _mm256_add_pd(fiy1,ty);
1498             fiz1             = _mm256_add_pd(fiz1,tz);
1499
1500             fjx1             = _mm256_add_pd(fjx1,tx);
1501             fjy1             = _mm256_add_pd(fjy1,ty);
1502             fjz1             = _mm256_add_pd(fjz1,tz);
1503
1504             /**************************
1505              * CALCULATE INTERACTIONS *
1506              **************************/
1507
1508             r12              = _mm256_mul_pd(rsq12,rinv12);
1509
1510             /* EWALD ELECTROSTATICS */
1511
1512             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1513             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1514             ewitab           = _mm256_cvttpd_epi32(ewrt);
1515             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1516             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1517                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1518                                             &ewtabF,&ewtabFn);
1519             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1520             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1521
1522             fscal            = felec;
1523
1524             /* Calculate temporary vectorial force */
1525             tx               = _mm256_mul_pd(fscal,dx12);
1526             ty               = _mm256_mul_pd(fscal,dy12);
1527             tz               = _mm256_mul_pd(fscal,dz12);
1528
1529             /* Update vectorial force */
1530             fix1             = _mm256_add_pd(fix1,tx);
1531             fiy1             = _mm256_add_pd(fiy1,ty);
1532             fiz1             = _mm256_add_pd(fiz1,tz);
1533
1534             fjx2             = _mm256_add_pd(fjx2,tx);
1535             fjy2             = _mm256_add_pd(fjy2,ty);
1536             fjz2             = _mm256_add_pd(fjz2,tz);
1537
1538             /**************************
1539              * CALCULATE INTERACTIONS *
1540              **************************/
1541
1542             r13              = _mm256_mul_pd(rsq13,rinv13);
1543
1544             /* EWALD ELECTROSTATICS */
1545
1546             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1547             ewrt             = _mm256_mul_pd(r13,ewtabscale);
1548             ewitab           = _mm256_cvttpd_epi32(ewrt);
1549             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1550             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1551                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1552                                             &ewtabF,&ewtabFn);
1553             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1554             felec            = _mm256_mul_pd(_mm256_mul_pd(qq13,rinv13),_mm256_sub_pd(rinvsq13,felec));
1555
1556             fscal            = felec;
1557
1558             /* Calculate temporary vectorial force */
1559             tx               = _mm256_mul_pd(fscal,dx13);
1560             ty               = _mm256_mul_pd(fscal,dy13);
1561             tz               = _mm256_mul_pd(fscal,dz13);
1562
1563             /* Update vectorial force */
1564             fix1             = _mm256_add_pd(fix1,tx);
1565             fiy1             = _mm256_add_pd(fiy1,ty);
1566             fiz1             = _mm256_add_pd(fiz1,tz);
1567
1568             fjx3             = _mm256_add_pd(fjx3,tx);
1569             fjy3             = _mm256_add_pd(fjy3,ty);
1570             fjz3             = _mm256_add_pd(fjz3,tz);
1571
1572             /**************************
1573              * CALCULATE INTERACTIONS *
1574              **************************/
1575
1576             r21              = _mm256_mul_pd(rsq21,rinv21);
1577
1578             /* EWALD ELECTROSTATICS */
1579
1580             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1581             ewrt             = _mm256_mul_pd(r21,ewtabscale);
1582             ewitab           = _mm256_cvttpd_epi32(ewrt);
1583             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1584             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1585                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1586                                             &ewtabF,&ewtabFn);
1587             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1588             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
1589
1590             fscal            = felec;
1591
1592             /* Calculate temporary vectorial force */
1593             tx               = _mm256_mul_pd(fscal,dx21);
1594             ty               = _mm256_mul_pd(fscal,dy21);
1595             tz               = _mm256_mul_pd(fscal,dz21);
1596
1597             /* Update vectorial force */
1598             fix2             = _mm256_add_pd(fix2,tx);
1599             fiy2             = _mm256_add_pd(fiy2,ty);
1600             fiz2             = _mm256_add_pd(fiz2,tz);
1601
1602             fjx1             = _mm256_add_pd(fjx1,tx);
1603             fjy1             = _mm256_add_pd(fjy1,ty);
1604             fjz1             = _mm256_add_pd(fjz1,tz);
1605
1606             /**************************
1607              * CALCULATE INTERACTIONS *
1608              **************************/
1609
1610             r22              = _mm256_mul_pd(rsq22,rinv22);
1611
1612             /* EWALD ELECTROSTATICS */
1613
1614             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1615             ewrt             = _mm256_mul_pd(r22,ewtabscale);
1616             ewitab           = _mm256_cvttpd_epi32(ewrt);
1617             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1618             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1619                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1620                                             &ewtabF,&ewtabFn);
1621             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1622             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
1623
1624             fscal            = felec;
1625
1626             /* Calculate temporary vectorial force */
1627             tx               = _mm256_mul_pd(fscal,dx22);
1628             ty               = _mm256_mul_pd(fscal,dy22);
1629             tz               = _mm256_mul_pd(fscal,dz22);
1630
1631             /* Update vectorial force */
1632             fix2             = _mm256_add_pd(fix2,tx);
1633             fiy2             = _mm256_add_pd(fiy2,ty);
1634             fiz2             = _mm256_add_pd(fiz2,tz);
1635
1636             fjx2             = _mm256_add_pd(fjx2,tx);
1637             fjy2             = _mm256_add_pd(fjy2,ty);
1638             fjz2             = _mm256_add_pd(fjz2,tz);
1639
1640             /**************************
1641              * CALCULATE INTERACTIONS *
1642              **************************/
1643
1644             r23              = _mm256_mul_pd(rsq23,rinv23);
1645
1646             /* EWALD ELECTROSTATICS */
1647
1648             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1649             ewrt             = _mm256_mul_pd(r23,ewtabscale);
1650             ewitab           = _mm256_cvttpd_epi32(ewrt);
1651             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1652             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1653                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1654                                             &ewtabF,&ewtabFn);
1655             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1656             felec            = _mm256_mul_pd(_mm256_mul_pd(qq23,rinv23),_mm256_sub_pd(rinvsq23,felec));
1657
1658             fscal            = felec;
1659
1660             /* Calculate temporary vectorial force */
1661             tx               = _mm256_mul_pd(fscal,dx23);
1662             ty               = _mm256_mul_pd(fscal,dy23);
1663             tz               = _mm256_mul_pd(fscal,dz23);
1664
1665             /* Update vectorial force */
1666             fix2             = _mm256_add_pd(fix2,tx);
1667             fiy2             = _mm256_add_pd(fiy2,ty);
1668             fiz2             = _mm256_add_pd(fiz2,tz);
1669
1670             fjx3             = _mm256_add_pd(fjx3,tx);
1671             fjy3             = _mm256_add_pd(fjy3,ty);
1672             fjz3             = _mm256_add_pd(fjz3,tz);
1673
1674             /**************************
1675              * CALCULATE INTERACTIONS *
1676              **************************/
1677
1678             r31              = _mm256_mul_pd(rsq31,rinv31);
1679
1680             /* EWALD ELECTROSTATICS */
1681
1682             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1683             ewrt             = _mm256_mul_pd(r31,ewtabscale);
1684             ewitab           = _mm256_cvttpd_epi32(ewrt);
1685             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1686             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1687                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1688                                             &ewtabF,&ewtabFn);
1689             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1690             felec            = _mm256_mul_pd(_mm256_mul_pd(qq31,rinv31),_mm256_sub_pd(rinvsq31,felec));
1691
1692             fscal            = felec;
1693
1694             /* Calculate temporary vectorial force */
1695             tx               = _mm256_mul_pd(fscal,dx31);
1696             ty               = _mm256_mul_pd(fscal,dy31);
1697             tz               = _mm256_mul_pd(fscal,dz31);
1698
1699             /* Update vectorial force */
1700             fix3             = _mm256_add_pd(fix3,tx);
1701             fiy3             = _mm256_add_pd(fiy3,ty);
1702             fiz3             = _mm256_add_pd(fiz3,tz);
1703
1704             fjx1             = _mm256_add_pd(fjx1,tx);
1705             fjy1             = _mm256_add_pd(fjy1,ty);
1706             fjz1             = _mm256_add_pd(fjz1,tz);
1707
1708             /**************************
1709              * CALCULATE INTERACTIONS *
1710              **************************/
1711
1712             r32              = _mm256_mul_pd(rsq32,rinv32);
1713
1714             /* EWALD ELECTROSTATICS */
1715
1716             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1717             ewrt             = _mm256_mul_pd(r32,ewtabscale);
1718             ewitab           = _mm256_cvttpd_epi32(ewrt);
1719             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1720             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1721                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1722                                             &ewtabF,&ewtabFn);
1723             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1724             felec            = _mm256_mul_pd(_mm256_mul_pd(qq32,rinv32),_mm256_sub_pd(rinvsq32,felec));
1725
1726             fscal            = felec;
1727
1728             /* Calculate temporary vectorial force */
1729             tx               = _mm256_mul_pd(fscal,dx32);
1730             ty               = _mm256_mul_pd(fscal,dy32);
1731             tz               = _mm256_mul_pd(fscal,dz32);
1732
1733             /* Update vectorial force */
1734             fix3             = _mm256_add_pd(fix3,tx);
1735             fiy3             = _mm256_add_pd(fiy3,ty);
1736             fiz3             = _mm256_add_pd(fiz3,tz);
1737
1738             fjx2             = _mm256_add_pd(fjx2,tx);
1739             fjy2             = _mm256_add_pd(fjy2,ty);
1740             fjz2             = _mm256_add_pd(fjz2,tz);
1741
1742             /**************************
1743              * CALCULATE INTERACTIONS *
1744              **************************/
1745
1746             r33              = _mm256_mul_pd(rsq33,rinv33);
1747
1748             /* EWALD ELECTROSTATICS */
1749
1750             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1751             ewrt             = _mm256_mul_pd(r33,ewtabscale);
1752             ewitab           = _mm256_cvttpd_epi32(ewrt);
1753             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1754             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1755                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1756                                             &ewtabF,&ewtabFn);
1757             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1758             felec            = _mm256_mul_pd(_mm256_mul_pd(qq33,rinv33),_mm256_sub_pd(rinvsq33,felec));
1759
1760             fscal            = felec;
1761
1762             /* Calculate temporary vectorial force */
1763             tx               = _mm256_mul_pd(fscal,dx33);
1764             ty               = _mm256_mul_pd(fscal,dy33);
1765             tz               = _mm256_mul_pd(fscal,dz33);
1766
1767             /* Update vectorial force */
1768             fix3             = _mm256_add_pd(fix3,tx);
1769             fiy3             = _mm256_add_pd(fiy3,ty);
1770             fiz3             = _mm256_add_pd(fiz3,tz);
1771
1772             fjx3             = _mm256_add_pd(fjx3,tx);
1773             fjy3             = _mm256_add_pd(fjy3,ty);
1774             fjz3             = _mm256_add_pd(fjz3,tz);
1775
1776             fjptrA             = f+j_coord_offsetA;
1777             fjptrB             = f+j_coord_offsetB;
1778             fjptrC             = f+j_coord_offsetC;
1779             fjptrD             = f+j_coord_offsetD;
1780
1781             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
1782                                                       fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1783
1784             /* Inner loop uses 324 flops */
1785         }
1786
1787         if(jidx<j_index_end)
1788         {
1789
1790             /* Get j neighbor index, and coordinate index */
1791             jnrlistA         = jjnr[jidx];
1792             jnrlistB         = jjnr[jidx+1];
1793             jnrlistC         = jjnr[jidx+2];
1794             jnrlistD         = jjnr[jidx+3];
1795             /* Sign of each element will be negative for non-real atoms.
1796              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1797              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1798              */
1799             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1800
1801             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1802             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1803             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1804
1805             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1806             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1807             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1808             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1809             j_coord_offsetA  = DIM*jnrA;
1810             j_coord_offsetB  = DIM*jnrB;
1811             j_coord_offsetC  = DIM*jnrC;
1812             j_coord_offsetD  = DIM*jnrD;
1813
1814             /* load j atom coordinates */
1815             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
1816                                                  x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
1817                                                  &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
1818
1819             /* Calculate displacement vector */
1820             dx11             = _mm256_sub_pd(ix1,jx1);
1821             dy11             = _mm256_sub_pd(iy1,jy1);
1822             dz11             = _mm256_sub_pd(iz1,jz1);
1823             dx12             = _mm256_sub_pd(ix1,jx2);
1824             dy12             = _mm256_sub_pd(iy1,jy2);
1825             dz12             = _mm256_sub_pd(iz1,jz2);
1826             dx13             = _mm256_sub_pd(ix1,jx3);
1827             dy13             = _mm256_sub_pd(iy1,jy3);
1828             dz13             = _mm256_sub_pd(iz1,jz3);
1829             dx21             = _mm256_sub_pd(ix2,jx1);
1830             dy21             = _mm256_sub_pd(iy2,jy1);
1831             dz21             = _mm256_sub_pd(iz2,jz1);
1832             dx22             = _mm256_sub_pd(ix2,jx2);
1833             dy22             = _mm256_sub_pd(iy2,jy2);
1834             dz22             = _mm256_sub_pd(iz2,jz2);
1835             dx23             = _mm256_sub_pd(ix2,jx3);
1836             dy23             = _mm256_sub_pd(iy2,jy3);
1837             dz23             = _mm256_sub_pd(iz2,jz3);
1838             dx31             = _mm256_sub_pd(ix3,jx1);
1839             dy31             = _mm256_sub_pd(iy3,jy1);
1840             dz31             = _mm256_sub_pd(iz3,jz1);
1841             dx32             = _mm256_sub_pd(ix3,jx2);
1842             dy32             = _mm256_sub_pd(iy3,jy2);
1843             dz32             = _mm256_sub_pd(iz3,jz2);
1844             dx33             = _mm256_sub_pd(ix3,jx3);
1845             dy33             = _mm256_sub_pd(iy3,jy3);
1846             dz33             = _mm256_sub_pd(iz3,jz3);
1847
1848             /* Calculate squared distance and things based on it */
1849             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
1850             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
1851             rsq13            = gmx_mm256_calc_rsq_pd(dx13,dy13,dz13);
1852             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
1853             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
1854             rsq23            = gmx_mm256_calc_rsq_pd(dx23,dy23,dz23);
1855             rsq31            = gmx_mm256_calc_rsq_pd(dx31,dy31,dz31);
1856             rsq32            = gmx_mm256_calc_rsq_pd(dx32,dy32,dz32);
1857             rsq33            = gmx_mm256_calc_rsq_pd(dx33,dy33,dz33);
1858
1859             rinv11           = avx256_invsqrt_d(rsq11);
1860             rinv12           = avx256_invsqrt_d(rsq12);
1861             rinv13           = avx256_invsqrt_d(rsq13);
1862             rinv21           = avx256_invsqrt_d(rsq21);
1863             rinv22           = avx256_invsqrt_d(rsq22);
1864             rinv23           = avx256_invsqrt_d(rsq23);
1865             rinv31           = avx256_invsqrt_d(rsq31);
1866             rinv32           = avx256_invsqrt_d(rsq32);
1867             rinv33           = avx256_invsqrt_d(rsq33);
1868
1869             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
1870             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
1871             rinvsq13         = _mm256_mul_pd(rinv13,rinv13);
1872             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
1873             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
1874             rinvsq23         = _mm256_mul_pd(rinv23,rinv23);
1875             rinvsq31         = _mm256_mul_pd(rinv31,rinv31);
1876             rinvsq32         = _mm256_mul_pd(rinv32,rinv32);
1877             rinvsq33         = _mm256_mul_pd(rinv33,rinv33);
1878
1879             fjx1             = _mm256_setzero_pd();
1880             fjy1             = _mm256_setzero_pd();
1881             fjz1             = _mm256_setzero_pd();
1882             fjx2             = _mm256_setzero_pd();
1883             fjy2             = _mm256_setzero_pd();
1884             fjz2             = _mm256_setzero_pd();
1885             fjx3             = _mm256_setzero_pd();
1886             fjy3             = _mm256_setzero_pd();
1887             fjz3             = _mm256_setzero_pd();
1888
1889             /**************************
1890              * CALCULATE INTERACTIONS *
1891              **************************/
1892
1893             r11              = _mm256_mul_pd(rsq11,rinv11);
1894             r11              = _mm256_andnot_pd(dummy_mask,r11);
1895
1896             /* EWALD ELECTROSTATICS */
1897
1898             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1899             ewrt             = _mm256_mul_pd(r11,ewtabscale);
1900             ewitab           = _mm256_cvttpd_epi32(ewrt);
1901             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1902             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1903                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1904                                             &ewtabF,&ewtabFn);
1905             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1906             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1907
1908             fscal            = felec;
1909
1910             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1911
1912             /* Calculate temporary vectorial force */
1913             tx               = _mm256_mul_pd(fscal,dx11);
1914             ty               = _mm256_mul_pd(fscal,dy11);
1915             tz               = _mm256_mul_pd(fscal,dz11);
1916
1917             /* Update vectorial force */
1918             fix1             = _mm256_add_pd(fix1,tx);
1919             fiy1             = _mm256_add_pd(fiy1,ty);
1920             fiz1             = _mm256_add_pd(fiz1,tz);
1921
1922             fjx1             = _mm256_add_pd(fjx1,tx);
1923             fjy1             = _mm256_add_pd(fjy1,ty);
1924             fjz1             = _mm256_add_pd(fjz1,tz);
1925
1926             /**************************
1927              * CALCULATE INTERACTIONS *
1928              **************************/
1929
1930             r12              = _mm256_mul_pd(rsq12,rinv12);
1931             r12              = _mm256_andnot_pd(dummy_mask,r12);
1932
1933             /* EWALD ELECTROSTATICS */
1934
1935             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1936             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1937             ewitab           = _mm256_cvttpd_epi32(ewrt);
1938             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1939             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1940                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1941                                             &ewtabF,&ewtabFn);
1942             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1943             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1944
1945             fscal            = felec;
1946
1947             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1948
1949             /* Calculate temporary vectorial force */
1950             tx               = _mm256_mul_pd(fscal,dx12);
1951             ty               = _mm256_mul_pd(fscal,dy12);
1952             tz               = _mm256_mul_pd(fscal,dz12);
1953
1954             /* Update vectorial force */
1955             fix1             = _mm256_add_pd(fix1,tx);
1956             fiy1             = _mm256_add_pd(fiy1,ty);
1957             fiz1             = _mm256_add_pd(fiz1,tz);
1958
1959             fjx2             = _mm256_add_pd(fjx2,tx);
1960             fjy2             = _mm256_add_pd(fjy2,ty);
1961             fjz2             = _mm256_add_pd(fjz2,tz);
1962
1963             /**************************
1964              * CALCULATE INTERACTIONS *
1965              **************************/
1966
1967             r13              = _mm256_mul_pd(rsq13,rinv13);
1968             r13              = _mm256_andnot_pd(dummy_mask,r13);
1969
1970             /* EWALD ELECTROSTATICS */
1971
1972             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1973             ewrt             = _mm256_mul_pd(r13,ewtabscale);
1974             ewitab           = _mm256_cvttpd_epi32(ewrt);
1975             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1976             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1977                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1978                                             &ewtabF,&ewtabFn);
1979             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1980             felec            = _mm256_mul_pd(_mm256_mul_pd(qq13,rinv13),_mm256_sub_pd(rinvsq13,felec));
1981
1982             fscal            = felec;
1983
1984             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1985
1986             /* Calculate temporary vectorial force */
1987             tx               = _mm256_mul_pd(fscal,dx13);
1988             ty               = _mm256_mul_pd(fscal,dy13);
1989             tz               = _mm256_mul_pd(fscal,dz13);
1990
1991             /* Update vectorial force */
1992             fix1             = _mm256_add_pd(fix1,tx);
1993             fiy1             = _mm256_add_pd(fiy1,ty);
1994             fiz1             = _mm256_add_pd(fiz1,tz);
1995
1996             fjx3             = _mm256_add_pd(fjx3,tx);
1997             fjy3             = _mm256_add_pd(fjy3,ty);
1998             fjz3             = _mm256_add_pd(fjz3,tz);
1999
2000             /**************************
2001              * CALCULATE INTERACTIONS *
2002              **************************/
2003
2004             r21              = _mm256_mul_pd(rsq21,rinv21);
2005             r21              = _mm256_andnot_pd(dummy_mask,r21);
2006
2007             /* EWALD ELECTROSTATICS */
2008
2009             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2010             ewrt             = _mm256_mul_pd(r21,ewtabscale);
2011             ewitab           = _mm256_cvttpd_epi32(ewrt);
2012             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2013             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2014                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2015                                             &ewtabF,&ewtabFn);
2016             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2017             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
2018
2019             fscal            = felec;
2020
2021             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2022
2023             /* Calculate temporary vectorial force */
2024             tx               = _mm256_mul_pd(fscal,dx21);
2025             ty               = _mm256_mul_pd(fscal,dy21);
2026             tz               = _mm256_mul_pd(fscal,dz21);
2027
2028             /* Update vectorial force */
2029             fix2             = _mm256_add_pd(fix2,tx);
2030             fiy2             = _mm256_add_pd(fiy2,ty);
2031             fiz2             = _mm256_add_pd(fiz2,tz);
2032
2033             fjx1             = _mm256_add_pd(fjx1,tx);
2034             fjy1             = _mm256_add_pd(fjy1,ty);
2035             fjz1             = _mm256_add_pd(fjz1,tz);
2036
2037             /**************************
2038              * CALCULATE INTERACTIONS *
2039              **************************/
2040
2041             r22              = _mm256_mul_pd(rsq22,rinv22);
2042             r22              = _mm256_andnot_pd(dummy_mask,r22);
2043
2044             /* EWALD ELECTROSTATICS */
2045
2046             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2047             ewrt             = _mm256_mul_pd(r22,ewtabscale);
2048             ewitab           = _mm256_cvttpd_epi32(ewrt);
2049             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2050             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2051                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2052                                             &ewtabF,&ewtabFn);
2053             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2054             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
2055
2056             fscal            = felec;
2057
2058             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2059
2060             /* Calculate temporary vectorial force */
2061             tx               = _mm256_mul_pd(fscal,dx22);
2062             ty               = _mm256_mul_pd(fscal,dy22);
2063             tz               = _mm256_mul_pd(fscal,dz22);
2064
2065             /* Update vectorial force */
2066             fix2             = _mm256_add_pd(fix2,tx);
2067             fiy2             = _mm256_add_pd(fiy2,ty);
2068             fiz2             = _mm256_add_pd(fiz2,tz);
2069
2070             fjx2             = _mm256_add_pd(fjx2,tx);
2071             fjy2             = _mm256_add_pd(fjy2,ty);
2072             fjz2             = _mm256_add_pd(fjz2,tz);
2073
2074             /**************************
2075              * CALCULATE INTERACTIONS *
2076              **************************/
2077
2078             r23              = _mm256_mul_pd(rsq23,rinv23);
2079             r23              = _mm256_andnot_pd(dummy_mask,r23);
2080
2081             /* EWALD ELECTROSTATICS */
2082
2083             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2084             ewrt             = _mm256_mul_pd(r23,ewtabscale);
2085             ewitab           = _mm256_cvttpd_epi32(ewrt);
2086             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2087             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2088                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2089                                             &ewtabF,&ewtabFn);
2090             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2091             felec            = _mm256_mul_pd(_mm256_mul_pd(qq23,rinv23),_mm256_sub_pd(rinvsq23,felec));
2092
2093             fscal            = felec;
2094
2095             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2096
2097             /* Calculate temporary vectorial force */
2098             tx               = _mm256_mul_pd(fscal,dx23);
2099             ty               = _mm256_mul_pd(fscal,dy23);
2100             tz               = _mm256_mul_pd(fscal,dz23);
2101
2102             /* Update vectorial force */
2103             fix2             = _mm256_add_pd(fix2,tx);
2104             fiy2             = _mm256_add_pd(fiy2,ty);
2105             fiz2             = _mm256_add_pd(fiz2,tz);
2106
2107             fjx3             = _mm256_add_pd(fjx3,tx);
2108             fjy3             = _mm256_add_pd(fjy3,ty);
2109             fjz3             = _mm256_add_pd(fjz3,tz);
2110
2111             /**************************
2112              * CALCULATE INTERACTIONS *
2113              **************************/
2114
2115             r31              = _mm256_mul_pd(rsq31,rinv31);
2116             r31              = _mm256_andnot_pd(dummy_mask,r31);
2117
2118             /* EWALD ELECTROSTATICS */
2119
2120             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2121             ewrt             = _mm256_mul_pd(r31,ewtabscale);
2122             ewitab           = _mm256_cvttpd_epi32(ewrt);
2123             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2124             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2125                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2126                                             &ewtabF,&ewtabFn);
2127             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2128             felec            = _mm256_mul_pd(_mm256_mul_pd(qq31,rinv31),_mm256_sub_pd(rinvsq31,felec));
2129
2130             fscal            = felec;
2131
2132             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2133
2134             /* Calculate temporary vectorial force */
2135             tx               = _mm256_mul_pd(fscal,dx31);
2136             ty               = _mm256_mul_pd(fscal,dy31);
2137             tz               = _mm256_mul_pd(fscal,dz31);
2138
2139             /* Update vectorial force */
2140             fix3             = _mm256_add_pd(fix3,tx);
2141             fiy3             = _mm256_add_pd(fiy3,ty);
2142             fiz3             = _mm256_add_pd(fiz3,tz);
2143
2144             fjx1             = _mm256_add_pd(fjx1,tx);
2145             fjy1             = _mm256_add_pd(fjy1,ty);
2146             fjz1             = _mm256_add_pd(fjz1,tz);
2147
2148             /**************************
2149              * CALCULATE INTERACTIONS *
2150              **************************/
2151
2152             r32              = _mm256_mul_pd(rsq32,rinv32);
2153             r32              = _mm256_andnot_pd(dummy_mask,r32);
2154
2155             /* EWALD ELECTROSTATICS */
2156
2157             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2158             ewrt             = _mm256_mul_pd(r32,ewtabscale);
2159             ewitab           = _mm256_cvttpd_epi32(ewrt);
2160             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2161             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2162                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2163                                             &ewtabF,&ewtabFn);
2164             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2165             felec            = _mm256_mul_pd(_mm256_mul_pd(qq32,rinv32),_mm256_sub_pd(rinvsq32,felec));
2166
2167             fscal            = felec;
2168
2169             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2170
2171             /* Calculate temporary vectorial force */
2172             tx               = _mm256_mul_pd(fscal,dx32);
2173             ty               = _mm256_mul_pd(fscal,dy32);
2174             tz               = _mm256_mul_pd(fscal,dz32);
2175
2176             /* Update vectorial force */
2177             fix3             = _mm256_add_pd(fix3,tx);
2178             fiy3             = _mm256_add_pd(fiy3,ty);
2179             fiz3             = _mm256_add_pd(fiz3,tz);
2180
2181             fjx2             = _mm256_add_pd(fjx2,tx);
2182             fjy2             = _mm256_add_pd(fjy2,ty);
2183             fjz2             = _mm256_add_pd(fjz2,tz);
2184
2185             /**************************
2186              * CALCULATE INTERACTIONS *
2187              **************************/
2188
2189             r33              = _mm256_mul_pd(rsq33,rinv33);
2190             r33              = _mm256_andnot_pd(dummy_mask,r33);
2191
2192             /* EWALD ELECTROSTATICS */
2193
2194             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2195             ewrt             = _mm256_mul_pd(r33,ewtabscale);
2196             ewitab           = _mm256_cvttpd_epi32(ewrt);
2197             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2198             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2199                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2200                                             &ewtabF,&ewtabFn);
2201             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2202             felec            = _mm256_mul_pd(_mm256_mul_pd(qq33,rinv33),_mm256_sub_pd(rinvsq33,felec));
2203
2204             fscal            = felec;
2205
2206             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2207
2208             /* Calculate temporary vectorial force */
2209             tx               = _mm256_mul_pd(fscal,dx33);
2210             ty               = _mm256_mul_pd(fscal,dy33);
2211             tz               = _mm256_mul_pd(fscal,dz33);
2212
2213             /* Update vectorial force */
2214             fix3             = _mm256_add_pd(fix3,tx);
2215             fiy3             = _mm256_add_pd(fiy3,ty);
2216             fiz3             = _mm256_add_pd(fiz3,tz);
2217
2218             fjx3             = _mm256_add_pd(fjx3,tx);
2219             fjy3             = _mm256_add_pd(fjy3,ty);
2220             fjz3             = _mm256_add_pd(fjz3,tz);
2221
2222             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2223             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2224             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2225             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2226
2227             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
2228                                                       fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2229
2230             /* Inner loop uses 333 flops */
2231         }
2232
2233         /* End of innermost loop */
2234
2235         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2236                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
2237
2238         /* Increment number of inner iterations */
2239         inneriter                  += j_index_end - j_index_start;
2240
2241         /* Outer loop uses 18 flops */
2242     }
2243
2244     /* Increment number of outer iterations */
2245     outeriter        += nri;
2246
2247     /* Update outer/inner flops */
2248
2249     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_F,outeriter*18 + inneriter*333);
2250 }