Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwNone_GeomW4W4_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4W4_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Water4
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomW4W4_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr1;
71     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
72     real *           vdwioffsetptr2;
73     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
74     real *           vdwioffsetptr3;
75     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
76     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
77     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
78     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
79     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
80     int              vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
81     __m256d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
82     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
83     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
84     __m256d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
85     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
86     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
87     __m256d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
88     __m256d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
89     __m256d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
90     __m256d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m128i          ewitab;
94     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
96     real             *ewtab;
97     __m256d          dummy_mask,cutoff_mask;
98     __m128           tmpmask0,tmpmask1;
99     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
100     __m256d          one     = _mm256_set1_pd(1.0);
101     __m256d          two     = _mm256_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm256_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115
116     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
117     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
118     beta2            = _mm256_mul_pd(beta,beta);
119     beta3            = _mm256_mul_pd(beta,beta2);
120
121     ewtab            = fr->ic->tabq_coul_FDV0;
122     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
123     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
128     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
129     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
130
131     jq1              = _mm256_set1_pd(charge[inr+1]);
132     jq2              = _mm256_set1_pd(charge[inr+2]);
133     jq3              = _mm256_set1_pd(charge[inr+3]);
134     qq11             = _mm256_mul_pd(iq1,jq1);
135     qq12             = _mm256_mul_pd(iq1,jq2);
136     qq13             = _mm256_mul_pd(iq1,jq3);
137     qq21             = _mm256_mul_pd(iq2,jq1);
138     qq22             = _mm256_mul_pd(iq2,jq2);
139     qq23             = _mm256_mul_pd(iq2,jq3);
140     qq31             = _mm256_mul_pd(iq3,jq1);
141     qq32             = _mm256_mul_pd(iq3,jq2);
142     qq33             = _mm256_mul_pd(iq3,jq3);
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     for(iidx=0;iidx<4*DIM;iidx++)
155     {
156         scratch[iidx] = 0.0;
157     }
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
175                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
176
177         fix1             = _mm256_setzero_pd();
178         fiy1             = _mm256_setzero_pd();
179         fiz1             = _mm256_setzero_pd();
180         fix2             = _mm256_setzero_pd();
181         fiy2             = _mm256_setzero_pd();
182         fiz2             = _mm256_setzero_pd();
183         fix3             = _mm256_setzero_pd();
184         fiy3             = _mm256_setzero_pd();
185         fiz3             = _mm256_setzero_pd();
186
187         /* Reset potential sums */
188         velecsum         = _mm256_setzero_pd();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203
204             /* load j atom coordinates */
205             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
206                                                  x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
207                                                  &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
208
209             /* Calculate displacement vector */
210             dx11             = _mm256_sub_pd(ix1,jx1);
211             dy11             = _mm256_sub_pd(iy1,jy1);
212             dz11             = _mm256_sub_pd(iz1,jz1);
213             dx12             = _mm256_sub_pd(ix1,jx2);
214             dy12             = _mm256_sub_pd(iy1,jy2);
215             dz12             = _mm256_sub_pd(iz1,jz2);
216             dx13             = _mm256_sub_pd(ix1,jx3);
217             dy13             = _mm256_sub_pd(iy1,jy3);
218             dz13             = _mm256_sub_pd(iz1,jz3);
219             dx21             = _mm256_sub_pd(ix2,jx1);
220             dy21             = _mm256_sub_pd(iy2,jy1);
221             dz21             = _mm256_sub_pd(iz2,jz1);
222             dx22             = _mm256_sub_pd(ix2,jx2);
223             dy22             = _mm256_sub_pd(iy2,jy2);
224             dz22             = _mm256_sub_pd(iz2,jz2);
225             dx23             = _mm256_sub_pd(ix2,jx3);
226             dy23             = _mm256_sub_pd(iy2,jy3);
227             dz23             = _mm256_sub_pd(iz2,jz3);
228             dx31             = _mm256_sub_pd(ix3,jx1);
229             dy31             = _mm256_sub_pd(iy3,jy1);
230             dz31             = _mm256_sub_pd(iz3,jz1);
231             dx32             = _mm256_sub_pd(ix3,jx2);
232             dy32             = _mm256_sub_pd(iy3,jy2);
233             dz32             = _mm256_sub_pd(iz3,jz2);
234             dx33             = _mm256_sub_pd(ix3,jx3);
235             dy33             = _mm256_sub_pd(iy3,jy3);
236             dz33             = _mm256_sub_pd(iz3,jz3);
237
238             /* Calculate squared distance and things based on it */
239             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
240             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
241             rsq13            = gmx_mm256_calc_rsq_pd(dx13,dy13,dz13);
242             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
243             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
244             rsq23            = gmx_mm256_calc_rsq_pd(dx23,dy23,dz23);
245             rsq31            = gmx_mm256_calc_rsq_pd(dx31,dy31,dz31);
246             rsq32            = gmx_mm256_calc_rsq_pd(dx32,dy32,dz32);
247             rsq33            = gmx_mm256_calc_rsq_pd(dx33,dy33,dz33);
248
249             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
250             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
251             rinv13           = gmx_mm256_invsqrt_pd(rsq13);
252             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
253             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
254             rinv23           = gmx_mm256_invsqrt_pd(rsq23);
255             rinv31           = gmx_mm256_invsqrt_pd(rsq31);
256             rinv32           = gmx_mm256_invsqrt_pd(rsq32);
257             rinv33           = gmx_mm256_invsqrt_pd(rsq33);
258
259             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
260             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
261             rinvsq13         = _mm256_mul_pd(rinv13,rinv13);
262             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
263             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
264             rinvsq23         = _mm256_mul_pd(rinv23,rinv23);
265             rinvsq31         = _mm256_mul_pd(rinv31,rinv31);
266             rinvsq32         = _mm256_mul_pd(rinv32,rinv32);
267             rinvsq33         = _mm256_mul_pd(rinv33,rinv33);
268
269             fjx1             = _mm256_setzero_pd();
270             fjy1             = _mm256_setzero_pd();
271             fjz1             = _mm256_setzero_pd();
272             fjx2             = _mm256_setzero_pd();
273             fjy2             = _mm256_setzero_pd();
274             fjz2             = _mm256_setzero_pd();
275             fjx3             = _mm256_setzero_pd();
276             fjy3             = _mm256_setzero_pd();
277             fjz3             = _mm256_setzero_pd();
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             r11              = _mm256_mul_pd(rsq11,rinv11);
284
285             /* EWALD ELECTROSTATICS */
286
287             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
288             ewrt             = _mm256_mul_pd(r11,ewtabscale);
289             ewitab           = _mm256_cvttpd_epi32(ewrt);
290             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
291             ewitab           = _mm_slli_epi32(ewitab,2);
292             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
293             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
294             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
295             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
296             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
297             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
298             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
299             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(rinv11,velec));
300             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             velecsum         = _mm256_add_pd(velecsum,velec);
304
305             fscal            = felec;
306
307             /* Calculate temporary vectorial force */
308             tx               = _mm256_mul_pd(fscal,dx11);
309             ty               = _mm256_mul_pd(fscal,dy11);
310             tz               = _mm256_mul_pd(fscal,dz11);
311
312             /* Update vectorial force */
313             fix1             = _mm256_add_pd(fix1,tx);
314             fiy1             = _mm256_add_pd(fiy1,ty);
315             fiz1             = _mm256_add_pd(fiz1,tz);
316
317             fjx1             = _mm256_add_pd(fjx1,tx);
318             fjy1             = _mm256_add_pd(fjy1,ty);
319             fjz1             = _mm256_add_pd(fjz1,tz);
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             r12              = _mm256_mul_pd(rsq12,rinv12);
326
327             /* EWALD ELECTROSTATICS */
328
329             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
330             ewrt             = _mm256_mul_pd(r12,ewtabscale);
331             ewitab           = _mm256_cvttpd_epi32(ewrt);
332             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
333             ewitab           = _mm_slli_epi32(ewitab,2);
334             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
335             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
336             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
337             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
338             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
339             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
340             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
341             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(rinv12,velec));
342             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm256_add_pd(velecsum,velec);
346
347             fscal            = felec;
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm256_mul_pd(fscal,dx12);
351             ty               = _mm256_mul_pd(fscal,dy12);
352             tz               = _mm256_mul_pd(fscal,dz12);
353
354             /* Update vectorial force */
355             fix1             = _mm256_add_pd(fix1,tx);
356             fiy1             = _mm256_add_pd(fiy1,ty);
357             fiz1             = _mm256_add_pd(fiz1,tz);
358
359             fjx2             = _mm256_add_pd(fjx2,tx);
360             fjy2             = _mm256_add_pd(fjy2,ty);
361             fjz2             = _mm256_add_pd(fjz2,tz);
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             r13              = _mm256_mul_pd(rsq13,rinv13);
368
369             /* EWALD ELECTROSTATICS */
370
371             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
372             ewrt             = _mm256_mul_pd(r13,ewtabscale);
373             ewitab           = _mm256_cvttpd_epi32(ewrt);
374             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
375             ewitab           = _mm_slli_epi32(ewitab,2);
376             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
377             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
378             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
379             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
380             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
381             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
382             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
383             velec            = _mm256_mul_pd(qq13,_mm256_sub_pd(rinv13,velec));
384             felec            = _mm256_mul_pd(_mm256_mul_pd(qq13,rinv13),_mm256_sub_pd(rinvsq13,felec));
385
386             /* Update potential sum for this i atom from the interaction with this j atom. */
387             velecsum         = _mm256_add_pd(velecsum,velec);
388
389             fscal            = felec;
390
391             /* Calculate temporary vectorial force */
392             tx               = _mm256_mul_pd(fscal,dx13);
393             ty               = _mm256_mul_pd(fscal,dy13);
394             tz               = _mm256_mul_pd(fscal,dz13);
395
396             /* Update vectorial force */
397             fix1             = _mm256_add_pd(fix1,tx);
398             fiy1             = _mm256_add_pd(fiy1,ty);
399             fiz1             = _mm256_add_pd(fiz1,tz);
400
401             fjx3             = _mm256_add_pd(fjx3,tx);
402             fjy3             = _mm256_add_pd(fjy3,ty);
403             fjz3             = _mm256_add_pd(fjz3,tz);
404
405             /**************************
406              * CALCULATE INTERACTIONS *
407              **************************/
408
409             r21              = _mm256_mul_pd(rsq21,rinv21);
410
411             /* EWALD ELECTROSTATICS */
412
413             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
414             ewrt             = _mm256_mul_pd(r21,ewtabscale);
415             ewitab           = _mm256_cvttpd_epi32(ewrt);
416             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
417             ewitab           = _mm_slli_epi32(ewitab,2);
418             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
419             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
420             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
421             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
422             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
423             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
424             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
425             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(rinv21,velec));
426             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
427
428             /* Update potential sum for this i atom from the interaction with this j atom. */
429             velecsum         = _mm256_add_pd(velecsum,velec);
430
431             fscal            = felec;
432
433             /* Calculate temporary vectorial force */
434             tx               = _mm256_mul_pd(fscal,dx21);
435             ty               = _mm256_mul_pd(fscal,dy21);
436             tz               = _mm256_mul_pd(fscal,dz21);
437
438             /* Update vectorial force */
439             fix2             = _mm256_add_pd(fix2,tx);
440             fiy2             = _mm256_add_pd(fiy2,ty);
441             fiz2             = _mm256_add_pd(fiz2,tz);
442
443             fjx1             = _mm256_add_pd(fjx1,tx);
444             fjy1             = _mm256_add_pd(fjy1,ty);
445             fjz1             = _mm256_add_pd(fjz1,tz);
446
447             /**************************
448              * CALCULATE INTERACTIONS *
449              **************************/
450
451             r22              = _mm256_mul_pd(rsq22,rinv22);
452
453             /* EWALD ELECTROSTATICS */
454
455             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
456             ewrt             = _mm256_mul_pd(r22,ewtabscale);
457             ewitab           = _mm256_cvttpd_epi32(ewrt);
458             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
459             ewitab           = _mm_slli_epi32(ewitab,2);
460             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
461             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
462             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
463             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
464             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
465             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
466             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
467             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(rinv22,velec));
468             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
469
470             /* Update potential sum for this i atom from the interaction with this j atom. */
471             velecsum         = _mm256_add_pd(velecsum,velec);
472
473             fscal            = felec;
474
475             /* Calculate temporary vectorial force */
476             tx               = _mm256_mul_pd(fscal,dx22);
477             ty               = _mm256_mul_pd(fscal,dy22);
478             tz               = _mm256_mul_pd(fscal,dz22);
479
480             /* Update vectorial force */
481             fix2             = _mm256_add_pd(fix2,tx);
482             fiy2             = _mm256_add_pd(fiy2,ty);
483             fiz2             = _mm256_add_pd(fiz2,tz);
484
485             fjx2             = _mm256_add_pd(fjx2,tx);
486             fjy2             = _mm256_add_pd(fjy2,ty);
487             fjz2             = _mm256_add_pd(fjz2,tz);
488
489             /**************************
490              * CALCULATE INTERACTIONS *
491              **************************/
492
493             r23              = _mm256_mul_pd(rsq23,rinv23);
494
495             /* EWALD ELECTROSTATICS */
496
497             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
498             ewrt             = _mm256_mul_pd(r23,ewtabscale);
499             ewitab           = _mm256_cvttpd_epi32(ewrt);
500             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
501             ewitab           = _mm_slli_epi32(ewitab,2);
502             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
503             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
504             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
505             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
506             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
507             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
508             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
509             velec            = _mm256_mul_pd(qq23,_mm256_sub_pd(rinv23,velec));
510             felec            = _mm256_mul_pd(_mm256_mul_pd(qq23,rinv23),_mm256_sub_pd(rinvsq23,felec));
511
512             /* Update potential sum for this i atom from the interaction with this j atom. */
513             velecsum         = _mm256_add_pd(velecsum,velec);
514
515             fscal            = felec;
516
517             /* Calculate temporary vectorial force */
518             tx               = _mm256_mul_pd(fscal,dx23);
519             ty               = _mm256_mul_pd(fscal,dy23);
520             tz               = _mm256_mul_pd(fscal,dz23);
521
522             /* Update vectorial force */
523             fix2             = _mm256_add_pd(fix2,tx);
524             fiy2             = _mm256_add_pd(fiy2,ty);
525             fiz2             = _mm256_add_pd(fiz2,tz);
526
527             fjx3             = _mm256_add_pd(fjx3,tx);
528             fjy3             = _mm256_add_pd(fjy3,ty);
529             fjz3             = _mm256_add_pd(fjz3,tz);
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             r31              = _mm256_mul_pd(rsq31,rinv31);
536
537             /* EWALD ELECTROSTATICS */
538
539             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
540             ewrt             = _mm256_mul_pd(r31,ewtabscale);
541             ewitab           = _mm256_cvttpd_epi32(ewrt);
542             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
543             ewitab           = _mm_slli_epi32(ewitab,2);
544             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
545             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
546             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
547             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
548             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
549             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
550             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
551             velec            = _mm256_mul_pd(qq31,_mm256_sub_pd(rinv31,velec));
552             felec            = _mm256_mul_pd(_mm256_mul_pd(qq31,rinv31),_mm256_sub_pd(rinvsq31,felec));
553
554             /* Update potential sum for this i atom from the interaction with this j atom. */
555             velecsum         = _mm256_add_pd(velecsum,velec);
556
557             fscal            = felec;
558
559             /* Calculate temporary vectorial force */
560             tx               = _mm256_mul_pd(fscal,dx31);
561             ty               = _mm256_mul_pd(fscal,dy31);
562             tz               = _mm256_mul_pd(fscal,dz31);
563
564             /* Update vectorial force */
565             fix3             = _mm256_add_pd(fix3,tx);
566             fiy3             = _mm256_add_pd(fiy3,ty);
567             fiz3             = _mm256_add_pd(fiz3,tz);
568
569             fjx1             = _mm256_add_pd(fjx1,tx);
570             fjy1             = _mm256_add_pd(fjy1,ty);
571             fjz1             = _mm256_add_pd(fjz1,tz);
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             r32              = _mm256_mul_pd(rsq32,rinv32);
578
579             /* EWALD ELECTROSTATICS */
580
581             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
582             ewrt             = _mm256_mul_pd(r32,ewtabscale);
583             ewitab           = _mm256_cvttpd_epi32(ewrt);
584             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
585             ewitab           = _mm_slli_epi32(ewitab,2);
586             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
587             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
588             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
589             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
590             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
591             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
592             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
593             velec            = _mm256_mul_pd(qq32,_mm256_sub_pd(rinv32,velec));
594             felec            = _mm256_mul_pd(_mm256_mul_pd(qq32,rinv32),_mm256_sub_pd(rinvsq32,felec));
595
596             /* Update potential sum for this i atom from the interaction with this j atom. */
597             velecsum         = _mm256_add_pd(velecsum,velec);
598
599             fscal            = felec;
600
601             /* Calculate temporary vectorial force */
602             tx               = _mm256_mul_pd(fscal,dx32);
603             ty               = _mm256_mul_pd(fscal,dy32);
604             tz               = _mm256_mul_pd(fscal,dz32);
605
606             /* Update vectorial force */
607             fix3             = _mm256_add_pd(fix3,tx);
608             fiy3             = _mm256_add_pd(fiy3,ty);
609             fiz3             = _mm256_add_pd(fiz3,tz);
610
611             fjx2             = _mm256_add_pd(fjx2,tx);
612             fjy2             = _mm256_add_pd(fjy2,ty);
613             fjz2             = _mm256_add_pd(fjz2,tz);
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             r33              = _mm256_mul_pd(rsq33,rinv33);
620
621             /* EWALD ELECTROSTATICS */
622
623             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
624             ewrt             = _mm256_mul_pd(r33,ewtabscale);
625             ewitab           = _mm256_cvttpd_epi32(ewrt);
626             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
627             ewitab           = _mm_slli_epi32(ewitab,2);
628             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
629             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
630             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
631             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
632             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
633             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
634             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
635             velec            = _mm256_mul_pd(qq33,_mm256_sub_pd(rinv33,velec));
636             felec            = _mm256_mul_pd(_mm256_mul_pd(qq33,rinv33),_mm256_sub_pd(rinvsq33,felec));
637
638             /* Update potential sum for this i atom from the interaction with this j atom. */
639             velecsum         = _mm256_add_pd(velecsum,velec);
640
641             fscal            = felec;
642
643             /* Calculate temporary vectorial force */
644             tx               = _mm256_mul_pd(fscal,dx33);
645             ty               = _mm256_mul_pd(fscal,dy33);
646             tz               = _mm256_mul_pd(fscal,dz33);
647
648             /* Update vectorial force */
649             fix3             = _mm256_add_pd(fix3,tx);
650             fiy3             = _mm256_add_pd(fiy3,ty);
651             fiz3             = _mm256_add_pd(fiz3,tz);
652
653             fjx3             = _mm256_add_pd(fjx3,tx);
654             fjy3             = _mm256_add_pd(fjy3,ty);
655             fjz3             = _mm256_add_pd(fjz3,tz);
656
657             fjptrA             = f+j_coord_offsetA;
658             fjptrB             = f+j_coord_offsetB;
659             fjptrC             = f+j_coord_offsetC;
660             fjptrD             = f+j_coord_offsetD;
661
662             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
663                                                       fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
664
665             /* Inner loop uses 369 flops */
666         }
667
668         if(jidx<j_index_end)
669         {
670
671             /* Get j neighbor index, and coordinate index */
672             jnrlistA         = jjnr[jidx];
673             jnrlistB         = jjnr[jidx+1];
674             jnrlistC         = jjnr[jidx+2];
675             jnrlistD         = jjnr[jidx+3];
676             /* Sign of each element will be negative for non-real atoms.
677              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
678              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
679              */
680             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
681
682             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
683             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
684             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
685
686             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
687             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
688             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
689             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
690             j_coord_offsetA  = DIM*jnrA;
691             j_coord_offsetB  = DIM*jnrB;
692             j_coord_offsetC  = DIM*jnrC;
693             j_coord_offsetD  = DIM*jnrD;
694
695             /* load j atom coordinates */
696             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
697                                                  x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
698                                                  &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
699
700             /* Calculate displacement vector */
701             dx11             = _mm256_sub_pd(ix1,jx1);
702             dy11             = _mm256_sub_pd(iy1,jy1);
703             dz11             = _mm256_sub_pd(iz1,jz1);
704             dx12             = _mm256_sub_pd(ix1,jx2);
705             dy12             = _mm256_sub_pd(iy1,jy2);
706             dz12             = _mm256_sub_pd(iz1,jz2);
707             dx13             = _mm256_sub_pd(ix1,jx3);
708             dy13             = _mm256_sub_pd(iy1,jy3);
709             dz13             = _mm256_sub_pd(iz1,jz3);
710             dx21             = _mm256_sub_pd(ix2,jx1);
711             dy21             = _mm256_sub_pd(iy2,jy1);
712             dz21             = _mm256_sub_pd(iz2,jz1);
713             dx22             = _mm256_sub_pd(ix2,jx2);
714             dy22             = _mm256_sub_pd(iy2,jy2);
715             dz22             = _mm256_sub_pd(iz2,jz2);
716             dx23             = _mm256_sub_pd(ix2,jx3);
717             dy23             = _mm256_sub_pd(iy2,jy3);
718             dz23             = _mm256_sub_pd(iz2,jz3);
719             dx31             = _mm256_sub_pd(ix3,jx1);
720             dy31             = _mm256_sub_pd(iy3,jy1);
721             dz31             = _mm256_sub_pd(iz3,jz1);
722             dx32             = _mm256_sub_pd(ix3,jx2);
723             dy32             = _mm256_sub_pd(iy3,jy2);
724             dz32             = _mm256_sub_pd(iz3,jz2);
725             dx33             = _mm256_sub_pd(ix3,jx3);
726             dy33             = _mm256_sub_pd(iy3,jy3);
727             dz33             = _mm256_sub_pd(iz3,jz3);
728
729             /* Calculate squared distance and things based on it */
730             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
731             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
732             rsq13            = gmx_mm256_calc_rsq_pd(dx13,dy13,dz13);
733             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
734             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
735             rsq23            = gmx_mm256_calc_rsq_pd(dx23,dy23,dz23);
736             rsq31            = gmx_mm256_calc_rsq_pd(dx31,dy31,dz31);
737             rsq32            = gmx_mm256_calc_rsq_pd(dx32,dy32,dz32);
738             rsq33            = gmx_mm256_calc_rsq_pd(dx33,dy33,dz33);
739
740             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
741             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
742             rinv13           = gmx_mm256_invsqrt_pd(rsq13);
743             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
744             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
745             rinv23           = gmx_mm256_invsqrt_pd(rsq23);
746             rinv31           = gmx_mm256_invsqrt_pd(rsq31);
747             rinv32           = gmx_mm256_invsqrt_pd(rsq32);
748             rinv33           = gmx_mm256_invsqrt_pd(rsq33);
749
750             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
751             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
752             rinvsq13         = _mm256_mul_pd(rinv13,rinv13);
753             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
754             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
755             rinvsq23         = _mm256_mul_pd(rinv23,rinv23);
756             rinvsq31         = _mm256_mul_pd(rinv31,rinv31);
757             rinvsq32         = _mm256_mul_pd(rinv32,rinv32);
758             rinvsq33         = _mm256_mul_pd(rinv33,rinv33);
759
760             fjx1             = _mm256_setzero_pd();
761             fjy1             = _mm256_setzero_pd();
762             fjz1             = _mm256_setzero_pd();
763             fjx2             = _mm256_setzero_pd();
764             fjy2             = _mm256_setzero_pd();
765             fjz2             = _mm256_setzero_pd();
766             fjx3             = _mm256_setzero_pd();
767             fjy3             = _mm256_setzero_pd();
768             fjz3             = _mm256_setzero_pd();
769
770             /**************************
771              * CALCULATE INTERACTIONS *
772              **************************/
773
774             r11              = _mm256_mul_pd(rsq11,rinv11);
775             r11              = _mm256_andnot_pd(dummy_mask,r11);
776
777             /* EWALD ELECTROSTATICS */
778
779             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
780             ewrt             = _mm256_mul_pd(r11,ewtabscale);
781             ewitab           = _mm256_cvttpd_epi32(ewrt);
782             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
783             ewitab           = _mm_slli_epi32(ewitab,2);
784             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
785             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
786             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
787             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
788             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
789             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
790             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
791             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(rinv11,velec));
792             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
793
794             /* Update potential sum for this i atom from the interaction with this j atom. */
795             velec            = _mm256_andnot_pd(dummy_mask,velec);
796             velecsum         = _mm256_add_pd(velecsum,velec);
797
798             fscal            = felec;
799
800             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
801
802             /* Calculate temporary vectorial force */
803             tx               = _mm256_mul_pd(fscal,dx11);
804             ty               = _mm256_mul_pd(fscal,dy11);
805             tz               = _mm256_mul_pd(fscal,dz11);
806
807             /* Update vectorial force */
808             fix1             = _mm256_add_pd(fix1,tx);
809             fiy1             = _mm256_add_pd(fiy1,ty);
810             fiz1             = _mm256_add_pd(fiz1,tz);
811
812             fjx1             = _mm256_add_pd(fjx1,tx);
813             fjy1             = _mm256_add_pd(fjy1,ty);
814             fjz1             = _mm256_add_pd(fjz1,tz);
815
816             /**************************
817              * CALCULATE INTERACTIONS *
818              **************************/
819
820             r12              = _mm256_mul_pd(rsq12,rinv12);
821             r12              = _mm256_andnot_pd(dummy_mask,r12);
822
823             /* EWALD ELECTROSTATICS */
824
825             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
826             ewrt             = _mm256_mul_pd(r12,ewtabscale);
827             ewitab           = _mm256_cvttpd_epi32(ewrt);
828             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
829             ewitab           = _mm_slli_epi32(ewitab,2);
830             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
831             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
832             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
833             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
834             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
835             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
836             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
837             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(rinv12,velec));
838             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
839
840             /* Update potential sum for this i atom from the interaction with this j atom. */
841             velec            = _mm256_andnot_pd(dummy_mask,velec);
842             velecsum         = _mm256_add_pd(velecsum,velec);
843
844             fscal            = felec;
845
846             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
847
848             /* Calculate temporary vectorial force */
849             tx               = _mm256_mul_pd(fscal,dx12);
850             ty               = _mm256_mul_pd(fscal,dy12);
851             tz               = _mm256_mul_pd(fscal,dz12);
852
853             /* Update vectorial force */
854             fix1             = _mm256_add_pd(fix1,tx);
855             fiy1             = _mm256_add_pd(fiy1,ty);
856             fiz1             = _mm256_add_pd(fiz1,tz);
857
858             fjx2             = _mm256_add_pd(fjx2,tx);
859             fjy2             = _mm256_add_pd(fjy2,ty);
860             fjz2             = _mm256_add_pd(fjz2,tz);
861
862             /**************************
863              * CALCULATE INTERACTIONS *
864              **************************/
865
866             r13              = _mm256_mul_pd(rsq13,rinv13);
867             r13              = _mm256_andnot_pd(dummy_mask,r13);
868
869             /* EWALD ELECTROSTATICS */
870
871             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
872             ewrt             = _mm256_mul_pd(r13,ewtabscale);
873             ewitab           = _mm256_cvttpd_epi32(ewrt);
874             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
875             ewitab           = _mm_slli_epi32(ewitab,2);
876             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
877             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
878             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
879             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
880             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
881             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
882             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
883             velec            = _mm256_mul_pd(qq13,_mm256_sub_pd(rinv13,velec));
884             felec            = _mm256_mul_pd(_mm256_mul_pd(qq13,rinv13),_mm256_sub_pd(rinvsq13,felec));
885
886             /* Update potential sum for this i atom from the interaction with this j atom. */
887             velec            = _mm256_andnot_pd(dummy_mask,velec);
888             velecsum         = _mm256_add_pd(velecsum,velec);
889
890             fscal            = felec;
891
892             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
893
894             /* Calculate temporary vectorial force */
895             tx               = _mm256_mul_pd(fscal,dx13);
896             ty               = _mm256_mul_pd(fscal,dy13);
897             tz               = _mm256_mul_pd(fscal,dz13);
898
899             /* Update vectorial force */
900             fix1             = _mm256_add_pd(fix1,tx);
901             fiy1             = _mm256_add_pd(fiy1,ty);
902             fiz1             = _mm256_add_pd(fiz1,tz);
903
904             fjx3             = _mm256_add_pd(fjx3,tx);
905             fjy3             = _mm256_add_pd(fjy3,ty);
906             fjz3             = _mm256_add_pd(fjz3,tz);
907
908             /**************************
909              * CALCULATE INTERACTIONS *
910              **************************/
911
912             r21              = _mm256_mul_pd(rsq21,rinv21);
913             r21              = _mm256_andnot_pd(dummy_mask,r21);
914
915             /* EWALD ELECTROSTATICS */
916
917             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
918             ewrt             = _mm256_mul_pd(r21,ewtabscale);
919             ewitab           = _mm256_cvttpd_epi32(ewrt);
920             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
921             ewitab           = _mm_slli_epi32(ewitab,2);
922             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
923             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
924             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
925             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
926             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
927             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
928             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
929             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(rinv21,velec));
930             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
931
932             /* Update potential sum for this i atom from the interaction with this j atom. */
933             velec            = _mm256_andnot_pd(dummy_mask,velec);
934             velecsum         = _mm256_add_pd(velecsum,velec);
935
936             fscal            = felec;
937
938             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
939
940             /* Calculate temporary vectorial force */
941             tx               = _mm256_mul_pd(fscal,dx21);
942             ty               = _mm256_mul_pd(fscal,dy21);
943             tz               = _mm256_mul_pd(fscal,dz21);
944
945             /* Update vectorial force */
946             fix2             = _mm256_add_pd(fix2,tx);
947             fiy2             = _mm256_add_pd(fiy2,ty);
948             fiz2             = _mm256_add_pd(fiz2,tz);
949
950             fjx1             = _mm256_add_pd(fjx1,tx);
951             fjy1             = _mm256_add_pd(fjy1,ty);
952             fjz1             = _mm256_add_pd(fjz1,tz);
953
954             /**************************
955              * CALCULATE INTERACTIONS *
956              **************************/
957
958             r22              = _mm256_mul_pd(rsq22,rinv22);
959             r22              = _mm256_andnot_pd(dummy_mask,r22);
960
961             /* EWALD ELECTROSTATICS */
962
963             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
964             ewrt             = _mm256_mul_pd(r22,ewtabscale);
965             ewitab           = _mm256_cvttpd_epi32(ewrt);
966             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
967             ewitab           = _mm_slli_epi32(ewitab,2);
968             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
969             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
970             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
971             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
972             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
973             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
974             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
975             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(rinv22,velec));
976             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
977
978             /* Update potential sum for this i atom from the interaction with this j atom. */
979             velec            = _mm256_andnot_pd(dummy_mask,velec);
980             velecsum         = _mm256_add_pd(velecsum,velec);
981
982             fscal            = felec;
983
984             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
985
986             /* Calculate temporary vectorial force */
987             tx               = _mm256_mul_pd(fscal,dx22);
988             ty               = _mm256_mul_pd(fscal,dy22);
989             tz               = _mm256_mul_pd(fscal,dz22);
990
991             /* Update vectorial force */
992             fix2             = _mm256_add_pd(fix2,tx);
993             fiy2             = _mm256_add_pd(fiy2,ty);
994             fiz2             = _mm256_add_pd(fiz2,tz);
995
996             fjx2             = _mm256_add_pd(fjx2,tx);
997             fjy2             = _mm256_add_pd(fjy2,ty);
998             fjz2             = _mm256_add_pd(fjz2,tz);
999
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             r23              = _mm256_mul_pd(rsq23,rinv23);
1005             r23              = _mm256_andnot_pd(dummy_mask,r23);
1006
1007             /* EWALD ELECTROSTATICS */
1008
1009             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1010             ewrt             = _mm256_mul_pd(r23,ewtabscale);
1011             ewitab           = _mm256_cvttpd_epi32(ewrt);
1012             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1013             ewitab           = _mm_slli_epi32(ewitab,2);
1014             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1015             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1016             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1017             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1018             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1019             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1020             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1021             velec            = _mm256_mul_pd(qq23,_mm256_sub_pd(rinv23,velec));
1022             felec            = _mm256_mul_pd(_mm256_mul_pd(qq23,rinv23),_mm256_sub_pd(rinvsq23,felec));
1023
1024             /* Update potential sum for this i atom from the interaction with this j atom. */
1025             velec            = _mm256_andnot_pd(dummy_mask,velec);
1026             velecsum         = _mm256_add_pd(velecsum,velec);
1027
1028             fscal            = felec;
1029
1030             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1031
1032             /* Calculate temporary vectorial force */
1033             tx               = _mm256_mul_pd(fscal,dx23);
1034             ty               = _mm256_mul_pd(fscal,dy23);
1035             tz               = _mm256_mul_pd(fscal,dz23);
1036
1037             /* Update vectorial force */
1038             fix2             = _mm256_add_pd(fix2,tx);
1039             fiy2             = _mm256_add_pd(fiy2,ty);
1040             fiz2             = _mm256_add_pd(fiz2,tz);
1041
1042             fjx3             = _mm256_add_pd(fjx3,tx);
1043             fjy3             = _mm256_add_pd(fjy3,ty);
1044             fjz3             = _mm256_add_pd(fjz3,tz);
1045
1046             /**************************
1047              * CALCULATE INTERACTIONS *
1048              **************************/
1049
1050             r31              = _mm256_mul_pd(rsq31,rinv31);
1051             r31              = _mm256_andnot_pd(dummy_mask,r31);
1052
1053             /* EWALD ELECTROSTATICS */
1054
1055             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1056             ewrt             = _mm256_mul_pd(r31,ewtabscale);
1057             ewitab           = _mm256_cvttpd_epi32(ewrt);
1058             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1059             ewitab           = _mm_slli_epi32(ewitab,2);
1060             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1061             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1062             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1063             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1064             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1065             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1066             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1067             velec            = _mm256_mul_pd(qq31,_mm256_sub_pd(rinv31,velec));
1068             felec            = _mm256_mul_pd(_mm256_mul_pd(qq31,rinv31),_mm256_sub_pd(rinvsq31,felec));
1069
1070             /* Update potential sum for this i atom from the interaction with this j atom. */
1071             velec            = _mm256_andnot_pd(dummy_mask,velec);
1072             velecsum         = _mm256_add_pd(velecsum,velec);
1073
1074             fscal            = felec;
1075
1076             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1077
1078             /* Calculate temporary vectorial force */
1079             tx               = _mm256_mul_pd(fscal,dx31);
1080             ty               = _mm256_mul_pd(fscal,dy31);
1081             tz               = _mm256_mul_pd(fscal,dz31);
1082
1083             /* Update vectorial force */
1084             fix3             = _mm256_add_pd(fix3,tx);
1085             fiy3             = _mm256_add_pd(fiy3,ty);
1086             fiz3             = _mm256_add_pd(fiz3,tz);
1087
1088             fjx1             = _mm256_add_pd(fjx1,tx);
1089             fjy1             = _mm256_add_pd(fjy1,ty);
1090             fjz1             = _mm256_add_pd(fjz1,tz);
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             r32              = _mm256_mul_pd(rsq32,rinv32);
1097             r32              = _mm256_andnot_pd(dummy_mask,r32);
1098
1099             /* EWALD ELECTROSTATICS */
1100
1101             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1102             ewrt             = _mm256_mul_pd(r32,ewtabscale);
1103             ewitab           = _mm256_cvttpd_epi32(ewrt);
1104             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1105             ewitab           = _mm_slli_epi32(ewitab,2);
1106             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1107             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1108             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1109             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1110             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1111             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1112             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1113             velec            = _mm256_mul_pd(qq32,_mm256_sub_pd(rinv32,velec));
1114             felec            = _mm256_mul_pd(_mm256_mul_pd(qq32,rinv32),_mm256_sub_pd(rinvsq32,felec));
1115
1116             /* Update potential sum for this i atom from the interaction with this j atom. */
1117             velec            = _mm256_andnot_pd(dummy_mask,velec);
1118             velecsum         = _mm256_add_pd(velecsum,velec);
1119
1120             fscal            = felec;
1121
1122             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1123
1124             /* Calculate temporary vectorial force */
1125             tx               = _mm256_mul_pd(fscal,dx32);
1126             ty               = _mm256_mul_pd(fscal,dy32);
1127             tz               = _mm256_mul_pd(fscal,dz32);
1128
1129             /* Update vectorial force */
1130             fix3             = _mm256_add_pd(fix3,tx);
1131             fiy3             = _mm256_add_pd(fiy3,ty);
1132             fiz3             = _mm256_add_pd(fiz3,tz);
1133
1134             fjx2             = _mm256_add_pd(fjx2,tx);
1135             fjy2             = _mm256_add_pd(fjy2,ty);
1136             fjz2             = _mm256_add_pd(fjz2,tz);
1137
1138             /**************************
1139              * CALCULATE INTERACTIONS *
1140              **************************/
1141
1142             r33              = _mm256_mul_pd(rsq33,rinv33);
1143             r33              = _mm256_andnot_pd(dummy_mask,r33);
1144
1145             /* EWALD ELECTROSTATICS */
1146
1147             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1148             ewrt             = _mm256_mul_pd(r33,ewtabscale);
1149             ewitab           = _mm256_cvttpd_epi32(ewrt);
1150             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1151             ewitab           = _mm_slli_epi32(ewitab,2);
1152             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1153             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1154             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1155             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1156             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1157             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1158             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1159             velec            = _mm256_mul_pd(qq33,_mm256_sub_pd(rinv33,velec));
1160             felec            = _mm256_mul_pd(_mm256_mul_pd(qq33,rinv33),_mm256_sub_pd(rinvsq33,felec));
1161
1162             /* Update potential sum for this i atom from the interaction with this j atom. */
1163             velec            = _mm256_andnot_pd(dummy_mask,velec);
1164             velecsum         = _mm256_add_pd(velecsum,velec);
1165
1166             fscal            = felec;
1167
1168             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1169
1170             /* Calculate temporary vectorial force */
1171             tx               = _mm256_mul_pd(fscal,dx33);
1172             ty               = _mm256_mul_pd(fscal,dy33);
1173             tz               = _mm256_mul_pd(fscal,dz33);
1174
1175             /* Update vectorial force */
1176             fix3             = _mm256_add_pd(fix3,tx);
1177             fiy3             = _mm256_add_pd(fiy3,ty);
1178             fiz3             = _mm256_add_pd(fiz3,tz);
1179
1180             fjx3             = _mm256_add_pd(fjx3,tx);
1181             fjy3             = _mm256_add_pd(fjy3,ty);
1182             fjz3             = _mm256_add_pd(fjz3,tz);
1183
1184             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1185             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1186             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1187             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1188
1189             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
1190                                                       fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1191
1192             /* Inner loop uses 378 flops */
1193         }
1194
1195         /* End of innermost loop */
1196
1197         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1198                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1199
1200         ggid                        = gid[iidx];
1201         /* Update potential energies */
1202         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1203
1204         /* Increment number of inner iterations */
1205         inneriter                  += j_index_end - j_index_start;
1206
1207         /* Outer loop uses 19 flops */
1208     }
1209
1210     /* Increment number of outer iterations */
1211     outeriter        += nri;
1212
1213     /* Update outer/inner flops */
1214
1215     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_VF,outeriter*19 + inneriter*378);
1216 }
1217 /*
1218  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4W4_F_avx_256_double
1219  * Electrostatics interaction: Ewald
1220  * VdW interaction:            None
1221  * Geometry:                   Water4-Water4
1222  * Calculate force/pot:        Force
1223  */
1224 void
1225 nb_kernel_ElecEw_VdwNone_GeomW4W4_F_avx_256_double
1226                     (t_nblist * gmx_restrict                nlist,
1227                      rvec * gmx_restrict                    xx,
1228                      rvec * gmx_restrict                    ff,
1229                      t_forcerec * gmx_restrict              fr,
1230                      t_mdatoms * gmx_restrict               mdatoms,
1231                      nb_kernel_data_t * gmx_restrict        kernel_data,
1232                      t_nrnb * gmx_restrict                  nrnb)
1233 {
1234     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1235      * just 0 for non-waters.
1236      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
1237      * jnr indices corresponding to data put in the four positions in the SIMD register.
1238      */
1239     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1240     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1241     int              jnrA,jnrB,jnrC,jnrD;
1242     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1243     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
1244     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1245     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1246     real             rcutoff_scalar;
1247     real             *shiftvec,*fshift,*x,*f;
1248     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1249     real             scratch[4*DIM];
1250     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1251     real *           vdwioffsetptr1;
1252     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1253     real *           vdwioffsetptr2;
1254     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1255     real *           vdwioffsetptr3;
1256     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1257     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1258     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1259     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1260     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1261     int              vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
1262     __m256d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1263     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1264     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1265     __m256d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1266     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1267     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1268     __m256d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1269     __m256d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1270     __m256d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1271     __m256d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1272     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
1273     real             *charge;
1274     __m128i          ewitab;
1275     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1276     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
1277     real             *ewtab;
1278     __m256d          dummy_mask,cutoff_mask;
1279     __m128           tmpmask0,tmpmask1;
1280     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
1281     __m256d          one     = _mm256_set1_pd(1.0);
1282     __m256d          two     = _mm256_set1_pd(2.0);
1283     x                = xx[0];
1284     f                = ff[0];
1285
1286     nri              = nlist->nri;
1287     iinr             = nlist->iinr;
1288     jindex           = nlist->jindex;
1289     jjnr             = nlist->jjnr;
1290     shiftidx         = nlist->shift;
1291     gid              = nlist->gid;
1292     shiftvec         = fr->shift_vec[0];
1293     fshift           = fr->fshift[0];
1294     facel            = _mm256_set1_pd(fr->epsfac);
1295     charge           = mdatoms->chargeA;
1296
1297     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
1298     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
1299     beta2            = _mm256_mul_pd(beta,beta);
1300     beta3            = _mm256_mul_pd(beta,beta2);
1301
1302     ewtab            = fr->ic->tabq_coul_F;
1303     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
1304     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
1305
1306     /* Setup water-specific parameters */
1307     inr              = nlist->iinr[0];
1308     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
1309     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
1310     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
1311
1312     jq1              = _mm256_set1_pd(charge[inr+1]);
1313     jq2              = _mm256_set1_pd(charge[inr+2]);
1314     jq3              = _mm256_set1_pd(charge[inr+3]);
1315     qq11             = _mm256_mul_pd(iq1,jq1);
1316     qq12             = _mm256_mul_pd(iq1,jq2);
1317     qq13             = _mm256_mul_pd(iq1,jq3);
1318     qq21             = _mm256_mul_pd(iq2,jq1);
1319     qq22             = _mm256_mul_pd(iq2,jq2);
1320     qq23             = _mm256_mul_pd(iq2,jq3);
1321     qq31             = _mm256_mul_pd(iq3,jq1);
1322     qq32             = _mm256_mul_pd(iq3,jq2);
1323     qq33             = _mm256_mul_pd(iq3,jq3);
1324
1325     /* Avoid stupid compiler warnings */
1326     jnrA = jnrB = jnrC = jnrD = 0;
1327     j_coord_offsetA = 0;
1328     j_coord_offsetB = 0;
1329     j_coord_offsetC = 0;
1330     j_coord_offsetD = 0;
1331
1332     outeriter        = 0;
1333     inneriter        = 0;
1334
1335     for(iidx=0;iidx<4*DIM;iidx++)
1336     {
1337         scratch[iidx] = 0.0;
1338     }
1339
1340     /* Start outer loop over neighborlists */
1341     for(iidx=0; iidx<nri; iidx++)
1342     {
1343         /* Load shift vector for this list */
1344         i_shift_offset   = DIM*shiftidx[iidx];
1345
1346         /* Load limits for loop over neighbors */
1347         j_index_start    = jindex[iidx];
1348         j_index_end      = jindex[iidx+1];
1349
1350         /* Get outer coordinate index */
1351         inr              = iinr[iidx];
1352         i_coord_offset   = DIM*inr;
1353
1354         /* Load i particle coords and add shift vector */
1355         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
1356                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1357
1358         fix1             = _mm256_setzero_pd();
1359         fiy1             = _mm256_setzero_pd();
1360         fiz1             = _mm256_setzero_pd();
1361         fix2             = _mm256_setzero_pd();
1362         fiy2             = _mm256_setzero_pd();
1363         fiz2             = _mm256_setzero_pd();
1364         fix3             = _mm256_setzero_pd();
1365         fiy3             = _mm256_setzero_pd();
1366         fiz3             = _mm256_setzero_pd();
1367
1368         /* Start inner kernel loop */
1369         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1370         {
1371
1372             /* Get j neighbor index, and coordinate index */
1373             jnrA             = jjnr[jidx];
1374             jnrB             = jjnr[jidx+1];
1375             jnrC             = jjnr[jidx+2];
1376             jnrD             = jjnr[jidx+3];
1377             j_coord_offsetA  = DIM*jnrA;
1378             j_coord_offsetB  = DIM*jnrB;
1379             j_coord_offsetC  = DIM*jnrC;
1380             j_coord_offsetD  = DIM*jnrD;
1381
1382             /* load j atom coordinates */
1383             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
1384                                                  x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
1385                                                  &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
1386
1387             /* Calculate displacement vector */
1388             dx11             = _mm256_sub_pd(ix1,jx1);
1389             dy11             = _mm256_sub_pd(iy1,jy1);
1390             dz11             = _mm256_sub_pd(iz1,jz1);
1391             dx12             = _mm256_sub_pd(ix1,jx2);
1392             dy12             = _mm256_sub_pd(iy1,jy2);
1393             dz12             = _mm256_sub_pd(iz1,jz2);
1394             dx13             = _mm256_sub_pd(ix1,jx3);
1395             dy13             = _mm256_sub_pd(iy1,jy3);
1396             dz13             = _mm256_sub_pd(iz1,jz3);
1397             dx21             = _mm256_sub_pd(ix2,jx1);
1398             dy21             = _mm256_sub_pd(iy2,jy1);
1399             dz21             = _mm256_sub_pd(iz2,jz1);
1400             dx22             = _mm256_sub_pd(ix2,jx2);
1401             dy22             = _mm256_sub_pd(iy2,jy2);
1402             dz22             = _mm256_sub_pd(iz2,jz2);
1403             dx23             = _mm256_sub_pd(ix2,jx3);
1404             dy23             = _mm256_sub_pd(iy2,jy3);
1405             dz23             = _mm256_sub_pd(iz2,jz3);
1406             dx31             = _mm256_sub_pd(ix3,jx1);
1407             dy31             = _mm256_sub_pd(iy3,jy1);
1408             dz31             = _mm256_sub_pd(iz3,jz1);
1409             dx32             = _mm256_sub_pd(ix3,jx2);
1410             dy32             = _mm256_sub_pd(iy3,jy2);
1411             dz32             = _mm256_sub_pd(iz3,jz2);
1412             dx33             = _mm256_sub_pd(ix3,jx3);
1413             dy33             = _mm256_sub_pd(iy3,jy3);
1414             dz33             = _mm256_sub_pd(iz3,jz3);
1415
1416             /* Calculate squared distance and things based on it */
1417             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
1418             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
1419             rsq13            = gmx_mm256_calc_rsq_pd(dx13,dy13,dz13);
1420             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
1421             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
1422             rsq23            = gmx_mm256_calc_rsq_pd(dx23,dy23,dz23);
1423             rsq31            = gmx_mm256_calc_rsq_pd(dx31,dy31,dz31);
1424             rsq32            = gmx_mm256_calc_rsq_pd(dx32,dy32,dz32);
1425             rsq33            = gmx_mm256_calc_rsq_pd(dx33,dy33,dz33);
1426
1427             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
1428             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
1429             rinv13           = gmx_mm256_invsqrt_pd(rsq13);
1430             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
1431             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
1432             rinv23           = gmx_mm256_invsqrt_pd(rsq23);
1433             rinv31           = gmx_mm256_invsqrt_pd(rsq31);
1434             rinv32           = gmx_mm256_invsqrt_pd(rsq32);
1435             rinv33           = gmx_mm256_invsqrt_pd(rsq33);
1436
1437             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
1438             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
1439             rinvsq13         = _mm256_mul_pd(rinv13,rinv13);
1440             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
1441             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
1442             rinvsq23         = _mm256_mul_pd(rinv23,rinv23);
1443             rinvsq31         = _mm256_mul_pd(rinv31,rinv31);
1444             rinvsq32         = _mm256_mul_pd(rinv32,rinv32);
1445             rinvsq33         = _mm256_mul_pd(rinv33,rinv33);
1446
1447             fjx1             = _mm256_setzero_pd();
1448             fjy1             = _mm256_setzero_pd();
1449             fjz1             = _mm256_setzero_pd();
1450             fjx2             = _mm256_setzero_pd();
1451             fjy2             = _mm256_setzero_pd();
1452             fjz2             = _mm256_setzero_pd();
1453             fjx3             = _mm256_setzero_pd();
1454             fjy3             = _mm256_setzero_pd();
1455             fjz3             = _mm256_setzero_pd();
1456
1457             /**************************
1458              * CALCULATE INTERACTIONS *
1459              **************************/
1460
1461             r11              = _mm256_mul_pd(rsq11,rinv11);
1462
1463             /* EWALD ELECTROSTATICS */
1464
1465             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1466             ewrt             = _mm256_mul_pd(r11,ewtabscale);
1467             ewitab           = _mm256_cvttpd_epi32(ewrt);
1468             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1469             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1470                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1471                                             &ewtabF,&ewtabFn);
1472             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1473             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1474
1475             fscal            = felec;
1476
1477             /* Calculate temporary vectorial force */
1478             tx               = _mm256_mul_pd(fscal,dx11);
1479             ty               = _mm256_mul_pd(fscal,dy11);
1480             tz               = _mm256_mul_pd(fscal,dz11);
1481
1482             /* Update vectorial force */
1483             fix1             = _mm256_add_pd(fix1,tx);
1484             fiy1             = _mm256_add_pd(fiy1,ty);
1485             fiz1             = _mm256_add_pd(fiz1,tz);
1486
1487             fjx1             = _mm256_add_pd(fjx1,tx);
1488             fjy1             = _mm256_add_pd(fjy1,ty);
1489             fjz1             = _mm256_add_pd(fjz1,tz);
1490
1491             /**************************
1492              * CALCULATE INTERACTIONS *
1493              **************************/
1494
1495             r12              = _mm256_mul_pd(rsq12,rinv12);
1496
1497             /* EWALD ELECTROSTATICS */
1498
1499             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1500             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1501             ewitab           = _mm256_cvttpd_epi32(ewrt);
1502             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1503             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1504                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1505                                             &ewtabF,&ewtabFn);
1506             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1507             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1508
1509             fscal            = felec;
1510
1511             /* Calculate temporary vectorial force */
1512             tx               = _mm256_mul_pd(fscal,dx12);
1513             ty               = _mm256_mul_pd(fscal,dy12);
1514             tz               = _mm256_mul_pd(fscal,dz12);
1515
1516             /* Update vectorial force */
1517             fix1             = _mm256_add_pd(fix1,tx);
1518             fiy1             = _mm256_add_pd(fiy1,ty);
1519             fiz1             = _mm256_add_pd(fiz1,tz);
1520
1521             fjx2             = _mm256_add_pd(fjx2,tx);
1522             fjy2             = _mm256_add_pd(fjy2,ty);
1523             fjz2             = _mm256_add_pd(fjz2,tz);
1524
1525             /**************************
1526              * CALCULATE INTERACTIONS *
1527              **************************/
1528
1529             r13              = _mm256_mul_pd(rsq13,rinv13);
1530
1531             /* EWALD ELECTROSTATICS */
1532
1533             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1534             ewrt             = _mm256_mul_pd(r13,ewtabscale);
1535             ewitab           = _mm256_cvttpd_epi32(ewrt);
1536             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1537             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1538                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1539                                             &ewtabF,&ewtabFn);
1540             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1541             felec            = _mm256_mul_pd(_mm256_mul_pd(qq13,rinv13),_mm256_sub_pd(rinvsq13,felec));
1542
1543             fscal            = felec;
1544
1545             /* Calculate temporary vectorial force */
1546             tx               = _mm256_mul_pd(fscal,dx13);
1547             ty               = _mm256_mul_pd(fscal,dy13);
1548             tz               = _mm256_mul_pd(fscal,dz13);
1549
1550             /* Update vectorial force */
1551             fix1             = _mm256_add_pd(fix1,tx);
1552             fiy1             = _mm256_add_pd(fiy1,ty);
1553             fiz1             = _mm256_add_pd(fiz1,tz);
1554
1555             fjx3             = _mm256_add_pd(fjx3,tx);
1556             fjy3             = _mm256_add_pd(fjy3,ty);
1557             fjz3             = _mm256_add_pd(fjz3,tz);
1558
1559             /**************************
1560              * CALCULATE INTERACTIONS *
1561              **************************/
1562
1563             r21              = _mm256_mul_pd(rsq21,rinv21);
1564
1565             /* EWALD ELECTROSTATICS */
1566
1567             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1568             ewrt             = _mm256_mul_pd(r21,ewtabscale);
1569             ewitab           = _mm256_cvttpd_epi32(ewrt);
1570             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1571             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1572                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1573                                             &ewtabF,&ewtabFn);
1574             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1575             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
1576
1577             fscal            = felec;
1578
1579             /* Calculate temporary vectorial force */
1580             tx               = _mm256_mul_pd(fscal,dx21);
1581             ty               = _mm256_mul_pd(fscal,dy21);
1582             tz               = _mm256_mul_pd(fscal,dz21);
1583
1584             /* Update vectorial force */
1585             fix2             = _mm256_add_pd(fix2,tx);
1586             fiy2             = _mm256_add_pd(fiy2,ty);
1587             fiz2             = _mm256_add_pd(fiz2,tz);
1588
1589             fjx1             = _mm256_add_pd(fjx1,tx);
1590             fjy1             = _mm256_add_pd(fjy1,ty);
1591             fjz1             = _mm256_add_pd(fjz1,tz);
1592
1593             /**************************
1594              * CALCULATE INTERACTIONS *
1595              **************************/
1596
1597             r22              = _mm256_mul_pd(rsq22,rinv22);
1598
1599             /* EWALD ELECTROSTATICS */
1600
1601             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1602             ewrt             = _mm256_mul_pd(r22,ewtabscale);
1603             ewitab           = _mm256_cvttpd_epi32(ewrt);
1604             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1605             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1606                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1607                                             &ewtabF,&ewtabFn);
1608             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1609             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
1610
1611             fscal            = felec;
1612
1613             /* Calculate temporary vectorial force */
1614             tx               = _mm256_mul_pd(fscal,dx22);
1615             ty               = _mm256_mul_pd(fscal,dy22);
1616             tz               = _mm256_mul_pd(fscal,dz22);
1617
1618             /* Update vectorial force */
1619             fix2             = _mm256_add_pd(fix2,tx);
1620             fiy2             = _mm256_add_pd(fiy2,ty);
1621             fiz2             = _mm256_add_pd(fiz2,tz);
1622
1623             fjx2             = _mm256_add_pd(fjx2,tx);
1624             fjy2             = _mm256_add_pd(fjy2,ty);
1625             fjz2             = _mm256_add_pd(fjz2,tz);
1626
1627             /**************************
1628              * CALCULATE INTERACTIONS *
1629              **************************/
1630
1631             r23              = _mm256_mul_pd(rsq23,rinv23);
1632
1633             /* EWALD ELECTROSTATICS */
1634
1635             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1636             ewrt             = _mm256_mul_pd(r23,ewtabscale);
1637             ewitab           = _mm256_cvttpd_epi32(ewrt);
1638             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1639             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1640                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1641                                             &ewtabF,&ewtabFn);
1642             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1643             felec            = _mm256_mul_pd(_mm256_mul_pd(qq23,rinv23),_mm256_sub_pd(rinvsq23,felec));
1644
1645             fscal            = felec;
1646
1647             /* Calculate temporary vectorial force */
1648             tx               = _mm256_mul_pd(fscal,dx23);
1649             ty               = _mm256_mul_pd(fscal,dy23);
1650             tz               = _mm256_mul_pd(fscal,dz23);
1651
1652             /* Update vectorial force */
1653             fix2             = _mm256_add_pd(fix2,tx);
1654             fiy2             = _mm256_add_pd(fiy2,ty);
1655             fiz2             = _mm256_add_pd(fiz2,tz);
1656
1657             fjx3             = _mm256_add_pd(fjx3,tx);
1658             fjy3             = _mm256_add_pd(fjy3,ty);
1659             fjz3             = _mm256_add_pd(fjz3,tz);
1660
1661             /**************************
1662              * CALCULATE INTERACTIONS *
1663              **************************/
1664
1665             r31              = _mm256_mul_pd(rsq31,rinv31);
1666
1667             /* EWALD ELECTROSTATICS */
1668
1669             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1670             ewrt             = _mm256_mul_pd(r31,ewtabscale);
1671             ewitab           = _mm256_cvttpd_epi32(ewrt);
1672             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1673             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1674                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1675                                             &ewtabF,&ewtabFn);
1676             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1677             felec            = _mm256_mul_pd(_mm256_mul_pd(qq31,rinv31),_mm256_sub_pd(rinvsq31,felec));
1678
1679             fscal            = felec;
1680
1681             /* Calculate temporary vectorial force */
1682             tx               = _mm256_mul_pd(fscal,dx31);
1683             ty               = _mm256_mul_pd(fscal,dy31);
1684             tz               = _mm256_mul_pd(fscal,dz31);
1685
1686             /* Update vectorial force */
1687             fix3             = _mm256_add_pd(fix3,tx);
1688             fiy3             = _mm256_add_pd(fiy3,ty);
1689             fiz3             = _mm256_add_pd(fiz3,tz);
1690
1691             fjx1             = _mm256_add_pd(fjx1,tx);
1692             fjy1             = _mm256_add_pd(fjy1,ty);
1693             fjz1             = _mm256_add_pd(fjz1,tz);
1694
1695             /**************************
1696              * CALCULATE INTERACTIONS *
1697              **************************/
1698
1699             r32              = _mm256_mul_pd(rsq32,rinv32);
1700
1701             /* EWALD ELECTROSTATICS */
1702
1703             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1704             ewrt             = _mm256_mul_pd(r32,ewtabscale);
1705             ewitab           = _mm256_cvttpd_epi32(ewrt);
1706             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1707             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1708                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1709                                             &ewtabF,&ewtabFn);
1710             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1711             felec            = _mm256_mul_pd(_mm256_mul_pd(qq32,rinv32),_mm256_sub_pd(rinvsq32,felec));
1712
1713             fscal            = felec;
1714
1715             /* Calculate temporary vectorial force */
1716             tx               = _mm256_mul_pd(fscal,dx32);
1717             ty               = _mm256_mul_pd(fscal,dy32);
1718             tz               = _mm256_mul_pd(fscal,dz32);
1719
1720             /* Update vectorial force */
1721             fix3             = _mm256_add_pd(fix3,tx);
1722             fiy3             = _mm256_add_pd(fiy3,ty);
1723             fiz3             = _mm256_add_pd(fiz3,tz);
1724
1725             fjx2             = _mm256_add_pd(fjx2,tx);
1726             fjy2             = _mm256_add_pd(fjy2,ty);
1727             fjz2             = _mm256_add_pd(fjz2,tz);
1728
1729             /**************************
1730              * CALCULATE INTERACTIONS *
1731              **************************/
1732
1733             r33              = _mm256_mul_pd(rsq33,rinv33);
1734
1735             /* EWALD ELECTROSTATICS */
1736
1737             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1738             ewrt             = _mm256_mul_pd(r33,ewtabscale);
1739             ewitab           = _mm256_cvttpd_epi32(ewrt);
1740             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1741             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1742                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1743                                             &ewtabF,&ewtabFn);
1744             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1745             felec            = _mm256_mul_pd(_mm256_mul_pd(qq33,rinv33),_mm256_sub_pd(rinvsq33,felec));
1746
1747             fscal            = felec;
1748
1749             /* Calculate temporary vectorial force */
1750             tx               = _mm256_mul_pd(fscal,dx33);
1751             ty               = _mm256_mul_pd(fscal,dy33);
1752             tz               = _mm256_mul_pd(fscal,dz33);
1753
1754             /* Update vectorial force */
1755             fix3             = _mm256_add_pd(fix3,tx);
1756             fiy3             = _mm256_add_pd(fiy3,ty);
1757             fiz3             = _mm256_add_pd(fiz3,tz);
1758
1759             fjx3             = _mm256_add_pd(fjx3,tx);
1760             fjy3             = _mm256_add_pd(fjy3,ty);
1761             fjz3             = _mm256_add_pd(fjz3,tz);
1762
1763             fjptrA             = f+j_coord_offsetA;
1764             fjptrB             = f+j_coord_offsetB;
1765             fjptrC             = f+j_coord_offsetC;
1766             fjptrD             = f+j_coord_offsetD;
1767
1768             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
1769                                                       fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1770
1771             /* Inner loop uses 324 flops */
1772         }
1773
1774         if(jidx<j_index_end)
1775         {
1776
1777             /* Get j neighbor index, and coordinate index */
1778             jnrlistA         = jjnr[jidx];
1779             jnrlistB         = jjnr[jidx+1];
1780             jnrlistC         = jjnr[jidx+2];
1781             jnrlistD         = jjnr[jidx+3];
1782             /* Sign of each element will be negative for non-real atoms.
1783              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1784              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1785              */
1786             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1787
1788             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1789             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1790             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1791
1792             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1793             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1794             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1795             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1796             j_coord_offsetA  = DIM*jnrA;
1797             j_coord_offsetB  = DIM*jnrB;
1798             j_coord_offsetC  = DIM*jnrC;
1799             j_coord_offsetD  = DIM*jnrD;
1800
1801             /* load j atom coordinates */
1802             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
1803                                                  x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
1804                                                  &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
1805
1806             /* Calculate displacement vector */
1807             dx11             = _mm256_sub_pd(ix1,jx1);
1808             dy11             = _mm256_sub_pd(iy1,jy1);
1809             dz11             = _mm256_sub_pd(iz1,jz1);
1810             dx12             = _mm256_sub_pd(ix1,jx2);
1811             dy12             = _mm256_sub_pd(iy1,jy2);
1812             dz12             = _mm256_sub_pd(iz1,jz2);
1813             dx13             = _mm256_sub_pd(ix1,jx3);
1814             dy13             = _mm256_sub_pd(iy1,jy3);
1815             dz13             = _mm256_sub_pd(iz1,jz3);
1816             dx21             = _mm256_sub_pd(ix2,jx1);
1817             dy21             = _mm256_sub_pd(iy2,jy1);
1818             dz21             = _mm256_sub_pd(iz2,jz1);
1819             dx22             = _mm256_sub_pd(ix2,jx2);
1820             dy22             = _mm256_sub_pd(iy2,jy2);
1821             dz22             = _mm256_sub_pd(iz2,jz2);
1822             dx23             = _mm256_sub_pd(ix2,jx3);
1823             dy23             = _mm256_sub_pd(iy2,jy3);
1824             dz23             = _mm256_sub_pd(iz2,jz3);
1825             dx31             = _mm256_sub_pd(ix3,jx1);
1826             dy31             = _mm256_sub_pd(iy3,jy1);
1827             dz31             = _mm256_sub_pd(iz3,jz1);
1828             dx32             = _mm256_sub_pd(ix3,jx2);
1829             dy32             = _mm256_sub_pd(iy3,jy2);
1830             dz32             = _mm256_sub_pd(iz3,jz2);
1831             dx33             = _mm256_sub_pd(ix3,jx3);
1832             dy33             = _mm256_sub_pd(iy3,jy3);
1833             dz33             = _mm256_sub_pd(iz3,jz3);
1834
1835             /* Calculate squared distance and things based on it */
1836             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
1837             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
1838             rsq13            = gmx_mm256_calc_rsq_pd(dx13,dy13,dz13);
1839             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
1840             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
1841             rsq23            = gmx_mm256_calc_rsq_pd(dx23,dy23,dz23);
1842             rsq31            = gmx_mm256_calc_rsq_pd(dx31,dy31,dz31);
1843             rsq32            = gmx_mm256_calc_rsq_pd(dx32,dy32,dz32);
1844             rsq33            = gmx_mm256_calc_rsq_pd(dx33,dy33,dz33);
1845
1846             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
1847             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
1848             rinv13           = gmx_mm256_invsqrt_pd(rsq13);
1849             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
1850             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
1851             rinv23           = gmx_mm256_invsqrt_pd(rsq23);
1852             rinv31           = gmx_mm256_invsqrt_pd(rsq31);
1853             rinv32           = gmx_mm256_invsqrt_pd(rsq32);
1854             rinv33           = gmx_mm256_invsqrt_pd(rsq33);
1855
1856             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
1857             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
1858             rinvsq13         = _mm256_mul_pd(rinv13,rinv13);
1859             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
1860             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
1861             rinvsq23         = _mm256_mul_pd(rinv23,rinv23);
1862             rinvsq31         = _mm256_mul_pd(rinv31,rinv31);
1863             rinvsq32         = _mm256_mul_pd(rinv32,rinv32);
1864             rinvsq33         = _mm256_mul_pd(rinv33,rinv33);
1865
1866             fjx1             = _mm256_setzero_pd();
1867             fjy1             = _mm256_setzero_pd();
1868             fjz1             = _mm256_setzero_pd();
1869             fjx2             = _mm256_setzero_pd();
1870             fjy2             = _mm256_setzero_pd();
1871             fjz2             = _mm256_setzero_pd();
1872             fjx3             = _mm256_setzero_pd();
1873             fjy3             = _mm256_setzero_pd();
1874             fjz3             = _mm256_setzero_pd();
1875
1876             /**************************
1877              * CALCULATE INTERACTIONS *
1878              **************************/
1879
1880             r11              = _mm256_mul_pd(rsq11,rinv11);
1881             r11              = _mm256_andnot_pd(dummy_mask,r11);
1882
1883             /* EWALD ELECTROSTATICS */
1884
1885             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1886             ewrt             = _mm256_mul_pd(r11,ewtabscale);
1887             ewitab           = _mm256_cvttpd_epi32(ewrt);
1888             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1889             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1890                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1891                                             &ewtabF,&ewtabFn);
1892             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1893             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1894
1895             fscal            = felec;
1896
1897             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1898
1899             /* Calculate temporary vectorial force */
1900             tx               = _mm256_mul_pd(fscal,dx11);
1901             ty               = _mm256_mul_pd(fscal,dy11);
1902             tz               = _mm256_mul_pd(fscal,dz11);
1903
1904             /* Update vectorial force */
1905             fix1             = _mm256_add_pd(fix1,tx);
1906             fiy1             = _mm256_add_pd(fiy1,ty);
1907             fiz1             = _mm256_add_pd(fiz1,tz);
1908
1909             fjx1             = _mm256_add_pd(fjx1,tx);
1910             fjy1             = _mm256_add_pd(fjy1,ty);
1911             fjz1             = _mm256_add_pd(fjz1,tz);
1912
1913             /**************************
1914              * CALCULATE INTERACTIONS *
1915              **************************/
1916
1917             r12              = _mm256_mul_pd(rsq12,rinv12);
1918             r12              = _mm256_andnot_pd(dummy_mask,r12);
1919
1920             /* EWALD ELECTROSTATICS */
1921
1922             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1923             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1924             ewitab           = _mm256_cvttpd_epi32(ewrt);
1925             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1926             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1927                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1928                                             &ewtabF,&ewtabFn);
1929             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1930             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1931
1932             fscal            = felec;
1933
1934             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1935
1936             /* Calculate temporary vectorial force */
1937             tx               = _mm256_mul_pd(fscal,dx12);
1938             ty               = _mm256_mul_pd(fscal,dy12);
1939             tz               = _mm256_mul_pd(fscal,dz12);
1940
1941             /* Update vectorial force */
1942             fix1             = _mm256_add_pd(fix1,tx);
1943             fiy1             = _mm256_add_pd(fiy1,ty);
1944             fiz1             = _mm256_add_pd(fiz1,tz);
1945
1946             fjx2             = _mm256_add_pd(fjx2,tx);
1947             fjy2             = _mm256_add_pd(fjy2,ty);
1948             fjz2             = _mm256_add_pd(fjz2,tz);
1949
1950             /**************************
1951              * CALCULATE INTERACTIONS *
1952              **************************/
1953
1954             r13              = _mm256_mul_pd(rsq13,rinv13);
1955             r13              = _mm256_andnot_pd(dummy_mask,r13);
1956
1957             /* EWALD ELECTROSTATICS */
1958
1959             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1960             ewrt             = _mm256_mul_pd(r13,ewtabscale);
1961             ewitab           = _mm256_cvttpd_epi32(ewrt);
1962             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1963             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1964                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1965                                             &ewtabF,&ewtabFn);
1966             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1967             felec            = _mm256_mul_pd(_mm256_mul_pd(qq13,rinv13),_mm256_sub_pd(rinvsq13,felec));
1968
1969             fscal            = felec;
1970
1971             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1972
1973             /* Calculate temporary vectorial force */
1974             tx               = _mm256_mul_pd(fscal,dx13);
1975             ty               = _mm256_mul_pd(fscal,dy13);
1976             tz               = _mm256_mul_pd(fscal,dz13);
1977
1978             /* Update vectorial force */
1979             fix1             = _mm256_add_pd(fix1,tx);
1980             fiy1             = _mm256_add_pd(fiy1,ty);
1981             fiz1             = _mm256_add_pd(fiz1,tz);
1982
1983             fjx3             = _mm256_add_pd(fjx3,tx);
1984             fjy3             = _mm256_add_pd(fjy3,ty);
1985             fjz3             = _mm256_add_pd(fjz3,tz);
1986
1987             /**************************
1988              * CALCULATE INTERACTIONS *
1989              **************************/
1990
1991             r21              = _mm256_mul_pd(rsq21,rinv21);
1992             r21              = _mm256_andnot_pd(dummy_mask,r21);
1993
1994             /* EWALD ELECTROSTATICS */
1995
1996             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1997             ewrt             = _mm256_mul_pd(r21,ewtabscale);
1998             ewitab           = _mm256_cvttpd_epi32(ewrt);
1999             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2000             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2001                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2002                                             &ewtabF,&ewtabFn);
2003             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2004             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
2005
2006             fscal            = felec;
2007
2008             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2009
2010             /* Calculate temporary vectorial force */
2011             tx               = _mm256_mul_pd(fscal,dx21);
2012             ty               = _mm256_mul_pd(fscal,dy21);
2013             tz               = _mm256_mul_pd(fscal,dz21);
2014
2015             /* Update vectorial force */
2016             fix2             = _mm256_add_pd(fix2,tx);
2017             fiy2             = _mm256_add_pd(fiy2,ty);
2018             fiz2             = _mm256_add_pd(fiz2,tz);
2019
2020             fjx1             = _mm256_add_pd(fjx1,tx);
2021             fjy1             = _mm256_add_pd(fjy1,ty);
2022             fjz1             = _mm256_add_pd(fjz1,tz);
2023
2024             /**************************
2025              * CALCULATE INTERACTIONS *
2026              **************************/
2027
2028             r22              = _mm256_mul_pd(rsq22,rinv22);
2029             r22              = _mm256_andnot_pd(dummy_mask,r22);
2030
2031             /* EWALD ELECTROSTATICS */
2032
2033             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2034             ewrt             = _mm256_mul_pd(r22,ewtabscale);
2035             ewitab           = _mm256_cvttpd_epi32(ewrt);
2036             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2037             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2038                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2039                                             &ewtabF,&ewtabFn);
2040             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2041             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
2042
2043             fscal            = felec;
2044
2045             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2046
2047             /* Calculate temporary vectorial force */
2048             tx               = _mm256_mul_pd(fscal,dx22);
2049             ty               = _mm256_mul_pd(fscal,dy22);
2050             tz               = _mm256_mul_pd(fscal,dz22);
2051
2052             /* Update vectorial force */
2053             fix2             = _mm256_add_pd(fix2,tx);
2054             fiy2             = _mm256_add_pd(fiy2,ty);
2055             fiz2             = _mm256_add_pd(fiz2,tz);
2056
2057             fjx2             = _mm256_add_pd(fjx2,tx);
2058             fjy2             = _mm256_add_pd(fjy2,ty);
2059             fjz2             = _mm256_add_pd(fjz2,tz);
2060
2061             /**************************
2062              * CALCULATE INTERACTIONS *
2063              **************************/
2064
2065             r23              = _mm256_mul_pd(rsq23,rinv23);
2066             r23              = _mm256_andnot_pd(dummy_mask,r23);
2067
2068             /* EWALD ELECTROSTATICS */
2069
2070             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2071             ewrt             = _mm256_mul_pd(r23,ewtabscale);
2072             ewitab           = _mm256_cvttpd_epi32(ewrt);
2073             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2074             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2075                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2076                                             &ewtabF,&ewtabFn);
2077             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2078             felec            = _mm256_mul_pd(_mm256_mul_pd(qq23,rinv23),_mm256_sub_pd(rinvsq23,felec));
2079
2080             fscal            = felec;
2081
2082             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2083
2084             /* Calculate temporary vectorial force */
2085             tx               = _mm256_mul_pd(fscal,dx23);
2086             ty               = _mm256_mul_pd(fscal,dy23);
2087             tz               = _mm256_mul_pd(fscal,dz23);
2088
2089             /* Update vectorial force */
2090             fix2             = _mm256_add_pd(fix2,tx);
2091             fiy2             = _mm256_add_pd(fiy2,ty);
2092             fiz2             = _mm256_add_pd(fiz2,tz);
2093
2094             fjx3             = _mm256_add_pd(fjx3,tx);
2095             fjy3             = _mm256_add_pd(fjy3,ty);
2096             fjz3             = _mm256_add_pd(fjz3,tz);
2097
2098             /**************************
2099              * CALCULATE INTERACTIONS *
2100              **************************/
2101
2102             r31              = _mm256_mul_pd(rsq31,rinv31);
2103             r31              = _mm256_andnot_pd(dummy_mask,r31);
2104
2105             /* EWALD ELECTROSTATICS */
2106
2107             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2108             ewrt             = _mm256_mul_pd(r31,ewtabscale);
2109             ewitab           = _mm256_cvttpd_epi32(ewrt);
2110             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2111             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2112                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2113                                             &ewtabF,&ewtabFn);
2114             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2115             felec            = _mm256_mul_pd(_mm256_mul_pd(qq31,rinv31),_mm256_sub_pd(rinvsq31,felec));
2116
2117             fscal            = felec;
2118
2119             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2120
2121             /* Calculate temporary vectorial force */
2122             tx               = _mm256_mul_pd(fscal,dx31);
2123             ty               = _mm256_mul_pd(fscal,dy31);
2124             tz               = _mm256_mul_pd(fscal,dz31);
2125
2126             /* Update vectorial force */
2127             fix3             = _mm256_add_pd(fix3,tx);
2128             fiy3             = _mm256_add_pd(fiy3,ty);
2129             fiz3             = _mm256_add_pd(fiz3,tz);
2130
2131             fjx1             = _mm256_add_pd(fjx1,tx);
2132             fjy1             = _mm256_add_pd(fjy1,ty);
2133             fjz1             = _mm256_add_pd(fjz1,tz);
2134
2135             /**************************
2136              * CALCULATE INTERACTIONS *
2137              **************************/
2138
2139             r32              = _mm256_mul_pd(rsq32,rinv32);
2140             r32              = _mm256_andnot_pd(dummy_mask,r32);
2141
2142             /* EWALD ELECTROSTATICS */
2143
2144             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2145             ewrt             = _mm256_mul_pd(r32,ewtabscale);
2146             ewitab           = _mm256_cvttpd_epi32(ewrt);
2147             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2148             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2149                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2150                                             &ewtabF,&ewtabFn);
2151             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2152             felec            = _mm256_mul_pd(_mm256_mul_pd(qq32,rinv32),_mm256_sub_pd(rinvsq32,felec));
2153
2154             fscal            = felec;
2155
2156             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2157
2158             /* Calculate temporary vectorial force */
2159             tx               = _mm256_mul_pd(fscal,dx32);
2160             ty               = _mm256_mul_pd(fscal,dy32);
2161             tz               = _mm256_mul_pd(fscal,dz32);
2162
2163             /* Update vectorial force */
2164             fix3             = _mm256_add_pd(fix3,tx);
2165             fiy3             = _mm256_add_pd(fiy3,ty);
2166             fiz3             = _mm256_add_pd(fiz3,tz);
2167
2168             fjx2             = _mm256_add_pd(fjx2,tx);
2169             fjy2             = _mm256_add_pd(fjy2,ty);
2170             fjz2             = _mm256_add_pd(fjz2,tz);
2171
2172             /**************************
2173              * CALCULATE INTERACTIONS *
2174              **************************/
2175
2176             r33              = _mm256_mul_pd(rsq33,rinv33);
2177             r33              = _mm256_andnot_pd(dummy_mask,r33);
2178
2179             /* EWALD ELECTROSTATICS */
2180
2181             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2182             ewrt             = _mm256_mul_pd(r33,ewtabscale);
2183             ewitab           = _mm256_cvttpd_epi32(ewrt);
2184             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2185             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2186                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2187                                             &ewtabF,&ewtabFn);
2188             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2189             felec            = _mm256_mul_pd(_mm256_mul_pd(qq33,rinv33),_mm256_sub_pd(rinvsq33,felec));
2190
2191             fscal            = felec;
2192
2193             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2194
2195             /* Calculate temporary vectorial force */
2196             tx               = _mm256_mul_pd(fscal,dx33);
2197             ty               = _mm256_mul_pd(fscal,dy33);
2198             tz               = _mm256_mul_pd(fscal,dz33);
2199
2200             /* Update vectorial force */
2201             fix3             = _mm256_add_pd(fix3,tx);
2202             fiy3             = _mm256_add_pd(fiy3,ty);
2203             fiz3             = _mm256_add_pd(fiz3,tz);
2204
2205             fjx3             = _mm256_add_pd(fjx3,tx);
2206             fjy3             = _mm256_add_pd(fjy3,ty);
2207             fjz3             = _mm256_add_pd(fjz3,tz);
2208
2209             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2210             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2211             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2212             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2213
2214             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
2215                                                       fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2216
2217             /* Inner loop uses 333 flops */
2218         }
2219
2220         /* End of innermost loop */
2221
2222         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2223                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
2224
2225         /* Increment number of inner iterations */
2226         inneriter                  += j_index_end - j_index_start;
2227
2228         /* Outer loop uses 18 flops */
2229     }
2230
2231     /* Increment number of outer iterations */
2232     outeriter        += nri;
2233
2234     /* Update outer/inner flops */
2235
2236     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_F,outeriter*18 + inneriter*333);
2237 }