Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwNone_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_avx_256_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr1;
84     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     real *           vdwioffsetptr2;
86     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     real *           vdwioffsetptr3;
88     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     __m128i          ewitab;
97     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
99     real             *ewtab;
100     __m256d          dummy_mask,cutoff_mask;
101     __m128           tmpmask0,tmpmask1;
102     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
103     __m256d          one     = _mm256_set1_pd(1.0);
104     __m256d          two     = _mm256_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm256_set1_pd(fr->ic->epsfac);
117     charge           = mdatoms->chargeA;
118
119     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
120     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
121     beta2            = _mm256_mul_pd(beta,beta);
122     beta3            = _mm256_mul_pd(beta,beta2);
123
124     ewtab            = fr->ic->tabq_coul_FDV0;
125     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
126     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
131     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
132     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
165                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
166
167         fix1             = _mm256_setzero_pd();
168         fiy1             = _mm256_setzero_pd();
169         fiz1             = _mm256_setzero_pd();
170         fix2             = _mm256_setzero_pd();
171         fiy2             = _mm256_setzero_pd();
172         fiz2             = _mm256_setzero_pd();
173         fix3             = _mm256_setzero_pd();
174         fiy3             = _mm256_setzero_pd();
175         fiz3             = _mm256_setzero_pd();
176
177         /* Reset potential sums */
178         velecsum         = _mm256_setzero_pd();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
196                                                  x+j_coord_offsetC,x+j_coord_offsetD,
197                                                  &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx10             = _mm256_sub_pd(ix1,jx0);
201             dy10             = _mm256_sub_pd(iy1,jy0);
202             dz10             = _mm256_sub_pd(iz1,jz0);
203             dx20             = _mm256_sub_pd(ix2,jx0);
204             dy20             = _mm256_sub_pd(iy2,jy0);
205             dz20             = _mm256_sub_pd(iz2,jz0);
206             dx30             = _mm256_sub_pd(ix3,jx0);
207             dy30             = _mm256_sub_pd(iy3,jy0);
208             dz30             = _mm256_sub_pd(iz3,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
212             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
213             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
214
215             rinv10           = avx256_invsqrt_d(rsq10);
216             rinv20           = avx256_invsqrt_d(rsq20);
217             rinv30           = avx256_invsqrt_d(rsq30);
218
219             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
220             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
221             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
225                                                                  charge+jnrC+0,charge+jnrD+0);
226
227             fjx0             = _mm256_setzero_pd();
228             fjy0             = _mm256_setzero_pd();
229             fjz0             = _mm256_setzero_pd();
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             r10              = _mm256_mul_pd(rsq10,rinv10);
236
237             /* Compute parameters for interactions between i and j atoms */
238             qq10             = _mm256_mul_pd(iq1,jq0);
239
240             /* EWALD ELECTROSTATICS */
241
242             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
243             ewrt             = _mm256_mul_pd(r10,ewtabscale);
244             ewitab           = _mm256_cvttpd_epi32(ewrt);
245             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
246             ewitab           = _mm_slli_epi32(ewitab,2);
247             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
248             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
249             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
250             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
251             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
252             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
253             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
254             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
255             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
256
257             /* Update potential sum for this i atom from the interaction with this j atom. */
258             velecsum         = _mm256_add_pd(velecsum,velec);
259
260             fscal            = felec;
261
262             /* Calculate temporary vectorial force */
263             tx               = _mm256_mul_pd(fscal,dx10);
264             ty               = _mm256_mul_pd(fscal,dy10);
265             tz               = _mm256_mul_pd(fscal,dz10);
266
267             /* Update vectorial force */
268             fix1             = _mm256_add_pd(fix1,tx);
269             fiy1             = _mm256_add_pd(fiy1,ty);
270             fiz1             = _mm256_add_pd(fiz1,tz);
271
272             fjx0             = _mm256_add_pd(fjx0,tx);
273             fjy0             = _mm256_add_pd(fjy0,ty);
274             fjz0             = _mm256_add_pd(fjz0,tz);
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             r20              = _mm256_mul_pd(rsq20,rinv20);
281
282             /* Compute parameters for interactions between i and j atoms */
283             qq20             = _mm256_mul_pd(iq2,jq0);
284
285             /* EWALD ELECTROSTATICS */
286
287             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
288             ewrt             = _mm256_mul_pd(r20,ewtabscale);
289             ewitab           = _mm256_cvttpd_epi32(ewrt);
290             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
291             ewitab           = _mm_slli_epi32(ewitab,2);
292             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
293             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
294             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
295             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
296             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
297             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
298             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
299             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
300             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             velecsum         = _mm256_add_pd(velecsum,velec);
304
305             fscal            = felec;
306
307             /* Calculate temporary vectorial force */
308             tx               = _mm256_mul_pd(fscal,dx20);
309             ty               = _mm256_mul_pd(fscal,dy20);
310             tz               = _mm256_mul_pd(fscal,dz20);
311
312             /* Update vectorial force */
313             fix2             = _mm256_add_pd(fix2,tx);
314             fiy2             = _mm256_add_pd(fiy2,ty);
315             fiz2             = _mm256_add_pd(fiz2,tz);
316
317             fjx0             = _mm256_add_pd(fjx0,tx);
318             fjy0             = _mm256_add_pd(fjy0,ty);
319             fjz0             = _mm256_add_pd(fjz0,tz);
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             r30              = _mm256_mul_pd(rsq30,rinv30);
326
327             /* Compute parameters for interactions between i and j atoms */
328             qq30             = _mm256_mul_pd(iq3,jq0);
329
330             /* EWALD ELECTROSTATICS */
331
332             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
333             ewrt             = _mm256_mul_pd(r30,ewtabscale);
334             ewitab           = _mm256_cvttpd_epi32(ewrt);
335             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
336             ewitab           = _mm_slli_epi32(ewitab,2);
337             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
338             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
339             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
340             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
341             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
342             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
343             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
344             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
345             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velecsum         = _mm256_add_pd(velecsum,velec);
349
350             fscal            = felec;
351
352             /* Calculate temporary vectorial force */
353             tx               = _mm256_mul_pd(fscal,dx30);
354             ty               = _mm256_mul_pd(fscal,dy30);
355             tz               = _mm256_mul_pd(fscal,dz30);
356
357             /* Update vectorial force */
358             fix3             = _mm256_add_pd(fix3,tx);
359             fiy3             = _mm256_add_pd(fiy3,ty);
360             fiz3             = _mm256_add_pd(fiz3,tz);
361
362             fjx0             = _mm256_add_pd(fjx0,tx);
363             fjy0             = _mm256_add_pd(fjy0,ty);
364             fjz0             = _mm256_add_pd(fjz0,tz);
365
366             fjptrA             = f+j_coord_offsetA;
367             fjptrB             = f+j_coord_offsetB;
368             fjptrC             = f+j_coord_offsetC;
369             fjptrD             = f+j_coord_offsetD;
370
371             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
372
373             /* Inner loop uses 126 flops */
374         }
375
376         if(jidx<j_index_end)
377         {
378
379             /* Get j neighbor index, and coordinate index */
380             jnrlistA         = jjnr[jidx];
381             jnrlistB         = jjnr[jidx+1];
382             jnrlistC         = jjnr[jidx+2];
383             jnrlistD         = jjnr[jidx+3];
384             /* Sign of each element will be negative for non-real atoms.
385              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
386              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
387              */
388             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
389
390             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
391             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
392             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
393
394             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
395             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
396             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
397             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
398             j_coord_offsetA  = DIM*jnrA;
399             j_coord_offsetB  = DIM*jnrB;
400             j_coord_offsetC  = DIM*jnrC;
401             j_coord_offsetD  = DIM*jnrD;
402
403             /* load j atom coordinates */
404             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
405                                                  x+j_coord_offsetC,x+j_coord_offsetD,
406                                                  &jx0,&jy0,&jz0);
407
408             /* Calculate displacement vector */
409             dx10             = _mm256_sub_pd(ix1,jx0);
410             dy10             = _mm256_sub_pd(iy1,jy0);
411             dz10             = _mm256_sub_pd(iz1,jz0);
412             dx20             = _mm256_sub_pd(ix2,jx0);
413             dy20             = _mm256_sub_pd(iy2,jy0);
414             dz20             = _mm256_sub_pd(iz2,jz0);
415             dx30             = _mm256_sub_pd(ix3,jx0);
416             dy30             = _mm256_sub_pd(iy3,jy0);
417             dz30             = _mm256_sub_pd(iz3,jz0);
418
419             /* Calculate squared distance and things based on it */
420             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
421             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
422             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
423
424             rinv10           = avx256_invsqrt_d(rsq10);
425             rinv20           = avx256_invsqrt_d(rsq20);
426             rinv30           = avx256_invsqrt_d(rsq30);
427
428             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
429             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
430             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
431
432             /* Load parameters for j particles */
433             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
434                                                                  charge+jnrC+0,charge+jnrD+0);
435
436             fjx0             = _mm256_setzero_pd();
437             fjy0             = _mm256_setzero_pd();
438             fjz0             = _mm256_setzero_pd();
439
440             /**************************
441              * CALCULATE INTERACTIONS *
442              **************************/
443
444             r10              = _mm256_mul_pd(rsq10,rinv10);
445             r10              = _mm256_andnot_pd(dummy_mask,r10);
446
447             /* Compute parameters for interactions between i and j atoms */
448             qq10             = _mm256_mul_pd(iq1,jq0);
449
450             /* EWALD ELECTROSTATICS */
451
452             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
453             ewrt             = _mm256_mul_pd(r10,ewtabscale);
454             ewitab           = _mm256_cvttpd_epi32(ewrt);
455             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
456             ewitab           = _mm_slli_epi32(ewitab,2);
457             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
458             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
459             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
460             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
461             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
462             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
463             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
464             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
465             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
466
467             /* Update potential sum for this i atom from the interaction with this j atom. */
468             velec            = _mm256_andnot_pd(dummy_mask,velec);
469             velecsum         = _mm256_add_pd(velecsum,velec);
470
471             fscal            = felec;
472
473             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
474
475             /* Calculate temporary vectorial force */
476             tx               = _mm256_mul_pd(fscal,dx10);
477             ty               = _mm256_mul_pd(fscal,dy10);
478             tz               = _mm256_mul_pd(fscal,dz10);
479
480             /* Update vectorial force */
481             fix1             = _mm256_add_pd(fix1,tx);
482             fiy1             = _mm256_add_pd(fiy1,ty);
483             fiz1             = _mm256_add_pd(fiz1,tz);
484
485             fjx0             = _mm256_add_pd(fjx0,tx);
486             fjy0             = _mm256_add_pd(fjy0,ty);
487             fjz0             = _mm256_add_pd(fjz0,tz);
488
489             /**************************
490              * CALCULATE INTERACTIONS *
491              **************************/
492
493             r20              = _mm256_mul_pd(rsq20,rinv20);
494             r20              = _mm256_andnot_pd(dummy_mask,r20);
495
496             /* Compute parameters for interactions between i and j atoms */
497             qq20             = _mm256_mul_pd(iq2,jq0);
498
499             /* EWALD ELECTROSTATICS */
500
501             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
502             ewrt             = _mm256_mul_pd(r20,ewtabscale);
503             ewitab           = _mm256_cvttpd_epi32(ewrt);
504             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
505             ewitab           = _mm_slli_epi32(ewitab,2);
506             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
507             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
508             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
509             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
510             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
511             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
512             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
513             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
514             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
515
516             /* Update potential sum for this i atom from the interaction with this j atom. */
517             velec            = _mm256_andnot_pd(dummy_mask,velec);
518             velecsum         = _mm256_add_pd(velecsum,velec);
519
520             fscal            = felec;
521
522             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
523
524             /* Calculate temporary vectorial force */
525             tx               = _mm256_mul_pd(fscal,dx20);
526             ty               = _mm256_mul_pd(fscal,dy20);
527             tz               = _mm256_mul_pd(fscal,dz20);
528
529             /* Update vectorial force */
530             fix2             = _mm256_add_pd(fix2,tx);
531             fiy2             = _mm256_add_pd(fiy2,ty);
532             fiz2             = _mm256_add_pd(fiz2,tz);
533
534             fjx0             = _mm256_add_pd(fjx0,tx);
535             fjy0             = _mm256_add_pd(fjy0,ty);
536             fjz0             = _mm256_add_pd(fjz0,tz);
537
538             /**************************
539              * CALCULATE INTERACTIONS *
540              **************************/
541
542             r30              = _mm256_mul_pd(rsq30,rinv30);
543             r30              = _mm256_andnot_pd(dummy_mask,r30);
544
545             /* Compute parameters for interactions between i and j atoms */
546             qq30             = _mm256_mul_pd(iq3,jq0);
547
548             /* EWALD ELECTROSTATICS */
549
550             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
551             ewrt             = _mm256_mul_pd(r30,ewtabscale);
552             ewitab           = _mm256_cvttpd_epi32(ewrt);
553             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
554             ewitab           = _mm_slli_epi32(ewitab,2);
555             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
556             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
557             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
558             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
559             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
560             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
561             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
562             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
563             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
564
565             /* Update potential sum for this i atom from the interaction with this j atom. */
566             velec            = _mm256_andnot_pd(dummy_mask,velec);
567             velecsum         = _mm256_add_pd(velecsum,velec);
568
569             fscal            = felec;
570
571             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
572
573             /* Calculate temporary vectorial force */
574             tx               = _mm256_mul_pd(fscal,dx30);
575             ty               = _mm256_mul_pd(fscal,dy30);
576             tz               = _mm256_mul_pd(fscal,dz30);
577
578             /* Update vectorial force */
579             fix3             = _mm256_add_pd(fix3,tx);
580             fiy3             = _mm256_add_pd(fiy3,ty);
581             fiz3             = _mm256_add_pd(fiz3,tz);
582
583             fjx0             = _mm256_add_pd(fjx0,tx);
584             fjy0             = _mm256_add_pd(fjy0,ty);
585             fjz0             = _mm256_add_pd(fjz0,tz);
586
587             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
588             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
589             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
590             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
591
592             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
593
594             /* Inner loop uses 129 flops */
595         }
596
597         /* End of innermost loop */
598
599         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
600                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
601
602         ggid                        = gid[iidx];
603         /* Update potential energies */
604         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
605
606         /* Increment number of inner iterations */
607         inneriter                  += j_index_end - j_index_start;
608
609         /* Outer loop uses 19 flops */
610     }
611
612     /* Increment number of outer iterations */
613     outeriter        += nri;
614
615     /* Update outer/inner flops */
616
617     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*129);
618 }
619 /*
620  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_avx_256_double
621  * Electrostatics interaction: Ewald
622  * VdW interaction:            None
623  * Geometry:                   Water4-Particle
624  * Calculate force/pot:        Force
625  */
626 void
627 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_avx_256_double
628                     (t_nblist                    * gmx_restrict       nlist,
629                      rvec                        * gmx_restrict          xx,
630                      rvec                        * gmx_restrict          ff,
631                      struct t_forcerec           * gmx_restrict          fr,
632                      t_mdatoms                   * gmx_restrict     mdatoms,
633                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
634                      t_nrnb                      * gmx_restrict        nrnb)
635 {
636     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
637      * just 0 for non-waters.
638      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
639      * jnr indices corresponding to data put in the four positions in the SIMD register.
640      */
641     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
642     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
643     int              jnrA,jnrB,jnrC,jnrD;
644     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
645     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
646     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
647     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
648     real             rcutoff_scalar;
649     real             *shiftvec,*fshift,*x,*f;
650     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
651     real             scratch[4*DIM];
652     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
653     real *           vdwioffsetptr1;
654     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
655     real *           vdwioffsetptr2;
656     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
657     real *           vdwioffsetptr3;
658     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
659     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
660     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
661     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
662     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
663     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
664     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
665     real             *charge;
666     __m128i          ewitab;
667     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
668     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
669     real             *ewtab;
670     __m256d          dummy_mask,cutoff_mask;
671     __m128           tmpmask0,tmpmask1;
672     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
673     __m256d          one     = _mm256_set1_pd(1.0);
674     __m256d          two     = _mm256_set1_pd(2.0);
675     x                = xx[0];
676     f                = ff[0];
677
678     nri              = nlist->nri;
679     iinr             = nlist->iinr;
680     jindex           = nlist->jindex;
681     jjnr             = nlist->jjnr;
682     shiftidx         = nlist->shift;
683     gid              = nlist->gid;
684     shiftvec         = fr->shift_vec[0];
685     fshift           = fr->fshift[0];
686     facel            = _mm256_set1_pd(fr->ic->epsfac);
687     charge           = mdatoms->chargeA;
688
689     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
690     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
691     beta2            = _mm256_mul_pd(beta,beta);
692     beta3            = _mm256_mul_pd(beta,beta2);
693
694     ewtab            = fr->ic->tabq_coul_F;
695     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
696     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
697
698     /* Setup water-specific parameters */
699     inr              = nlist->iinr[0];
700     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
701     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
702     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
703
704     /* Avoid stupid compiler warnings */
705     jnrA = jnrB = jnrC = jnrD = 0;
706     j_coord_offsetA = 0;
707     j_coord_offsetB = 0;
708     j_coord_offsetC = 0;
709     j_coord_offsetD = 0;
710
711     outeriter        = 0;
712     inneriter        = 0;
713
714     for(iidx=0;iidx<4*DIM;iidx++)
715     {
716         scratch[iidx] = 0.0;
717     }
718
719     /* Start outer loop over neighborlists */
720     for(iidx=0; iidx<nri; iidx++)
721     {
722         /* Load shift vector for this list */
723         i_shift_offset   = DIM*shiftidx[iidx];
724
725         /* Load limits for loop over neighbors */
726         j_index_start    = jindex[iidx];
727         j_index_end      = jindex[iidx+1];
728
729         /* Get outer coordinate index */
730         inr              = iinr[iidx];
731         i_coord_offset   = DIM*inr;
732
733         /* Load i particle coords and add shift vector */
734         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
735                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
736
737         fix1             = _mm256_setzero_pd();
738         fiy1             = _mm256_setzero_pd();
739         fiz1             = _mm256_setzero_pd();
740         fix2             = _mm256_setzero_pd();
741         fiy2             = _mm256_setzero_pd();
742         fiz2             = _mm256_setzero_pd();
743         fix3             = _mm256_setzero_pd();
744         fiy3             = _mm256_setzero_pd();
745         fiz3             = _mm256_setzero_pd();
746
747         /* Start inner kernel loop */
748         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
749         {
750
751             /* Get j neighbor index, and coordinate index */
752             jnrA             = jjnr[jidx];
753             jnrB             = jjnr[jidx+1];
754             jnrC             = jjnr[jidx+2];
755             jnrD             = jjnr[jidx+3];
756             j_coord_offsetA  = DIM*jnrA;
757             j_coord_offsetB  = DIM*jnrB;
758             j_coord_offsetC  = DIM*jnrC;
759             j_coord_offsetD  = DIM*jnrD;
760
761             /* load j atom coordinates */
762             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
763                                                  x+j_coord_offsetC,x+j_coord_offsetD,
764                                                  &jx0,&jy0,&jz0);
765
766             /* Calculate displacement vector */
767             dx10             = _mm256_sub_pd(ix1,jx0);
768             dy10             = _mm256_sub_pd(iy1,jy0);
769             dz10             = _mm256_sub_pd(iz1,jz0);
770             dx20             = _mm256_sub_pd(ix2,jx0);
771             dy20             = _mm256_sub_pd(iy2,jy0);
772             dz20             = _mm256_sub_pd(iz2,jz0);
773             dx30             = _mm256_sub_pd(ix3,jx0);
774             dy30             = _mm256_sub_pd(iy3,jy0);
775             dz30             = _mm256_sub_pd(iz3,jz0);
776
777             /* Calculate squared distance and things based on it */
778             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
779             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
780             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
781
782             rinv10           = avx256_invsqrt_d(rsq10);
783             rinv20           = avx256_invsqrt_d(rsq20);
784             rinv30           = avx256_invsqrt_d(rsq30);
785
786             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
787             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
788             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
789
790             /* Load parameters for j particles */
791             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
792                                                                  charge+jnrC+0,charge+jnrD+0);
793
794             fjx0             = _mm256_setzero_pd();
795             fjy0             = _mm256_setzero_pd();
796             fjz0             = _mm256_setzero_pd();
797
798             /**************************
799              * CALCULATE INTERACTIONS *
800              **************************/
801
802             r10              = _mm256_mul_pd(rsq10,rinv10);
803
804             /* Compute parameters for interactions between i and j atoms */
805             qq10             = _mm256_mul_pd(iq1,jq0);
806
807             /* EWALD ELECTROSTATICS */
808
809             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
810             ewrt             = _mm256_mul_pd(r10,ewtabscale);
811             ewitab           = _mm256_cvttpd_epi32(ewrt);
812             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
813             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
814                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
815                                             &ewtabF,&ewtabFn);
816             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
817             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
818
819             fscal            = felec;
820
821             /* Calculate temporary vectorial force */
822             tx               = _mm256_mul_pd(fscal,dx10);
823             ty               = _mm256_mul_pd(fscal,dy10);
824             tz               = _mm256_mul_pd(fscal,dz10);
825
826             /* Update vectorial force */
827             fix1             = _mm256_add_pd(fix1,tx);
828             fiy1             = _mm256_add_pd(fiy1,ty);
829             fiz1             = _mm256_add_pd(fiz1,tz);
830
831             fjx0             = _mm256_add_pd(fjx0,tx);
832             fjy0             = _mm256_add_pd(fjy0,ty);
833             fjz0             = _mm256_add_pd(fjz0,tz);
834
835             /**************************
836              * CALCULATE INTERACTIONS *
837              **************************/
838
839             r20              = _mm256_mul_pd(rsq20,rinv20);
840
841             /* Compute parameters for interactions between i and j atoms */
842             qq20             = _mm256_mul_pd(iq2,jq0);
843
844             /* EWALD ELECTROSTATICS */
845
846             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
847             ewrt             = _mm256_mul_pd(r20,ewtabscale);
848             ewitab           = _mm256_cvttpd_epi32(ewrt);
849             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
850             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
851                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
852                                             &ewtabF,&ewtabFn);
853             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
854             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
855
856             fscal            = felec;
857
858             /* Calculate temporary vectorial force */
859             tx               = _mm256_mul_pd(fscal,dx20);
860             ty               = _mm256_mul_pd(fscal,dy20);
861             tz               = _mm256_mul_pd(fscal,dz20);
862
863             /* Update vectorial force */
864             fix2             = _mm256_add_pd(fix2,tx);
865             fiy2             = _mm256_add_pd(fiy2,ty);
866             fiz2             = _mm256_add_pd(fiz2,tz);
867
868             fjx0             = _mm256_add_pd(fjx0,tx);
869             fjy0             = _mm256_add_pd(fjy0,ty);
870             fjz0             = _mm256_add_pd(fjz0,tz);
871
872             /**************************
873              * CALCULATE INTERACTIONS *
874              **************************/
875
876             r30              = _mm256_mul_pd(rsq30,rinv30);
877
878             /* Compute parameters for interactions between i and j atoms */
879             qq30             = _mm256_mul_pd(iq3,jq0);
880
881             /* EWALD ELECTROSTATICS */
882
883             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
884             ewrt             = _mm256_mul_pd(r30,ewtabscale);
885             ewitab           = _mm256_cvttpd_epi32(ewrt);
886             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
887             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
888                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
889                                             &ewtabF,&ewtabFn);
890             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
891             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
892
893             fscal            = felec;
894
895             /* Calculate temporary vectorial force */
896             tx               = _mm256_mul_pd(fscal,dx30);
897             ty               = _mm256_mul_pd(fscal,dy30);
898             tz               = _mm256_mul_pd(fscal,dz30);
899
900             /* Update vectorial force */
901             fix3             = _mm256_add_pd(fix3,tx);
902             fiy3             = _mm256_add_pd(fiy3,ty);
903             fiz3             = _mm256_add_pd(fiz3,tz);
904
905             fjx0             = _mm256_add_pd(fjx0,tx);
906             fjy0             = _mm256_add_pd(fjy0,ty);
907             fjz0             = _mm256_add_pd(fjz0,tz);
908
909             fjptrA             = f+j_coord_offsetA;
910             fjptrB             = f+j_coord_offsetB;
911             fjptrC             = f+j_coord_offsetC;
912             fjptrD             = f+j_coord_offsetD;
913
914             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
915
916             /* Inner loop uses 111 flops */
917         }
918
919         if(jidx<j_index_end)
920         {
921
922             /* Get j neighbor index, and coordinate index */
923             jnrlistA         = jjnr[jidx];
924             jnrlistB         = jjnr[jidx+1];
925             jnrlistC         = jjnr[jidx+2];
926             jnrlistD         = jjnr[jidx+3];
927             /* Sign of each element will be negative for non-real atoms.
928              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
929              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
930              */
931             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
932
933             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
934             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
935             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
936
937             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
938             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
939             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
940             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
941             j_coord_offsetA  = DIM*jnrA;
942             j_coord_offsetB  = DIM*jnrB;
943             j_coord_offsetC  = DIM*jnrC;
944             j_coord_offsetD  = DIM*jnrD;
945
946             /* load j atom coordinates */
947             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
948                                                  x+j_coord_offsetC,x+j_coord_offsetD,
949                                                  &jx0,&jy0,&jz0);
950
951             /* Calculate displacement vector */
952             dx10             = _mm256_sub_pd(ix1,jx0);
953             dy10             = _mm256_sub_pd(iy1,jy0);
954             dz10             = _mm256_sub_pd(iz1,jz0);
955             dx20             = _mm256_sub_pd(ix2,jx0);
956             dy20             = _mm256_sub_pd(iy2,jy0);
957             dz20             = _mm256_sub_pd(iz2,jz0);
958             dx30             = _mm256_sub_pd(ix3,jx0);
959             dy30             = _mm256_sub_pd(iy3,jy0);
960             dz30             = _mm256_sub_pd(iz3,jz0);
961
962             /* Calculate squared distance and things based on it */
963             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
964             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
965             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
966
967             rinv10           = avx256_invsqrt_d(rsq10);
968             rinv20           = avx256_invsqrt_d(rsq20);
969             rinv30           = avx256_invsqrt_d(rsq30);
970
971             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
972             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
973             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
974
975             /* Load parameters for j particles */
976             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
977                                                                  charge+jnrC+0,charge+jnrD+0);
978
979             fjx0             = _mm256_setzero_pd();
980             fjy0             = _mm256_setzero_pd();
981             fjz0             = _mm256_setzero_pd();
982
983             /**************************
984              * CALCULATE INTERACTIONS *
985              **************************/
986
987             r10              = _mm256_mul_pd(rsq10,rinv10);
988             r10              = _mm256_andnot_pd(dummy_mask,r10);
989
990             /* Compute parameters for interactions between i and j atoms */
991             qq10             = _mm256_mul_pd(iq1,jq0);
992
993             /* EWALD ELECTROSTATICS */
994
995             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
996             ewrt             = _mm256_mul_pd(r10,ewtabscale);
997             ewitab           = _mm256_cvttpd_epi32(ewrt);
998             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
999             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1000                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1001                                             &ewtabF,&ewtabFn);
1002             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1003             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1004
1005             fscal            = felec;
1006
1007             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1008
1009             /* Calculate temporary vectorial force */
1010             tx               = _mm256_mul_pd(fscal,dx10);
1011             ty               = _mm256_mul_pd(fscal,dy10);
1012             tz               = _mm256_mul_pd(fscal,dz10);
1013
1014             /* Update vectorial force */
1015             fix1             = _mm256_add_pd(fix1,tx);
1016             fiy1             = _mm256_add_pd(fiy1,ty);
1017             fiz1             = _mm256_add_pd(fiz1,tz);
1018
1019             fjx0             = _mm256_add_pd(fjx0,tx);
1020             fjy0             = _mm256_add_pd(fjy0,ty);
1021             fjz0             = _mm256_add_pd(fjz0,tz);
1022
1023             /**************************
1024              * CALCULATE INTERACTIONS *
1025              **************************/
1026
1027             r20              = _mm256_mul_pd(rsq20,rinv20);
1028             r20              = _mm256_andnot_pd(dummy_mask,r20);
1029
1030             /* Compute parameters for interactions between i and j atoms */
1031             qq20             = _mm256_mul_pd(iq2,jq0);
1032
1033             /* EWALD ELECTROSTATICS */
1034
1035             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1036             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1037             ewitab           = _mm256_cvttpd_epi32(ewrt);
1038             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1039             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1040                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1041                                             &ewtabF,&ewtabFn);
1042             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1043             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1044
1045             fscal            = felec;
1046
1047             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1048
1049             /* Calculate temporary vectorial force */
1050             tx               = _mm256_mul_pd(fscal,dx20);
1051             ty               = _mm256_mul_pd(fscal,dy20);
1052             tz               = _mm256_mul_pd(fscal,dz20);
1053
1054             /* Update vectorial force */
1055             fix2             = _mm256_add_pd(fix2,tx);
1056             fiy2             = _mm256_add_pd(fiy2,ty);
1057             fiz2             = _mm256_add_pd(fiz2,tz);
1058
1059             fjx0             = _mm256_add_pd(fjx0,tx);
1060             fjy0             = _mm256_add_pd(fjy0,ty);
1061             fjz0             = _mm256_add_pd(fjz0,tz);
1062
1063             /**************************
1064              * CALCULATE INTERACTIONS *
1065              **************************/
1066
1067             r30              = _mm256_mul_pd(rsq30,rinv30);
1068             r30              = _mm256_andnot_pd(dummy_mask,r30);
1069
1070             /* Compute parameters for interactions between i and j atoms */
1071             qq30             = _mm256_mul_pd(iq3,jq0);
1072
1073             /* EWALD ELECTROSTATICS */
1074
1075             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1076             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1077             ewitab           = _mm256_cvttpd_epi32(ewrt);
1078             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1079             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1080                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1081                                             &ewtabF,&ewtabFn);
1082             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1083             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1084
1085             fscal            = felec;
1086
1087             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1088
1089             /* Calculate temporary vectorial force */
1090             tx               = _mm256_mul_pd(fscal,dx30);
1091             ty               = _mm256_mul_pd(fscal,dy30);
1092             tz               = _mm256_mul_pd(fscal,dz30);
1093
1094             /* Update vectorial force */
1095             fix3             = _mm256_add_pd(fix3,tx);
1096             fiy3             = _mm256_add_pd(fiy3,ty);
1097             fiz3             = _mm256_add_pd(fiz3,tz);
1098
1099             fjx0             = _mm256_add_pd(fjx0,tx);
1100             fjy0             = _mm256_add_pd(fjy0,ty);
1101             fjz0             = _mm256_add_pd(fjz0,tz);
1102
1103             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1104             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1105             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1106             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1107
1108             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1109
1110             /* Inner loop uses 114 flops */
1111         }
1112
1113         /* End of innermost loop */
1114
1115         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1116                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1117
1118         /* Increment number of inner iterations */
1119         inneriter                  += j_index_end - j_index_start;
1120
1121         /* Outer loop uses 18 flops */
1122     }
1123
1124     /* Increment number of outer iterations */
1125     outeriter        += nri;
1126
1127     /* Update outer/inner flops */
1128
1129     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*114);
1130 }