Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwNone_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwNone_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     __m128i          ewitab;
100     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
102     real             *ewtab;
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121
122     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
123     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
124     beta2            = _mm256_mul_pd(beta,beta);
125     beta3            = _mm256_mul_pd(beta,beta2);
126
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
134     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
135     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = jnrC = jnrD = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141     j_coord_offsetC = 0;
142     j_coord_offsetD = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _mm256_setzero_pd();
171         fiy0             = _mm256_setzero_pd();
172         fiz0             = _mm256_setzero_pd();
173         fix1             = _mm256_setzero_pd();
174         fiy1             = _mm256_setzero_pd();
175         fiz1             = _mm256_setzero_pd();
176         fix2             = _mm256_setzero_pd();
177         fiy2             = _mm256_setzero_pd();
178         fiz2             = _mm256_setzero_pd();
179
180         /* Reset potential sums */
181         velecsum         = _mm256_setzero_pd();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196
197             /* load j atom coordinates */
198             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
199                                                  x+j_coord_offsetC,x+j_coord_offsetD,
200                                                  &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm256_sub_pd(ix0,jx0);
204             dy00             = _mm256_sub_pd(iy0,jy0);
205             dz00             = _mm256_sub_pd(iz0,jz0);
206             dx10             = _mm256_sub_pd(ix1,jx0);
207             dy10             = _mm256_sub_pd(iy1,jy0);
208             dz10             = _mm256_sub_pd(iz1,jz0);
209             dx20             = _mm256_sub_pd(ix2,jx0);
210             dy20             = _mm256_sub_pd(iy2,jy0);
211             dz20             = _mm256_sub_pd(iz2,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
215             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
216             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
217
218             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
219             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
220             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
221
222             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
223             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
224             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
228                                                                  charge+jnrC+0,charge+jnrD+0);
229
230             fjx0             = _mm256_setzero_pd();
231             fjy0             = _mm256_setzero_pd();
232             fjz0             = _mm256_setzero_pd();
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             r00              = _mm256_mul_pd(rsq00,rinv00);
239
240             /* Compute parameters for interactions between i and j atoms */
241             qq00             = _mm256_mul_pd(iq0,jq0);
242
243             /* EWALD ELECTROSTATICS */
244
245             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
246             ewrt             = _mm256_mul_pd(r00,ewtabscale);
247             ewitab           = _mm256_cvttpd_epi32(ewrt);
248             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
249             ewitab           = _mm_slli_epi32(ewitab,2);
250             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
251             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
252             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
253             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
254             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
255             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
256             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
257             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
258             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
259
260             /* Update potential sum for this i atom from the interaction with this j atom. */
261             velecsum         = _mm256_add_pd(velecsum,velec);
262
263             fscal            = felec;
264
265             /* Calculate temporary vectorial force */
266             tx               = _mm256_mul_pd(fscal,dx00);
267             ty               = _mm256_mul_pd(fscal,dy00);
268             tz               = _mm256_mul_pd(fscal,dz00);
269
270             /* Update vectorial force */
271             fix0             = _mm256_add_pd(fix0,tx);
272             fiy0             = _mm256_add_pd(fiy0,ty);
273             fiz0             = _mm256_add_pd(fiz0,tz);
274
275             fjx0             = _mm256_add_pd(fjx0,tx);
276             fjy0             = _mm256_add_pd(fjy0,ty);
277             fjz0             = _mm256_add_pd(fjz0,tz);
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             r10              = _mm256_mul_pd(rsq10,rinv10);
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq10             = _mm256_mul_pd(iq1,jq0);
287
288             /* EWALD ELECTROSTATICS */
289
290             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
291             ewrt             = _mm256_mul_pd(r10,ewtabscale);
292             ewitab           = _mm256_cvttpd_epi32(ewrt);
293             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
294             ewitab           = _mm_slli_epi32(ewitab,2);
295             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
296             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
297             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
298             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
299             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
300             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
301             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
302             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
303             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velecsum         = _mm256_add_pd(velecsum,velec);
307
308             fscal            = felec;
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm256_mul_pd(fscal,dx10);
312             ty               = _mm256_mul_pd(fscal,dy10);
313             tz               = _mm256_mul_pd(fscal,dz10);
314
315             /* Update vectorial force */
316             fix1             = _mm256_add_pd(fix1,tx);
317             fiy1             = _mm256_add_pd(fiy1,ty);
318             fiz1             = _mm256_add_pd(fiz1,tz);
319
320             fjx0             = _mm256_add_pd(fjx0,tx);
321             fjy0             = _mm256_add_pd(fjy0,ty);
322             fjz0             = _mm256_add_pd(fjz0,tz);
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             r20              = _mm256_mul_pd(rsq20,rinv20);
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq20             = _mm256_mul_pd(iq2,jq0);
332
333             /* EWALD ELECTROSTATICS */
334
335             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
336             ewrt             = _mm256_mul_pd(r20,ewtabscale);
337             ewitab           = _mm256_cvttpd_epi32(ewrt);
338             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
339             ewitab           = _mm_slli_epi32(ewitab,2);
340             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
341             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
342             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
343             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
344             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
345             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
346             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
347             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
348             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
349
350             /* Update potential sum for this i atom from the interaction with this j atom. */
351             velecsum         = _mm256_add_pd(velecsum,velec);
352
353             fscal            = felec;
354
355             /* Calculate temporary vectorial force */
356             tx               = _mm256_mul_pd(fscal,dx20);
357             ty               = _mm256_mul_pd(fscal,dy20);
358             tz               = _mm256_mul_pd(fscal,dz20);
359
360             /* Update vectorial force */
361             fix2             = _mm256_add_pd(fix2,tx);
362             fiy2             = _mm256_add_pd(fiy2,ty);
363             fiz2             = _mm256_add_pd(fiz2,tz);
364
365             fjx0             = _mm256_add_pd(fjx0,tx);
366             fjy0             = _mm256_add_pd(fjy0,ty);
367             fjz0             = _mm256_add_pd(fjz0,tz);
368
369             fjptrA             = f+j_coord_offsetA;
370             fjptrB             = f+j_coord_offsetB;
371             fjptrC             = f+j_coord_offsetC;
372             fjptrD             = f+j_coord_offsetD;
373
374             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
375
376             /* Inner loop uses 126 flops */
377         }
378
379         if(jidx<j_index_end)
380         {
381
382             /* Get j neighbor index, and coordinate index */
383             jnrlistA         = jjnr[jidx];
384             jnrlistB         = jjnr[jidx+1];
385             jnrlistC         = jjnr[jidx+2];
386             jnrlistD         = jjnr[jidx+3];
387             /* Sign of each element will be negative for non-real atoms.
388              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
389              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
390              */
391             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
392
393             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
394             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
395             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
396
397             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
398             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
399             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
400             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
401             j_coord_offsetA  = DIM*jnrA;
402             j_coord_offsetB  = DIM*jnrB;
403             j_coord_offsetC  = DIM*jnrC;
404             j_coord_offsetD  = DIM*jnrD;
405
406             /* load j atom coordinates */
407             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
408                                                  x+j_coord_offsetC,x+j_coord_offsetD,
409                                                  &jx0,&jy0,&jz0);
410
411             /* Calculate displacement vector */
412             dx00             = _mm256_sub_pd(ix0,jx0);
413             dy00             = _mm256_sub_pd(iy0,jy0);
414             dz00             = _mm256_sub_pd(iz0,jz0);
415             dx10             = _mm256_sub_pd(ix1,jx0);
416             dy10             = _mm256_sub_pd(iy1,jy0);
417             dz10             = _mm256_sub_pd(iz1,jz0);
418             dx20             = _mm256_sub_pd(ix2,jx0);
419             dy20             = _mm256_sub_pd(iy2,jy0);
420             dz20             = _mm256_sub_pd(iz2,jz0);
421
422             /* Calculate squared distance and things based on it */
423             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
424             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
425             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
426
427             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
428             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
429             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
430
431             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
432             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
433             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
434
435             /* Load parameters for j particles */
436             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
437                                                                  charge+jnrC+0,charge+jnrD+0);
438
439             fjx0             = _mm256_setzero_pd();
440             fjy0             = _mm256_setzero_pd();
441             fjz0             = _mm256_setzero_pd();
442
443             /**************************
444              * CALCULATE INTERACTIONS *
445              **************************/
446
447             r00              = _mm256_mul_pd(rsq00,rinv00);
448             r00              = _mm256_andnot_pd(dummy_mask,r00);
449
450             /* Compute parameters for interactions between i and j atoms */
451             qq00             = _mm256_mul_pd(iq0,jq0);
452
453             /* EWALD ELECTROSTATICS */
454
455             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
456             ewrt             = _mm256_mul_pd(r00,ewtabscale);
457             ewitab           = _mm256_cvttpd_epi32(ewrt);
458             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
459             ewitab           = _mm_slli_epi32(ewitab,2);
460             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
461             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
462             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
463             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
464             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
465             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
466             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
467             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
468             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
469
470             /* Update potential sum for this i atom from the interaction with this j atom. */
471             velec            = _mm256_andnot_pd(dummy_mask,velec);
472             velecsum         = _mm256_add_pd(velecsum,velec);
473
474             fscal            = felec;
475
476             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
477
478             /* Calculate temporary vectorial force */
479             tx               = _mm256_mul_pd(fscal,dx00);
480             ty               = _mm256_mul_pd(fscal,dy00);
481             tz               = _mm256_mul_pd(fscal,dz00);
482
483             /* Update vectorial force */
484             fix0             = _mm256_add_pd(fix0,tx);
485             fiy0             = _mm256_add_pd(fiy0,ty);
486             fiz0             = _mm256_add_pd(fiz0,tz);
487
488             fjx0             = _mm256_add_pd(fjx0,tx);
489             fjy0             = _mm256_add_pd(fjy0,ty);
490             fjz0             = _mm256_add_pd(fjz0,tz);
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             r10              = _mm256_mul_pd(rsq10,rinv10);
497             r10              = _mm256_andnot_pd(dummy_mask,r10);
498
499             /* Compute parameters for interactions between i and j atoms */
500             qq10             = _mm256_mul_pd(iq1,jq0);
501
502             /* EWALD ELECTROSTATICS */
503
504             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
505             ewrt             = _mm256_mul_pd(r10,ewtabscale);
506             ewitab           = _mm256_cvttpd_epi32(ewrt);
507             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
508             ewitab           = _mm_slli_epi32(ewitab,2);
509             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
510             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
511             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
512             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
513             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
514             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
515             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
516             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
517             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
518
519             /* Update potential sum for this i atom from the interaction with this j atom. */
520             velec            = _mm256_andnot_pd(dummy_mask,velec);
521             velecsum         = _mm256_add_pd(velecsum,velec);
522
523             fscal            = felec;
524
525             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
526
527             /* Calculate temporary vectorial force */
528             tx               = _mm256_mul_pd(fscal,dx10);
529             ty               = _mm256_mul_pd(fscal,dy10);
530             tz               = _mm256_mul_pd(fscal,dz10);
531
532             /* Update vectorial force */
533             fix1             = _mm256_add_pd(fix1,tx);
534             fiy1             = _mm256_add_pd(fiy1,ty);
535             fiz1             = _mm256_add_pd(fiz1,tz);
536
537             fjx0             = _mm256_add_pd(fjx0,tx);
538             fjy0             = _mm256_add_pd(fjy0,ty);
539             fjz0             = _mm256_add_pd(fjz0,tz);
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             r20              = _mm256_mul_pd(rsq20,rinv20);
546             r20              = _mm256_andnot_pd(dummy_mask,r20);
547
548             /* Compute parameters for interactions between i and j atoms */
549             qq20             = _mm256_mul_pd(iq2,jq0);
550
551             /* EWALD ELECTROSTATICS */
552
553             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
554             ewrt             = _mm256_mul_pd(r20,ewtabscale);
555             ewitab           = _mm256_cvttpd_epi32(ewrt);
556             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
557             ewitab           = _mm_slli_epi32(ewitab,2);
558             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
559             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
560             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
561             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
562             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
563             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
564             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
565             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
566             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
567
568             /* Update potential sum for this i atom from the interaction with this j atom. */
569             velec            = _mm256_andnot_pd(dummy_mask,velec);
570             velecsum         = _mm256_add_pd(velecsum,velec);
571
572             fscal            = felec;
573
574             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
575
576             /* Calculate temporary vectorial force */
577             tx               = _mm256_mul_pd(fscal,dx20);
578             ty               = _mm256_mul_pd(fscal,dy20);
579             tz               = _mm256_mul_pd(fscal,dz20);
580
581             /* Update vectorial force */
582             fix2             = _mm256_add_pd(fix2,tx);
583             fiy2             = _mm256_add_pd(fiy2,ty);
584             fiz2             = _mm256_add_pd(fiz2,tz);
585
586             fjx0             = _mm256_add_pd(fjx0,tx);
587             fjy0             = _mm256_add_pd(fjy0,ty);
588             fjz0             = _mm256_add_pd(fjz0,tz);
589
590             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
591             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
592             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
593             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
594
595             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
596
597             /* Inner loop uses 129 flops */
598         }
599
600         /* End of innermost loop */
601
602         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
603                                                  f+i_coord_offset,fshift+i_shift_offset);
604
605         ggid                        = gid[iidx];
606         /* Update potential energies */
607         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
608
609         /* Increment number of inner iterations */
610         inneriter                  += j_index_end - j_index_start;
611
612         /* Outer loop uses 19 flops */
613     }
614
615     /* Increment number of outer iterations */
616     outeriter        += nri;
617
618     /* Update outer/inner flops */
619
620     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*129);
621 }
622 /*
623  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3P1_F_avx_256_double
624  * Electrostatics interaction: Ewald
625  * VdW interaction:            None
626  * Geometry:                   Water3-Particle
627  * Calculate force/pot:        Force
628  */
629 void
630 nb_kernel_ElecEw_VdwNone_GeomW3P1_F_avx_256_double
631                     (t_nblist                    * gmx_restrict       nlist,
632                      rvec                        * gmx_restrict          xx,
633                      rvec                        * gmx_restrict          ff,
634                      t_forcerec                  * gmx_restrict          fr,
635                      t_mdatoms                   * gmx_restrict     mdatoms,
636                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
637                      t_nrnb                      * gmx_restrict        nrnb)
638 {
639     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
640      * just 0 for non-waters.
641      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
642      * jnr indices corresponding to data put in the four positions in the SIMD register.
643      */
644     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
645     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
646     int              jnrA,jnrB,jnrC,jnrD;
647     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
648     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
649     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
650     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
651     real             rcutoff_scalar;
652     real             *shiftvec,*fshift,*x,*f;
653     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
654     real             scratch[4*DIM];
655     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
656     real *           vdwioffsetptr0;
657     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
658     real *           vdwioffsetptr1;
659     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
660     real *           vdwioffsetptr2;
661     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
662     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
663     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
664     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
665     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
666     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
667     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
668     real             *charge;
669     __m128i          ewitab;
670     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
671     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
672     real             *ewtab;
673     __m256d          dummy_mask,cutoff_mask;
674     __m128           tmpmask0,tmpmask1;
675     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
676     __m256d          one     = _mm256_set1_pd(1.0);
677     __m256d          two     = _mm256_set1_pd(2.0);
678     x                = xx[0];
679     f                = ff[0];
680
681     nri              = nlist->nri;
682     iinr             = nlist->iinr;
683     jindex           = nlist->jindex;
684     jjnr             = nlist->jjnr;
685     shiftidx         = nlist->shift;
686     gid              = nlist->gid;
687     shiftvec         = fr->shift_vec[0];
688     fshift           = fr->fshift[0];
689     facel            = _mm256_set1_pd(fr->epsfac);
690     charge           = mdatoms->chargeA;
691
692     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
693     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
694     beta2            = _mm256_mul_pd(beta,beta);
695     beta3            = _mm256_mul_pd(beta,beta2);
696
697     ewtab            = fr->ic->tabq_coul_F;
698     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
699     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
700
701     /* Setup water-specific parameters */
702     inr              = nlist->iinr[0];
703     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
704     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
705     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
706
707     /* Avoid stupid compiler warnings */
708     jnrA = jnrB = jnrC = jnrD = 0;
709     j_coord_offsetA = 0;
710     j_coord_offsetB = 0;
711     j_coord_offsetC = 0;
712     j_coord_offsetD = 0;
713
714     outeriter        = 0;
715     inneriter        = 0;
716
717     for(iidx=0;iidx<4*DIM;iidx++)
718     {
719         scratch[iidx] = 0.0;
720     }
721
722     /* Start outer loop over neighborlists */
723     for(iidx=0; iidx<nri; iidx++)
724     {
725         /* Load shift vector for this list */
726         i_shift_offset   = DIM*shiftidx[iidx];
727
728         /* Load limits for loop over neighbors */
729         j_index_start    = jindex[iidx];
730         j_index_end      = jindex[iidx+1];
731
732         /* Get outer coordinate index */
733         inr              = iinr[iidx];
734         i_coord_offset   = DIM*inr;
735
736         /* Load i particle coords and add shift vector */
737         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
738                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
739
740         fix0             = _mm256_setzero_pd();
741         fiy0             = _mm256_setzero_pd();
742         fiz0             = _mm256_setzero_pd();
743         fix1             = _mm256_setzero_pd();
744         fiy1             = _mm256_setzero_pd();
745         fiz1             = _mm256_setzero_pd();
746         fix2             = _mm256_setzero_pd();
747         fiy2             = _mm256_setzero_pd();
748         fiz2             = _mm256_setzero_pd();
749
750         /* Start inner kernel loop */
751         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
752         {
753
754             /* Get j neighbor index, and coordinate index */
755             jnrA             = jjnr[jidx];
756             jnrB             = jjnr[jidx+1];
757             jnrC             = jjnr[jidx+2];
758             jnrD             = jjnr[jidx+3];
759             j_coord_offsetA  = DIM*jnrA;
760             j_coord_offsetB  = DIM*jnrB;
761             j_coord_offsetC  = DIM*jnrC;
762             j_coord_offsetD  = DIM*jnrD;
763
764             /* load j atom coordinates */
765             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
766                                                  x+j_coord_offsetC,x+j_coord_offsetD,
767                                                  &jx0,&jy0,&jz0);
768
769             /* Calculate displacement vector */
770             dx00             = _mm256_sub_pd(ix0,jx0);
771             dy00             = _mm256_sub_pd(iy0,jy0);
772             dz00             = _mm256_sub_pd(iz0,jz0);
773             dx10             = _mm256_sub_pd(ix1,jx0);
774             dy10             = _mm256_sub_pd(iy1,jy0);
775             dz10             = _mm256_sub_pd(iz1,jz0);
776             dx20             = _mm256_sub_pd(ix2,jx0);
777             dy20             = _mm256_sub_pd(iy2,jy0);
778             dz20             = _mm256_sub_pd(iz2,jz0);
779
780             /* Calculate squared distance and things based on it */
781             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
782             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
783             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
784
785             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
786             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
787             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
788
789             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
790             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
791             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
792
793             /* Load parameters for j particles */
794             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
795                                                                  charge+jnrC+0,charge+jnrD+0);
796
797             fjx0             = _mm256_setzero_pd();
798             fjy0             = _mm256_setzero_pd();
799             fjz0             = _mm256_setzero_pd();
800
801             /**************************
802              * CALCULATE INTERACTIONS *
803              **************************/
804
805             r00              = _mm256_mul_pd(rsq00,rinv00);
806
807             /* Compute parameters for interactions between i and j atoms */
808             qq00             = _mm256_mul_pd(iq0,jq0);
809
810             /* EWALD ELECTROSTATICS */
811
812             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
813             ewrt             = _mm256_mul_pd(r00,ewtabscale);
814             ewitab           = _mm256_cvttpd_epi32(ewrt);
815             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
816             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
817                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
818                                             &ewtabF,&ewtabFn);
819             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
820             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
821
822             fscal            = felec;
823
824             /* Calculate temporary vectorial force */
825             tx               = _mm256_mul_pd(fscal,dx00);
826             ty               = _mm256_mul_pd(fscal,dy00);
827             tz               = _mm256_mul_pd(fscal,dz00);
828
829             /* Update vectorial force */
830             fix0             = _mm256_add_pd(fix0,tx);
831             fiy0             = _mm256_add_pd(fiy0,ty);
832             fiz0             = _mm256_add_pd(fiz0,tz);
833
834             fjx0             = _mm256_add_pd(fjx0,tx);
835             fjy0             = _mm256_add_pd(fjy0,ty);
836             fjz0             = _mm256_add_pd(fjz0,tz);
837
838             /**************************
839              * CALCULATE INTERACTIONS *
840              **************************/
841
842             r10              = _mm256_mul_pd(rsq10,rinv10);
843
844             /* Compute parameters for interactions between i and j atoms */
845             qq10             = _mm256_mul_pd(iq1,jq0);
846
847             /* EWALD ELECTROSTATICS */
848
849             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
850             ewrt             = _mm256_mul_pd(r10,ewtabscale);
851             ewitab           = _mm256_cvttpd_epi32(ewrt);
852             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
853             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
854                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
855                                             &ewtabF,&ewtabFn);
856             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
857             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
858
859             fscal            = felec;
860
861             /* Calculate temporary vectorial force */
862             tx               = _mm256_mul_pd(fscal,dx10);
863             ty               = _mm256_mul_pd(fscal,dy10);
864             tz               = _mm256_mul_pd(fscal,dz10);
865
866             /* Update vectorial force */
867             fix1             = _mm256_add_pd(fix1,tx);
868             fiy1             = _mm256_add_pd(fiy1,ty);
869             fiz1             = _mm256_add_pd(fiz1,tz);
870
871             fjx0             = _mm256_add_pd(fjx0,tx);
872             fjy0             = _mm256_add_pd(fjy0,ty);
873             fjz0             = _mm256_add_pd(fjz0,tz);
874
875             /**************************
876              * CALCULATE INTERACTIONS *
877              **************************/
878
879             r20              = _mm256_mul_pd(rsq20,rinv20);
880
881             /* Compute parameters for interactions between i and j atoms */
882             qq20             = _mm256_mul_pd(iq2,jq0);
883
884             /* EWALD ELECTROSTATICS */
885
886             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
887             ewrt             = _mm256_mul_pd(r20,ewtabscale);
888             ewitab           = _mm256_cvttpd_epi32(ewrt);
889             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
890             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
891                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
892                                             &ewtabF,&ewtabFn);
893             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
894             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
895
896             fscal            = felec;
897
898             /* Calculate temporary vectorial force */
899             tx               = _mm256_mul_pd(fscal,dx20);
900             ty               = _mm256_mul_pd(fscal,dy20);
901             tz               = _mm256_mul_pd(fscal,dz20);
902
903             /* Update vectorial force */
904             fix2             = _mm256_add_pd(fix2,tx);
905             fiy2             = _mm256_add_pd(fiy2,ty);
906             fiz2             = _mm256_add_pd(fiz2,tz);
907
908             fjx0             = _mm256_add_pd(fjx0,tx);
909             fjy0             = _mm256_add_pd(fjy0,ty);
910             fjz0             = _mm256_add_pd(fjz0,tz);
911
912             fjptrA             = f+j_coord_offsetA;
913             fjptrB             = f+j_coord_offsetB;
914             fjptrC             = f+j_coord_offsetC;
915             fjptrD             = f+j_coord_offsetD;
916
917             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
918
919             /* Inner loop uses 111 flops */
920         }
921
922         if(jidx<j_index_end)
923         {
924
925             /* Get j neighbor index, and coordinate index */
926             jnrlistA         = jjnr[jidx];
927             jnrlistB         = jjnr[jidx+1];
928             jnrlistC         = jjnr[jidx+2];
929             jnrlistD         = jjnr[jidx+3];
930             /* Sign of each element will be negative for non-real atoms.
931              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
932              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
933              */
934             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
935
936             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
937             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
938             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
939
940             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
941             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
942             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
943             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
944             j_coord_offsetA  = DIM*jnrA;
945             j_coord_offsetB  = DIM*jnrB;
946             j_coord_offsetC  = DIM*jnrC;
947             j_coord_offsetD  = DIM*jnrD;
948
949             /* load j atom coordinates */
950             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
951                                                  x+j_coord_offsetC,x+j_coord_offsetD,
952                                                  &jx0,&jy0,&jz0);
953
954             /* Calculate displacement vector */
955             dx00             = _mm256_sub_pd(ix0,jx0);
956             dy00             = _mm256_sub_pd(iy0,jy0);
957             dz00             = _mm256_sub_pd(iz0,jz0);
958             dx10             = _mm256_sub_pd(ix1,jx0);
959             dy10             = _mm256_sub_pd(iy1,jy0);
960             dz10             = _mm256_sub_pd(iz1,jz0);
961             dx20             = _mm256_sub_pd(ix2,jx0);
962             dy20             = _mm256_sub_pd(iy2,jy0);
963             dz20             = _mm256_sub_pd(iz2,jz0);
964
965             /* Calculate squared distance and things based on it */
966             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
967             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
968             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
969
970             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
971             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
972             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
973
974             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
975             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
976             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
977
978             /* Load parameters for j particles */
979             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
980                                                                  charge+jnrC+0,charge+jnrD+0);
981
982             fjx0             = _mm256_setzero_pd();
983             fjy0             = _mm256_setzero_pd();
984             fjz0             = _mm256_setzero_pd();
985
986             /**************************
987              * CALCULATE INTERACTIONS *
988              **************************/
989
990             r00              = _mm256_mul_pd(rsq00,rinv00);
991             r00              = _mm256_andnot_pd(dummy_mask,r00);
992
993             /* Compute parameters for interactions between i and j atoms */
994             qq00             = _mm256_mul_pd(iq0,jq0);
995
996             /* EWALD ELECTROSTATICS */
997
998             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
999             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1000             ewitab           = _mm256_cvttpd_epi32(ewrt);
1001             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1002             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1003                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1004                                             &ewtabF,&ewtabFn);
1005             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1006             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1007
1008             fscal            = felec;
1009
1010             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1011
1012             /* Calculate temporary vectorial force */
1013             tx               = _mm256_mul_pd(fscal,dx00);
1014             ty               = _mm256_mul_pd(fscal,dy00);
1015             tz               = _mm256_mul_pd(fscal,dz00);
1016
1017             /* Update vectorial force */
1018             fix0             = _mm256_add_pd(fix0,tx);
1019             fiy0             = _mm256_add_pd(fiy0,ty);
1020             fiz0             = _mm256_add_pd(fiz0,tz);
1021
1022             fjx0             = _mm256_add_pd(fjx0,tx);
1023             fjy0             = _mm256_add_pd(fjy0,ty);
1024             fjz0             = _mm256_add_pd(fjz0,tz);
1025
1026             /**************************
1027              * CALCULATE INTERACTIONS *
1028              **************************/
1029
1030             r10              = _mm256_mul_pd(rsq10,rinv10);
1031             r10              = _mm256_andnot_pd(dummy_mask,r10);
1032
1033             /* Compute parameters for interactions between i and j atoms */
1034             qq10             = _mm256_mul_pd(iq1,jq0);
1035
1036             /* EWALD ELECTROSTATICS */
1037
1038             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1039             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1040             ewitab           = _mm256_cvttpd_epi32(ewrt);
1041             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1042             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1043                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1044                                             &ewtabF,&ewtabFn);
1045             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1046             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1047
1048             fscal            = felec;
1049
1050             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1051
1052             /* Calculate temporary vectorial force */
1053             tx               = _mm256_mul_pd(fscal,dx10);
1054             ty               = _mm256_mul_pd(fscal,dy10);
1055             tz               = _mm256_mul_pd(fscal,dz10);
1056
1057             /* Update vectorial force */
1058             fix1             = _mm256_add_pd(fix1,tx);
1059             fiy1             = _mm256_add_pd(fiy1,ty);
1060             fiz1             = _mm256_add_pd(fiz1,tz);
1061
1062             fjx0             = _mm256_add_pd(fjx0,tx);
1063             fjy0             = _mm256_add_pd(fjy0,ty);
1064             fjz0             = _mm256_add_pd(fjz0,tz);
1065
1066             /**************************
1067              * CALCULATE INTERACTIONS *
1068              **************************/
1069
1070             r20              = _mm256_mul_pd(rsq20,rinv20);
1071             r20              = _mm256_andnot_pd(dummy_mask,r20);
1072
1073             /* Compute parameters for interactions between i and j atoms */
1074             qq20             = _mm256_mul_pd(iq2,jq0);
1075
1076             /* EWALD ELECTROSTATICS */
1077
1078             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1079             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1080             ewitab           = _mm256_cvttpd_epi32(ewrt);
1081             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1082             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1083                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1084                                             &ewtabF,&ewtabFn);
1085             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1086             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1087
1088             fscal            = felec;
1089
1090             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1091
1092             /* Calculate temporary vectorial force */
1093             tx               = _mm256_mul_pd(fscal,dx20);
1094             ty               = _mm256_mul_pd(fscal,dy20);
1095             tz               = _mm256_mul_pd(fscal,dz20);
1096
1097             /* Update vectorial force */
1098             fix2             = _mm256_add_pd(fix2,tx);
1099             fiy2             = _mm256_add_pd(fiy2,ty);
1100             fiz2             = _mm256_add_pd(fiz2,tz);
1101
1102             fjx0             = _mm256_add_pd(fjx0,tx);
1103             fjy0             = _mm256_add_pd(fjy0,ty);
1104             fjz0             = _mm256_add_pd(fjz0,tz);
1105
1106             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1107             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1108             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1109             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1110
1111             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1112
1113             /* Inner loop uses 114 flops */
1114         }
1115
1116         /* End of innermost loop */
1117
1118         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1119                                                  f+i_coord_offset,fshift+i_shift_offset);
1120
1121         /* Increment number of inner iterations */
1122         inneriter                  += j_index_end - j_index_start;
1123
1124         /* Outer loop uses 18 flops */
1125     }
1126
1127     /* Increment number of outer iterations */
1128     outeriter        += nri;
1129
1130     /* Update outer/inner flops */
1131
1132     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*114);
1133 }