Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwNone_GeomP1P1_avx_256_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128i          ewitab;
91     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
92     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
93     real             *ewtab;
94     __m256d          dummy_mask,cutoff_mask;
95     __m128           tmpmask0,tmpmask1;
96     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
97     __m256d          one     = _mm256_set1_pd(1.0);
98     __m256d          two     = _mm256_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm256_set1_pd(fr->ic->epsfac);
111     charge           = mdatoms->chargeA;
112
113     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
114     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
115     beta2            = _mm256_mul_pd(beta,beta);
116     beta3            = _mm256_mul_pd(beta,beta2);
117
118     ewtab            = fr->ic->tabq_coul_FDV0;
119     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
120     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm256_setzero_pd();
155         fiy0             = _mm256_setzero_pd();
156         fiz0             = _mm256_setzero_pd();
157
158         /* Load parameters for i particles */
159         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
160
161         /* Reset potential sums */
162         velecsum         = _mm256_setzero_pd();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175             j_coord_offsetC  = DIM*jnrC;
176             j_coord_offsetD  = DIM*jnrD;
177
178             /* load j atom coordinates */
179             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                                  x+j_coord_offsetC,x+j_coord_offsetD,
181                                                  &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm256_sub_pd(ix0,jx0);
185             dy00             = _mm256_sub_pd(iy0,jy0);
186             dz00             = _mm256_sub_pd(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
190
191             rinv00           = avx256_invsqrt_d(rsq00);
192
193             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
194
195             /* Load parameters for j particles */
196             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
197                                                                  charge+jnrC+0,charge+jnrD+0);
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             r00              = _mm256_mul_pd(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             qq00             = _mm256_mul_pd(iq0,jq0);
207
208             /* EWALD ELECTROSTATICS */
209
210             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
211             ewrt             = _mm256_mul_pd(r00,ewtabscale);
212             ewitab           = _mm256_cvttpd_epi32(ewrt);
213             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
214             ewitab           = _mm_slli_epi32(ewitab,2);
215             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
216             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
217             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
218             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
219             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
220             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
221             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
222             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
223             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
224
225             /* Update potential sum for this i atom from the interaction with this j atom. */
226             velecsum         = _mm256_add_pd(velecsum,velec);
227
228             fscal            = felec;
229
230             /* Calculate temporary vectorial force */
231             tx               = _mm256_mul_pd(fscal,dx00);
232             ty               = _mm256_mul_pd(fscal,dy00);
233             tz               = _mm256_mul_pd(fscal,dz00);
234
235             /* Update vectorial force */
236             fix0             = _mm256_add_pd(fix0,tx);
237             fiy0             = _mm256_add_pd(fiy0,ty);
238             fiz0             = _mm256_add_pd(fiz0,tz);
239
240             fjptrA             = f+j_coord_offsetA;
241             fjptrB             = f+j_coord_offsetB;
242             fjptrC             = f+j_coord_offsetC;
243             fjptrD             = f+j_coord_offsetD;
244             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
245
246             /* Inner loop uses 41 flops */
247         }
248
249         if(jidx<j_index_end)
250         {
251
252             /* Get j neighbor index, and coordinate index */
253             jnrlistA         = jjnr[jidx];
254             jnrlistB         = jjnr[jidx+1];
255             jnrlistC         = jjnr[jidx+2];
256             jnrlistD         = jjnr[jidx+3];
257             /* Sign of each element will be negative for non-real atoms.
258              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
259              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
260              */
261             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
262
263             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
264             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
265             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
266
267             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
268             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
269             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
270             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
271             j_coord_offsetA  = DIM*jnrA;
272             j_coord_offsetB  = DIM*jnrB;
273             j_coord_offsetC  = DIM*jnrC;
274             j_coord_offsetD  = DIM*jnrD;
275
276             /* load j atom coordinates */
277             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
278                                                  x+j_coord_offsetC,x+j_coord_offsetD,
279                                                  &jx0,&jy0,&jz0);
280
281             /* Calculate displacement vector */
282             dx00             = _mm256_sub_pd(ix0,jx0);
283             dy00             = _mm256_sub_pd(iy0,jy0);
284             dz00             = _mm256_sub_pd(iz0,jz0);
285
286             /* Calculate squared distance and things based on it */
287             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
288
289             rinv00           = avx256_invsqrt_d(rsq00);
290
291             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
292
293             /* Load parameters for j particles */
294             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
295                                                                  charge+jnrC+0,charge+jnrD+0);
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             r00              = _mm256_mul_pd(rsq00,rinv00);
302             r00              = _mm256_andnot_pd(dummy_mask,r00);
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq00             = _mm256_mul_pd(iq0,jq0);
306
307             /* EWALD ELECTROSTATICS */
308
309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
310             ewrt             = _mm256_mul_pd(r00,ewtabscale);
311             ewitab           = _mm256_cvttpd_epi32(ewrt);
312             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
313             ewitab           = _mm_slli_epi32(ewitab,2);
314             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
315             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
316             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
317             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
318             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
319             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
320             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
321             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
322             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
323
324             /* Update potential sum for this i atom from the interaction with this j atom. */
325             velec            = _mm256_andnot_pd(dummy_mask,velec);
326             velecsum         = _mm256_add_pd(velecsum,velec);
327
328             fscal            = felec;
329
330             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm256_mul_pd(fscal,dx00);
334             ty               = _mm256_mul_pd(fscal,dy00);
335             tz               = _mm256_mul_pd(fscal,dz00);
336
337             /* Update vectorial force */
338             fix0             = _mm256_add_pd(fix0,tx);
339             fiy0             = _mm256_add_pd(fiy0,ty);
340             fiz0             = _mm256_add_pd(fiz0,tz);
341
342             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
343             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
344             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
345             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
346             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
347
348             /* Inner loop uses 42 flops */
349         }
350
351         /* End of innermost loop */
352
353         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
354                                                  f+i_coord_offset,fshift+i_shift_offset);
355
356         ggid                        = gid[iidx];
357         /* Update potential energies */
358         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
359
360         /* Increment number of inner iterations */
361         inneriter                  += j_index_end - j_index_start;
362
363         /* Outer loop uses 8 flops */
364     }
365
366     /* Increment number of outer iterations */
367     outeriter        += nri;
368
369     /* Update outer/inner flops */
370
371     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*42);
372 }
373 /*
374  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_256_double
375  * Electrostatics interaction: Ewald
376  * VdW interaction:            None
377  * Geometry:                   Particle-Particle
378  * Calculate force/pot:        Force
379  */
380 void
381 nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_256_double
382                     (t_nblist                    * gmx_restrict       nlist,
383                      rvec                        * gmx_restrict          xx,
384                      rvec                        * gmx_restrict          ff,
385                      struct t_forcerec           * gmx_restrict          fr,
386                      t_mdatoms                   * gmx_restrict     mdatoms,
387                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
388                      t_nrnb                      * gmx_restrict        nrnb)
389 {
390     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
391      * just 0 for non-waters.
392      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
393      * jnr indices corresponding to data put in the four positions in the SIMD register.
394      */
395     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
396     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
397     int              jnrA,jnrB,jnrC,jnrD;
398     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
399     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
400     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
401     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
402     real             rcutoff_scalar;
403     real             *shiftvec,*fshift,*x,*f;
404     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
405     real             scratch[4*DIM];
406     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
407     real *           vdwioffsetptr0;
408     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
409     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
410     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
411     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
412     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
413     real             *charge;
414     __m128i          ewitab;
415     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
416     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
417     real             *ewtab;
418     __m256d          dummy_mask,cutoff_mask;
419     __m128           tmpmask0,tmpmask1;
420     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
421     __m256d          one     = _mm256_set1_pd(1.0);
422     __m256d          two     = _mm256_set1_pd(2.0);
423     x                = xx[0];
424     f                = ff[0];
425
426     nri              = nlist->nri;
427     iinr             = nlist->iinr;
428     jindex           = nlist->jindex;
429     jjnr             = nlist->jjnr;
430     shiftidx         = nlist->shift;
431     gid              = nlist->gid;
432     shiftvec         = fr->shift_vec[0];
433     fshift           = fr->fshift[0];
434     facel            = _mm256_set1_pd(fr->ic->epsfac);
435     charge           = mdatoms->chargeA;
436
437     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
438     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
439     beta2            = _mm256_mul_pd(beta,beta);
440     beta3            = _mm256_mul_pd(beta,beta2);
441
442     ewtab            = fr->ic->tabq_coul_F;
443     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
444     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
445
446     /* Avoid stupid compiler warnings */
447     jnrA = jnrB = jnrC = jnrD = 0;
448     j_coord_offsetA = 0;
449     j_coord_offsetB = 0;
450     j_coord_offsetC = 0;
451     j_coord_offsetD = 0;
452
453     outeriter        = 0;
454     inneriter        = 0;
455
456     for(iidx=0;iidx<4*DIM;iidx++)
457     {
458         scratch[iidx] = 0.0;
459     }
460
461     /* Start outer loop over neighborlists */
462     for(iidx=0; iidx<nri; iidx++)
463     {
464         /* Load shift vector for this list */
465         i_shift_offset   = DIM*shiftidx[iidx];
466
467         /* Load limits for loop over neighbors */
468         j_index_start    = jindex[iidx];
469         j_index_end      = jindex[iidx+1];
470
471         /* Get outer coordinate index */
472         inr              = iinr[iidx];
473         i_coord_offset   = DIM*inr;
474
475         /* Load i particle coords and add shift vector */
476         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
477
478         fix0             = _mm256_setzero_pd();
479         fiy0             = _mm256_setzero_pd();
480         fiz0             = _mm256_setzero_pd();
481
482         /* Load parameters for i particles */
483         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
484
485         /* Start inner kernel loop */
486         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
487         {
488
489             /* Get j neighbor index, and coordinate index */
490             jnrA             = jjnr[jidx];
491             jnrB             = jjnr[jidx+1];
492             jnrC             = jjnr[jidx+2];
493             jnrD             = jjnr[jidx+3];
494             j_coord_offsetA  = DIM*jnrA;
495             j_coord_offsetB  = DIM*jnrB;
496             j_coord_offsetC  = DIM*jnrC;
497             j_coord_offsetD  = DIM*jnrD;
498
499             /* load j atom coordinates */
500             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
501                                                  x+j_coord_offsetC,x+j_coord_offsetD,
502                                                  &jx0,&jy0,&jz0);
503
504             /* Calculate displacement vector */
505             dx00             = _mm256_sub_pd(ix0,jx0);
506             dy00             = _mm256_sub_pd(iy0,jy0);
507             dz00             = _mm256_sub_pd(iz0,jz0);
508
509             /* Calculate squared distance and things based on it */
510             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
511
512             rinv00           = avx256_invsqrt_d(rsq00);
513
514             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
515
516             /* Load parameters for j particles */
517             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
518                                                                  charge+jnrC+0,charge+jnrD+0);
519
520             /**************************
521              * CALCULATE INTERACTIONS *
522              **************************/
523
524             r00              = _mm256_mul_pd(rsq00,rinv00);
525
526             /* Compute parameters for interactions between i and j atoms */
527             qq00             = _mm256_mul_pd(iq0,jq0);
528
529             /* EWALD ELECTROSTATICS */
530
531             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
532             ewrt             = _mm256_mul_pd(r00,ewtabscale);
533             ewitab           = _mm256_cvttpd_epi32(ewrt);
534             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
535             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
536                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
537                                             &ewtabF,&ewtabFn);
538             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
539             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
540
541             fscal            = felec;
542
543             /* Calculate temporary vectorial force */
544             tx               = _mm256_mul_pd(fscal,dx00);
545             ty               = _mm256_mul_pd(fscal,dy00);
546             tz               = _mm256_mul_pd(fscal,dz00);
547
548             /* Update vectorial force */
549             fix0             = _mm256_add_pd(fix0,tx);
550             fiy0             = _mm256_add_pd(fiy0,ty);
551             fiz0             = _mm256_add_pd(fiz0,tz);
552
553             fjptrA             = f+j_coord_offsetA;
554             fjptrB             = f+j_coord_offsetB;
555             fjptrC             = f+j_coord_offsetC;
556             fjptrD             = f+j_coord_offsetD;
557             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
558
559             /* Inner loop uses 36 flops */
560         }
561
562         if(jidx<j_index_end)
563         {
564
565             /* Get j neighbor index, and coordinate index */
566             jnrlistA         = jjnr[jidx];
567             jnrlistB         = jjnr[jidx+1];
568             jnrlistC         = jjnr[jidx+2];
569             jnrlistD         = jjnr[jidx+3];
570             /* Sign of each element will be negative for non-real atoms.
571              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
572              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
573              */
574             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
575
576             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
577             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
578             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
579
580             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
581             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
582             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
583             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
584             j_coord_offsetA  = DIM*jnrA;
585             j_coord_offsetB  = DIM*jnrB;
586             j_coord_offsetC  = DIM*jnrC;
587             j_coord_offsetD  = DIM*jnrD;
588
589             /* load j atom coordinates */
590             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
591                                                  x+j_coord_offsetC,x+j_coord_offsetD,
592                                                  &jx0,&jy0,&jz0);
593
594             /* Calculate displacement vector */
595             dx00             = _mm256_sub_pd(ix0,jx0);
596             dy00             = _mm256_sub_pd(iy0,jy0);
597             dz00             = _mm256_sub_pd(iz0,jz0);
598
599             /* Calculate squared distance and things based on it */
600             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
601
602             rinv00           = avx256_invsqrt_d(rsq00);
603
604             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
605
606             /* Load parameters for j particles */
607             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
608                                                                  charge+jnrC+0,charge+jnrD+0);
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             r00              = _mm256_mul_pd(rsq00,rinv00);
615             r00              = _mm256_andnot_pd(dummy_mask,r00);
616
617             /* Compute parameters for interactions between i and j atoms */
618             qq00             = _mm256_mul_pd(iq0,jq0);
619
620             /* EWALD ELECTROSTATICS */
621
622             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
623             ewrt             = _mm256_mul_pd(r00,ewtabscale);
624             ewitab           = _mm256_cvttpd_epi32(ewrt);
625             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
626             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
627                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
628                                             &ewtabF,&ewtabFn);
629             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
630             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
631
632             fscal            = felec;
633
634             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
635
636             /* Calculate temporary vectorial force */
637             tx               = _mm256_mul_pd(fscal,dx00);
638             ty               = _mm256_mul_pd(fscal,dy00);
639             tz               = _mm256_mul_pd(fscal,dz00);
640
641             /* Update vectorial force */
642             fix0             = _mm256_add_pd(fix0,tx);
643             fiy0             = _mm256_add_pd(fiy0,ty);
644             fiz0             = _mm256_add_pd(fiz0,tz);
645
646             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
647             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
648             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
649             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
650             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
651
652             /* Inner loop uses 37 flops */
653         }
654
655         /* End of innermost loop */
656
657         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
658                                                  f+i_coord_offset,fshift+i_shift_offset);
659
660         /* Increment number of inner iterations */
661         inneriter                  += j_index_end - j_index_start;
662
663         /* Outer loop uses 7 flops */
664     }
665
666     /* Increment number of outer iterations */
667     outeriter        += nri;
668
669     /* Update outer/inner flops */
670
671     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*37);
672 }