Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJ_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
95     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
107     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
108     __m128i          ewitab;
109     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
111     real             *ewtab;
112     __m256d          dummy_mask,cutoff_mask;
113     __m128           tmpmask0,tmpmask1;
114     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
115     __m256d          one     = _mm256_set1_pd(1.0);
116     __m256d          two     = _mm256_set1_pd(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm256_set1_pd(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
135     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
136     beta2            = _mm256_mul_pd(beta,beta);
137     beta3            = _mm256_mul_pd(beta,beta2);
138
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
141     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
146     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
147     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
148     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = jnrC = jnrD = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154     j_coord_offsetC = 0;
155     j_coord_offsetD = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     for(iidx=0;iidx<4*DIM;iidx++)
161     {
162         scratch[iidx] = 0.0;
163     }
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
181                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
182
183         fix0             = _mm256_setzero_pd();
184         fiy0             = _mm256_setzero_pd();
185         fiz0             = _mm256_setzero_pd();
186         fix1             = _mm256_setzero_pd();
187         fiy1             = _mm256_setzero_pd();
188         fiz1             = _mm256_setzero_pd();
189         fix2             = _mm256_setzero_pd();
190         fiy2             = _mm256_setzero_pd();
191         fiz2             = _mm256_setzero_pd();
192         fix3             = _mm256_setzero_pd();
193         fiy3             = _mm256_setzero_pd();
194         fiz3             = _mm256_setzero_pd();
195
196         /* Reset potential sums */
197         velecsum         = _mm256_setzero_pd();
198         vvdwsum          = _mm256_setzero_pd();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             jnrC             = jjnr[jidx+2];
208             jnrD             = jjnr[jidx+3];
209             j_coord_offsetA  = DIM*jnrA;
210             j_coord_offsetB  = DIM*jnrB;
211             j_coord_offsetC  = DIM*jnrC;
212             j_coord_offsetD  = DIM*jnrD;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  &jx0,&jy0,&jz0);
218
219             /* Calculate displacement vector */
220             dx00             = _mm256_sub_pd(ix0,jx0);
221             dy00             = _mm256_sub_pd(iy0,jy0);
222             dz00             = _mm256_sub_pd(iz0,jz0);
223             dx10             = _mm256_sub_pd(ix1,jx0);
224             dy10             = _mm256_sub_pd(iy1,jy0);
225             dz10             = _mm256_sub_pd(iz1,jz0);
226             dx20             = _mm256_sub_pd(ix2,jx0);
227             dy20             = _mm256_sub_pd(iy2,jy0);
228             dz20             = _mm256_sub_pd(iz2,jz0);
229             dx30             = _mm256_sub_pd(ix3,jx0);
230             dy30             = _mm256_sub_pd(iy3,jy0);
231             dz30             = _mm256_sub_pd(iz3,jz0);
232
233             /* Calculate squared distance and things based on it */
234             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
235             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
236             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
237             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
238
239             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
240             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
241             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
242
243             rinvsq00         = gmx_mm256_inv_pd(rsq00);
244             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
245             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
246             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
247
248             /* Load parameters for j particles */
249             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
250                                                                  charge+jnrC+0,charge+jnrD+0);
251             vdwjidx0A        = 2*vdwtype[jnrA+0];
252             vdwjidx0B        = 2*vdwtype[jnrB+0];
253             vdwjidx0C        = 2*vdwtype[jnrC+0];
254             vdwjidx0D        = 2*vdwtype[jnrD+0];
255
256             fjx0             = _mm256_setzero_pd();
257             fjy0             = _mm256_setzero_pd();
258             fjz0             = _mm256_setzero_pd();
259
260             /**************************
261              * CALCULATE INTERACTIONS *
262              **************************/
263
264             /* Compute parameters for interactions between i and j atoms */
265             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
266                                             vdwioffsetptr0+vdwjidx0B,
267                                             vdwioffsetptr0+vdwjidx0C,
268                                             vdwioffsetptr0+vdwjidx0D,
269                                             &c6_00,&c12_00);
270
271             /* LENNARD-JONES DISPERSION/REPULSION */
272
273             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
274             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
275             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
276             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
277             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
281
282             fscal            = fvdw;
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm256_mul_pd(fscal,dx00);
286             ty               = _mm256_mul_pd(fscal,dy00);
287             tz               = _mm256_mul_pd(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm256_add_pd(fix0,tx);
291             fiy0             = _mm256_add_pd(fiy0,ty);
292             fiz0             = _mm256_add_pd(fiz0,tz);
293
294             fjx0             = _mm256_add_pd(fjx0,tx);
295             fjy0             = _mm256_add_pd(fjy0,ty);
296             fjz0             = _mm256_add_pd(fjz0,tz);
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             r10              = _mm256_mul_pd(rsq10,rinv10);
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq10             = _mm256_mul_pd(iq1,jq0);
306
307             /* EWALD ELECTROSTATICS */
308
309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
310             ewrt             = _mm256_mul_pd(r10,ewtabscale);
311             ewitab           = _mm256_cvttpd_epi32(ewrt);
312             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
313             ewitab           = _mm_slli_epi32(ewitab,2);
314             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
315             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
316             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
317             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
318             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
319             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
320             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
321             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
322             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
323
324             /* Update potential sum for this i atom from the interaction with this j atom. */
325             velecsum         = _mm256_add_pd(velecsum,velec);
326
327             fscal            = felec;
328
329             /* Calculate temporary vectorial force */
330             tx               = _mm256_mul_pd(fscal,dx10);
331             ty               = _mm256_mul_pd(fscal,dy10);
332             tz               = _mm256_mul_pd(fscal,dz10);
333
334             /* Update vectorial force */
335             fix1             = _mm256_add_pd(fix1,tx);
336             fiy1             = _mm256_add_pd(fiy1,ty);
337             fiz1             = _mm256_add_pd(fiz1,tz);
338
339             fjx0             = _mm256_add_pd(fjx0,tx);
340             fjy0             = _mm256_add_pd(fjy0,ty);
341             fjz0             = _mm256_add_pd(fjz0,tz);
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             r20              = _mm256_mul_pd(rsq20,rinv20);
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq20             = _mm256_mul_pd(iq2,jq0);
351
352             /* EWALD ELECTROSTATICS */
353
354             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
355             ewrt             = _mm256_mul_pd(r20,ewtabscale);
356             ewitab           = _mm256_cvttpd_epi32(ewrt);
357             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
358             ewitab           = _mm_slli_epi32(ewitab,2);
359             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
360             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
361             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
362             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
363             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
364             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
365             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
366             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
367             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velecsum         = _mm256_add_pd(velecsum,velec);
371
372             fscal            = felec;
373
374             /* Calculate temporary vectorial force */
375             tx               = _mm256_mul_pd(fscal,dx20);
376             ty               = _mm256_mul_pd(fscal,dy20);
377             tz               = _mm256_mul_pd(fscal,dz20);
378
379             /* Update vectorial force */
380             fix2             = _mm256_add_pd(fix2,tx);
381             fiy2             = _mm256_add_pd(fiy2,ty);
382             fiz2             = _mm256_add_pd(fiz2,tz);
383
384             fjx0             = _mm256_add_pd(fjx0,tx);
385             fjy0             = _mm256_add_pd(fjy0,ty);
386             fjz0             = _mm256_add_pd(fjz0,tz);
387
388             /**************************
389              * CALCULATE INTERACTIONS *
390              **************************/
391
392             r30              = _mm256_mul_pd(rsq30,rinv30);
393
394             /* Compute parameters for interactions between i and j atoms */
395             qq30             = _mm256_mul_pd(iq3,jq0);
396
397             /* EWALD ELECTROSTATICS */
398
399             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
400             ewrt             = _mm256_mul_pd(r30,ewtabscale);
401             ewitab           = _mm256_cvttpd_epi32(ewrt);
402             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
403             ewitab           = _mm_slli_epi32(ewitab,2);
404             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
405             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
406             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
407             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
408             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
409             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
410             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
411             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
412             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
413
414             /* Update potential sum for this i atom from the interaction with this j atom. */
415             velecsum         = _mm256_add_pd(velecsum,velec);
416
417             fscal            = felec;
418
419             /* Calculate temporary vectorial force */
420             tx               = _mm256_mul_pd(fscal,dx30);
421             ty               = _mm256_mul_pd(fscal,dy30);
422             tz               = _mm256_mul_pd(fscal,dz30);
423
424             /* Update vectorial force */
425             fix3             = _mm256_add_pd(fix3,tx);
426             fiy3             = _mm256_add_pd(fiy3,ty);
427             fiz3             = _mm256_add_pd(fiz3,tz);
428
429             fjx0             = _mm256_add_pd(fjx0,tx);
430             fjy0             = _mm256_add_pd(fjy0,ty);
431             fjz0             = _mm256_add_pd(fjz0,tz);
432
433             fjptrA             = f+j_coord_offsetA;
434             fjptrB             = f+j_coord_offsetB;
435             fjptrC             = f+j_coord_offsetC;
436             fjptrD             = f+j_coord_offsetD;
437
438             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
439
440             /* Inner loop uses 158 flops */
441         }
442
443         if(jidx<j_index_end)
444         {
445
446             /* Get j neighbor index, and coordinate index */
447             jnrlistA         = jjnr[jidx];
448             jnrlistB         = jjnr[jidx+1];
449             jnrlistC         = jjnr[jidx+2];
450             jnrlistD         = jjnr[jidx+3];
451             /* Sign of each element will be negative for non-real atoms.
452              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
453              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
454              */
455             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
456
457             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
458             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
459             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
460
461             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
462             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
463             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
464             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
465             j_coord_offsetA  = DIM*jnrA;
466             j_coord_offsetB  = DIM*jnrB;
467             j_coord_offsetC  = DIM*jnrC;
468             j_coord_offsetD  = DIM*jnrD;
469
470             /* load j atom coordinates */
471             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
472                                                  x+j_coord_offsetC,x+j_coord_offsetD,
473                                                  &jx0,&jy0,&jz0);
474
475             /* Calculate displacement vector */
476             dx00             = _mm256_sub_pd(ix0,jx0);
477             dy00             = _mm256_sub_pd(iy0,jy0);
478             dz00             = _mm256_sub_pd(iz0,jz0);
479             dx10             = _mm256_sub_pd(ix1,jx0);
480             dy10             = _mm256_sub_pd(iy1,jy0);
481             dz10             = _mm256_sub_pd(iz1,jz0);
482             dx20             = _mm256_sub_pd(ix2,jx0);
483             dy20             = _mm256_sub_pd(iy2,jy0);
484             dz20             = _mm256_sub_pd(iz2,jz0);
485             dx30             = _mm256_sub_pd(ix3,jx0);
486             dy30             = _mm256_sub_pd(iy3,jy0);
487             dz30             = _mm256_sub_pd(iz3,jz0);
488
489             /* Calculate squared distance and things based on it */
490             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
491             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
492             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
493             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
494
495             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
496             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
497             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
498
499             rinvsq00         = gmx_mm256_inv_pd(rsq00);
500             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
501             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
502             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
503
504             /* Load parameters for j particles */
505             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
506                                                                  charge+jnrC+0,charge+jnrD+0);
507             vdwjidx0A        = 2*vdwtype[jnrA+0];
508             vdwjidx0B        = 2*vdwtype[jnrB+0];
509             vdwjidx0C        = 2*vdwtype[jnrC+0];
510             vdwjidx0D        = 2*vdwtype[jnrD+0];
511
512             fjx0             = _mm256_setzero_pd();
513             fjy0             = _mm256_setzero_pd();
514             fjz0             = _mm256_setzero_pd();
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             /* Compute parameters for interactions between i and j atoms */
521             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
522                                             vdwioffsetptr0+vdwjidx0B,
523                                             vdwioffsetptr0+vdwjidx0C,
524                                             vdwioffsetptr0+vdwjidx0D,
525                                             &c6_00,&c12_00);
526
527             /* LENNARD-JONES DISPERSION/REPULSION */
528
529             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
530             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
531             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
532             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
533             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
534
535             /* Update potential sum for this i atom from the interaction with this j atom. */
536             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
537             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
538
539             fscal            = fvdw;
540
541             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
542
543             /* Calculate temporary vectorial force */
544             tx               = _mm256_mul_pd(fscal,dx00);
545             ty               = _mm256_mul_pd(fscal,dy00);
546             tz               = _mm256_mul_pd(fscal,dz00);
547
548             /* Update vectorial force */
549             fix0             = _mm256_add_pd(fix0,tx);
550             fiy0             = _mm256_add_pd(fiy0,ty);
551             fiz0             = _mm256_add_pd(fiz0,tz);
552
553             fjx0             = _mm256_add_pd(fjx0,tx);
554             fjy0             = _mm256_add_pd(fjy0,ty);
555             fjz0             = _mm256_add_pd(fjz0,tz);
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             r10              = _mm256_mul_pd(rsq10,rinv10);
562             r10              = _mm256_andnot_pd(dummy_mask,r10);
563
564             /* Compute parameters for interactions between i and j atoms */
565             qq10             = _mm256_mul_pd(iq1,jq0);
566
567             /* EWALD ELECTROSTATICS */
568
569             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
570             ewrt             = _mm256_mul_pd(r10,ewtabscale);
571             ewitab           = _mm256_cvttpd_epi32(ewrt);
572             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
573             ewitab           = _mm_slli_epi32(ewitab,2);
574             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
575             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
576             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
577             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
578             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
579             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
580             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
581             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
582             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             velec            = _mm256_andnot_pd(dummy_mask,velec);
586             velecsum         = _mm256_add_pd(velecsum,velec);
587
588             fscal            = felec;
589
590             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
591
592             /* Calculate temporary vectorial force */
593             tx               = _mm256_mul_pd(fscal,dx10);
594             ty               = _mm256_mul_pd(fscal,dy10);
595             tz               = _mm256_mul_pd(fscal,dz10);
596
597             /* Update vectorial force */
598             fix1             = _mm256_add_pd(fix1,tx);
599             fiy1             = _mm256_add_pd(fiy1,ty);
600             fiz1             = _mm256_add_pd(fiz1,tz);
601
602             fjx0             = _mm256_add_pd(fjx0,tx);
603             fjy0             = _mm256_add_pd(fjy0,ty);
604             fjz0             = _mm256_add_pd(fjz0,tz);
605
606             /**************************
607              * CALCULATE INTERACTIONS *
608              **************************/
609
610             r20              = _mm256_mul_pd(rsq20,rinv20);
611             r20              = _mm256_andnot_pd(dummy_mask,r20);
612
613             /* Compute parameters for interactions between i and j atoms */
614             qq20             = _mm256_mul_pd(iq2,jq0);
615
616             /* EWALD ELECTROSTATICS */
617
618             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
619             ewrt             = _mm256_mul_pd(r20,ewtabscale);
620             ewitab           = _mm256_cvttpd_epi32(ewrt);
621             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
622             ewitab           = _mm_slli_epi32(ewitab,2);
623             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
624             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
625             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
626             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
627             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
628             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
629             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
630             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
631             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
632
633             /* Update potential sum for this i atom from the interaction with this j atom. */
634             velec            = _mm256_andnot_pd(dummy_mask,velec);
635             velecsum         = _mm256_add_pd(velecsum,velec);
636
637             fscal            = felec;
638
639             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
640
641             /* Calculate temporary vectorial force */
642             tx               = _mm256_mul_pd(fscal,dx20);
643             ty               = _mm256_mul_pd(fscal,dy20);
644             tz               = _mm256_mul_pd(fscal,dz20);
645
646             /* Update vectorial force */
647             fix2             = _mm256_add_pd(fix2,tx);
648             fiy2             = _mm256_add_pd(fiy2,ty);
649             fiz2             = _mm256_add_pd(fiz2,tz);
650
651             fjx0             = _mm256_add_pd(fjx0,tx);
652             fjy0             = _mm256_add_pd(fjy0,ty);
653             fjz0             = _mm256_add_pd(fjz0,tz);
654
655             /**************************
656              * CALCULATE INTERACTIONS *
657              **************************/
658
659             r30              = _mm256_mul_pd(rsq30,rinv30);
660             r30              = _mm256_andnot_pd(dummy_mask,r30);
661
662             /* Compute parameters for interactions between i and j atoms */
663             qq30             = _mm256_mul_pd(iq3,jq0);
664
665             /* EWALD ELECTROSTATICS */
666
667             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
668             ewrt             = _mm256_mul_pd(r30,ewtabscale);
669             ewitab           = _mm256_cvttpd_epi32(ewrt);
670             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
671             ewitab           = _mm_slli_epi32(ewitab,2);
672             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
673             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
674             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
675             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
676             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
677             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
678             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
679             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
680             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
681
682             /* Update potential sum for this i atom from the interaction with this j atom. */
683             velec            = _mm256_andnot_pd(dummy_mask,velec);
684             velecsum         = _mm256_add_pd(velecsum,velec);
685
686             fscal            = felec;
687
688             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
689
690             /* Calculate temporary vectorial force */
691             tx               = _mm256_mul_pd(fscal,dx30);
692             ty               = _mm256_mul_pd(fscal,dy30);
693             tz               = _mm256_mul_pd(fscal,dz30);
694
695             /* Update vectorial force */
696             fix3             = _mm256_add_pd(fix3,tx);
697             fiy3             = _mm256_add_pd(fiy3,ty);
698             fiz3             = _mm256_add_pd(fiz3,tz);
699
700             fjx0             = _mm256_add_pd(fjx0,tx);
701             fjy0             = _mm256_add_pd(fjy0,ty);
702             fjz0             = _mm256_add_pd(fjz0,tz);
703
704             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
705             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
706             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
707             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
708
709             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
710
711             /* Inner loop uses 161 flops */
712         }
713
714         /* End of innermost loop */
715
716         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
717                                                  f+i_coord_offset,fshift+i_shift_offset);
718
719         ggid                        = gid[iidx];
720         /* Update potential energies */
721         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
722         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
723
724         /* Increment number of inner iterations */
725         inneriter                  += j_index_end - j_index_start;
726
727         /* Outer loop uses 26 flops */
728     }
729
730     /* Increment number of outer iterations */
731     outeriter        += nri;
732
733     /* Update outer/inner flops */
734
735     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*161);
736 }
737 /*
738  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_256_double
739  * Electrostatics interaction: Ewald
740  * VdW interaction:            LennardJones
741  * Geometry:                   Water4-Particle
742  * Calculate force/pot:        Force
743  */
744 void
745 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_256_double
746                     (t_nblist                    * gmx_restrict       nlist,
747                      rvec                        * gmx_restrict          xx,
748                      rvec                        * gmx_restrict          ff,
749                      t_forcerec                  * gmx_restrict          fr,
750                      t_mdatoms                   * gmx_restrict     mdatoms,
751                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
752                      t_nrnb                      * gmx_restrict        nrnb)
753 {
754     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
755      * just 0 for non-waters.
756      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
757      * jnr indices corresponding to data put in the four positions in the SIMD register.
758      */
759     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
760     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
761     int              jnrA,jnrB,jnrC,jnrD;
762     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
763     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
764     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
765     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
766     real             rcutoff_scalar;
767     real             *shiftvec,*fshift,*x,*f;
768     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
769     real             scratch[4*DIM];
770     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
771     real *           vdwioffsetptr0;
772     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
773     real *           vdwioffsetptr1;
774     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
775     real *           vdwioffsetptr2;
776     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
777     real *           vdwioffsetptr3;
778     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
779     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
780     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
781     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
782     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
783     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
784     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
785     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
786     real             *charge;
787     int              nvdwtype;
788     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
789     int              *vdwtype;
790     real             *vdwparam;
791     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
792     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
793     __m128i          ewitab;
794     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
795     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
796     real             *ewtab;
797     __m256d          dummy_mask,cutoff_mask;
798     __m128           tmpmask0,tmpmask1;
799     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
800     __m256d          one     = _mm256_set1_pd(1.0);
801     __m256d          two     = _mm256_set1_pd(2.0);
802     x                = xx[0];
803     f                = ff[0];
804
805     nri              = nlist->nri;
806     iinr             = nlist->iinr;
807     jindex           = nlist->jindex;
808     jjnr             = nlist->jjnr;
809     shiftidx         = nlist->shift;
810     gid              = nlist->gid;
811     shiftvec         = fr->shift_vec[0];
812     fshift           = fr->fshift[0];
813     facel            = _mm256_set1_pd(fr->epsfac);
814     charge           = mdatoms->chargeA;
815     nvdwtype         = fr->ntype;
816     vdwparam         = fr->nbfp;
817     vdwtype          = mdatoms->typeA;
818
819     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
820     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
821     beta2            = _mm256_mul_pd(beta,beta);
822     beta3            = _mm256_mul_pd(beta,beta2);
823
824     ewtab            = fr->ic->tabq_coul_F;
825     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
826     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
827
828     /* Setup water-specific parameters */
829     inr              = nlist->iinr[0];
830     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
831     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
832     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
833     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
834
835     /* Avoid stupid compiler warnings */
836     jnrA = jnrB = jnrC = jnrD = 0;
837     j_coord_offsetA = 0;
838     j_coord_offsetB = 0;
839     j_coord_offsetC = 0;
840     j_coord_offsetD = 0;
841
842     outeriter        = 0;
843     inneriter        = 0;
844
845     for(iidx=0;iidx<4*DIM;iidx++)
846     {
847         scratch[iidx] = 0.0;
848     }
849
850     /* Start outer loop over neighborlists */
851     for(iidx=0; iidx<nri; iidx++)
852     {
853         /* Load shift vector for this list */
854         i_shift_offset   = DIM*shiftidx[iidx];
855
856         /* Load limits for loop over neighbors */
857         j_index_start    = jindex[iidx];
858         j_index_end      = jindex[iidx+1];
859
860         /* Get outer coordinate index */
861         inr              = iinr[iidx];
862         i_coord_offset   = DIM*inr;
863
864         /* Load i particle coords and add shift vector */
865         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
866                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
867
868         fix0             = _mm256_setzero_pd();
869         fiy0             = _mm256_setzero_pd();
870         fiz0             = _mm256_setzero_pd();
871         fix1             = _mm256_setzero_pd();
872         fiy1             = _mm256_setzero_pd();
873         fiz1             = _mm256_setzero_pd();
874         fix2             = _mm256_setzero_pd();
875         fiy2             = _mm256_setzero_pd();
876         fiz2             = _mm256_setzero_pd();
877         fix3             = _mm256_setzero_pd();
878         fiy3             = _mm256_setzero_pd();
879         fiz3             = _mm256_setzero_pd();
880
881         /* Start inner kernel loop */
882         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
883         {
884
885             /* Get j neighbor index, and coordinate index */
886             jnrA             = jjnr[jidx];
887             jnrB             = jjnr[jidx+1];
888             jnrC             = jjnr[jidx+2];
889             jnrD             = jjnr[jidx+3];
890             j_coord_offsetA  = DIM*jnrA;
891             j_coord_offsetB  = DIM*jnrB;
892             j_coord_offsetC  = DIM*jnrC;
893             j_coord_offsetD  = DIM*jnrD;
894
895             /* load j atom coordinates */
896             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
897                                                  x+j_coord_offsetC,x+j_coord_offsetD,
898                                                  &jx0,&jy0,&jz0);
899
900             /* Calculate displacement vector */
901             dx00             = _mm256_sub_pd(ix0,jx0);
902             dy00             = _mm256_sub_pd(iy0,jy0);
903             dz00             = _mm256_sub_pd(iz0,jz0);
904             dx10             = _mm256_sub_pd(ix1,jx0);
905             dy10             = _mm256_sub_pd(iy1,jy0);
906             dz10             = _mm256_sub_pd(iz1,jz0);
907             dx20             = _mm256_sub_pd(ix2,jx0);
908             dy20             = _mm256_sub_pd(iy2,jy0);
909             dz20             = _mm256_sub_pd(iz2,jz0);
910             dx30             = _mm256_sub_pd(ix3,jx0);
911             dy30             = _mm256_sub_pd(iy3,jy0);
912             dz30             = _mm256_sub_pd(iz3,jz0);
913
914             /* Calculate squared distance and things based on it */
915             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
916             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
917             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
918             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
919
920             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
921             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
922             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
923
924             rinvsq00         = gmx_mm256_inv_pd(rsq00);
925             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
926             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
927             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
928
929             /* Load parameters for j particles */
930             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
931                                                                  charge+jnrC+0,charge+jnrD+0);
932             vdwjidx0A        = 2*vdwtype[jnrA+0];
933             vdwjidx0B        = 2*vdwtype[jnrB+0];
934             vdwjidx0C        = 2*vdwtype[jnrC+0];
935             vdwjidx0D        = 2*vdwtype[jnrD+0];
936
937             fjx0             = _mm256_setzero_pd();
938             fjy0             = _mm256_setzero_pd();
939             fjz0             = _mm256_setzero_pd();
940
941             /**************************
942              * CALCULATE INTERACTIONS *
943              **************************/
944
945             /* Compute parameters for interactions between i and j atoms */
946             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
947                                             vdwioffsetptr0+vdwjidx0B,
948                                             vdwioffsetptr0+vdwjidx0C,
949                                             vdwioffsetptr0+vdwjidx0D,
950                                             &c6_00,&c12_00);
951
952             /* LENNARD-JONES DISPERSION/REPULSION */
953
954             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
955             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
956
957             fscal            = fvdw;
958
959             /* Calculate temporary vectorial force */
960             tx               = _mm256_mul_pd(fscal,dx00);
961             ty               = _mm256_mul_pd(fscal,dy00);
962             tz               = _mm256_mul_pd(fscal,dz00);
963
964             /* Update vectorial force */
965             fix0             = _mm256_add_pd(fix0,tx);
966             fiy0             = _mm256_add_pd(fiy0,ty);
967             fiz0             = _mm256_add_pd(fiz0,tz);
968
969             fjx0             = _mm256_add_pd(fjx0,tx);
970             fjy0             = _mm256_add_pd(fjy0,ty);
971             fjz0             = _mm256_add_pd(fjz0,tz);
972
973             /**************************
974              * CALCULATE INTERACTIONS *
975              **************************/
976
977             r10              = _mm256_mul_pd(rsq10,rinv10);
978
979             /* Compute parameters for interactions between i and j atoms */
980             qq10             = _mm256_mul_pd(iq1,jq0);
981
982             /* EWALD ELECTROSTATICS */
983
984             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
985             ewrt             = _mm256_mul_pd(r10,ewtabscale);
986             ewitab           = _mm256_cvttpd_epi32(ewrt);
987             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
988             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
989                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
990                                             &ewtabF,&ewtabFn);
991             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
992             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
993
994             fscal            = felec;
995
996             /* Calculate temporary vectorial force */
997             tx               = _mm256_mul_pd(fscal,dx10);
998             ty               = _mm256_mul_pd(fscal,dy10);
999             tz               = _mm256_mul_pd(fscal,dz10);
1000
1001             /* Update vectorial force */
1002             fix1             = _mm256_add_pd(fix1,tx);
1003             fiy1             = _mm256_add_pd(fiy1,ty);
1004             fiz1             = _mm256_add_pd(fiz1,tz);
1005
1006             fjx0             = _mm256_add_pd(fjx0,tx);
1007             fjy0             = _mm256_add_pd(fjy0,ty);
1008             fjz0             = _mm256_add_pd(fjz0,tz);
1009
1010             /**************************
1011              * CALCULATE INTERACTIONS *
1012              **************************/
1013
1014             r20              = _mm256_mul_pd(rsq20,rinv20);
1015
1016             /* Compute parameters for interactions between i and j atoms */
1017             qq20             = _mm256_mul_pd(iq2,jq0);
1018
1019             /* EWALD ELECTROSTATICS */
1020
1021             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1022             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1023             ewitab           = _mm256_cvttpd_epi32(ewrt);
1024             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1025             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1026                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1027                                             &ewtabF,&ewtabFn);
1028             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1029             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1030
1031             fscal            = felec;
1032
1033             /* Calculate temporary vectorial force */
1034             tx               = _mm256_mul_pd(fscal,dx20);
1035             ty               = _mm256_mul_pd(fscal,dy20);
1036             tz               = _mm256_mul_pd(fscal,dz20);
1037
1038             /* Update vectorial force */
1039             fix2             = _mm256_add_pd(fix2,tx);
1040             fiy2             = _mm256_add_pd(fiy2,ty);
1041             fiz2             = _mm256_add_pd(fiz2,tz);
1042
1043             fjx0             = _mm256_add_pd(fjx0,tx);
1044             fjy0             = _mm256_add_pd(fjy0,ty);
1045             fjz0             = _mm256_add_pd(fjz0,tz);
1046
1047             /**************************
1048              * CALCULATE INTERACTIONS *
1049              **************************/
1050
1051             r30              = _mm256_mul_pd(rsq30,rinv30);
1052
1053             /* Compute parameters for interactions between i and j atoms */
1054             qq30             = _mm256_mul_pd(iq3,jq0);
1055
1056             /* EWALD ELECTROSTATICS */
1057
1058             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1059             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1060             ewitab           = _mm256_cvttpd_epi32(ewrt);
1061             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1062             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1063                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1064                                             &ewtabF,&ewtabFn);
1065             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1066             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1067
1068             fscal            = felec;
1069
1070             /* Calculate temporary vectorial force */
1071             tx               = _mm256_mul_pd(fscal,dx30);
1072             ty               = _mm256_mul_pd(fscal,dy30);
1073             tz               = _mm256_mul_pd(fscal,dz30);
1074
1075             /* Update vectorial force */
1076             fix3             = _mm256_add_pd(fix3,tx);
1077             fiy3             = _mm256_add_pd(fiy3,ty);
1078             fiz3             = _mm256_add_pd(fiz3,tz);
1079
1080             fjx0             = _mm256_add_pd(fjx0,tx);
1081             fjy0             = _mm256_add_pd(fjy0,ty);
1082             fjz0             = _mm256_add_pd(fjz0,tz);
1083
1084             fjptrA             = f+j_coord_offsetA;
1085             fjptrB             = f+j_coord_offsetB;
1086             fjptrC             = f+j_coord_offsetC;
1087             fjptrD             = f+j_coord_offsetD;
1088
1089             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1090
1091             /* Inner loop uses 138 flops */
1092         }
1093
1094         if(jidx<j_index_end)
1095         {
1096
1097             /* Get j neighbor index, and coordinate index */
1098             jnrlistA         = jjnr[jidx];
1099             jnrlistB         = jjnr[jidx+1];
1100             jnrlistC         = jjnr[jidx+2];
1101             jnrlistD         = jjnr[jidx+3];
1102             /* Sign of each element will be negative for non-real atoms.
1103              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1104              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1105              */
1106             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1107
1108             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1109             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1110             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1111
1112             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1113             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1114             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1115             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1116             j_coord_offsetA  = DIM*jnrA;
1117             j_coord_offsetB  = DIM*jnrB;
1118             j_coord_offsetC  = DIM*jnrC;
1119             j_coord_offsetD  = DIM*jnrD;
1120
1121             /* load j atom coordinates */
1122             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1123                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1124                                                  &jx0,&jy0,&jz0);
1125
1126             /* Calculate displacement vector */
1127             dx00             = _mm256_sub_pd(ix0,jx0);
1128             dy00             = _mm256_sub_pd(iy0,jy0);
1129             dz00             = _mm256_sub_pd(iz0,jz0);
1130             dx10             = _mm256_sub_pd(ix1,jx0);
1131             dy10             = _mm256_sub_pd(iy1,jy0);
1132             dz10             = _mm256_sub_pd(iz1,jz0);
1133             dx20             = _mm256_sub_pd(ix2,jx0);
1134             dy20             = _mm256_sub_pd(iy2,jy0);
1135             dz20             = _mm256_sub_pd(iz2,jz0);
1136             dx30             = _mm256_sub_pd(ix3,jx0);
1137             dy30             = _mm256_sub_pd(iy3,jy0);
1138             dz30             = _mm256_sub_pd(iz3,jz0);
1139
1140             /* Calculate squared distance and things based on it */
1141             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1142             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1143             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1144             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1145
1146             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1147             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1148             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1149
1150             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1151             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1152             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1153             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1154
1155             /* Load parameters for j particles */
1156             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1157                                                                  charge+jnrC+0,charge+jnrD+0);
1158             vdwjidx0A        = 2*vdwtype[jnrA+0];
1159             vdwjidx0B        = 2*vdwtype[jnrB+0];
1160             vdwjidx0C        = 2*vdwtype[jnrC+0];
1161             vdwjidx0D        = 2*vdwtype[jnrD+0];
1162
1163             fjx0             = _mm256_setzero_pd();
1164             fjy0             = _mm256_setzero_pd();
1165             fjz0             = _mm256_setzero_pd();
1166
1167             /**************************
1168              * CALCULATE INTERACTIONS *
1169              **************************/
1170
1171             /* Compute parameters for interactions between i and j atoms */
1172             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1173                                             vdwioffsetptr0+vdwjidx0B,
1174                                             vdwioffsetptr0+vdwjidx0C,
1175                                             vdwioffsetptr0+vdwjidx0D,
1176                                             &c6_00,&c12_00);
1177
1178             /* LENNARD-JONES DISPERSION/REPULSION */
1179
1180             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1181             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1182
1183             fscal            = fvdw;
1184
1185             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1186
1187             /* Calculate temporary vectorial force */
1188             tx               = _mm256_mul_pd(fscal,dx00);
1189             ty               = _mm256_mul_pd(fscal,dy00);
1190             tz               = _mm256_mul_pd(fscal,dz00);
1191
1192             /* Update vectorial force */
1193             fix0             = _mm256_add_pd(fix0,tx);
1194             fiy0             = _mm256_add_pd(fiy0,ty);
1195             fiz0             = _mm256_add_pd(fiz0,tz);
1196
1197             fjx0             = _mm256_add_pd(fjx0,tx);
1198             fjy0             = _mm256_add_pd(fjy0,ty);
1199             fjz0             = _mm256_add_pd(fjz0,tz);
1200
1201             /**************************
1202              * CALCULATE INTERACTIONS *
1203              **************************/
1204
1205             r10              = _mm256_mul_pd(rsq10,rinv10);
1206             r10              = _mm256_andnot_pd(dummy_mask,r10);
1207
1208             /* Compute parameters for interactions between i and j atoms */
1209             qq10             = _mm256_mul_pd(iq1,jq0);
1210
1211             /* EWALD ELECTROSTATICS */
1212
1213             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1214             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1215             ewitab           = _mm256_cvttpd_epi32(ewrt);
1216             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1217             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1218                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1219                                             &ewtabF,&ewtabFn);
1220             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1221             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1222
1223             fscal            = felec;
1224
1225             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1226
1227             /* Calculate temporary vectorial force */
1228             tx               = _mm256_mul_pd(fscal,dx10);
1229             ty               = _mm256_mul_pd(fscal,dy10);
1230             tz               = _mm256_mul_pd(fscal,dz10);
1231
1232             /* Update vectorial force */
1233             fix1             = _mm256_add_pd(fix1,tx);
1234             fiy1             = _mm256_add_pd(fiy1,ty);
1235             fiz1             = _mm256_add_pd(fiz1,tz);
1236
1237             fjx0             = _mm256_add_pd(fjx0,tx);
1238             fjy0             = _mm256_add_pd(fjy0,ty);
1239             fjz0             = _mm256_add_pd(fjz0,tz);
1240
1241             /**************************
1242              * CALCULATE INTERACTIONS *
1243              **************************/
1244
1245             r20              = _mm256_mul_pd(rsq20,rinv20);
1246             r20              = _mm256_andnot_pd(dummy_mask,r20);
1247
1248             /* Compute parameters for interactions between i and j atoms */
1249             qq20             = _mm256_mul_pd(iq2,jq0);
1250
1251             /* EWALD ELECTROSTATICS */
1252
1253             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1254             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1255             ewitab           = _mm256_cvttpd_epi32(ewrt);
1256             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1257             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1258                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1259                                             &ewtabF,&ewtabFn);
1260             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1261             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1262
1263             fscal            = felec;
1264
1265             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1266
1267             /* Calculate temporary vectorial force */
1268             tx               = _mm256_mul_pd(fscal,dx20);
1269             ty               = _mm256_mul_pd(fscal,dy20);
1270             tz               = _mm256_mul_pd(fscal,dz20);
1271
1272             /* Update vectorial force */
1273             fix2             = _mm256_add_pd(fix2,tx);
1274             fiy2             = _mm256_add_pd(fiy2,ty);
1275             fiz2             = _mm256_add_pd(fiz2,tz);
1276
1277             fjx0             = _mm256_add_pd(fjx0,tx);
1278             fjy0             = _mm256_add_pd(fjy0,ty);
1279             fjz0             = _mm256_add_pd(fjz0,tz);
1280
1281             /**************************
1282              * CALCULATE INTERACTIONS *
1283              **************************/
1284
1285             r30              = _mm256_mul_pd(rsq30,rinv30);
1286             r30              = _mm256_andnot_pd(dummy_mask,r30);
1287
1288             /* Compute parameters for interactions between i and j atoms */
1289             qq30             = _mm256_mul_pd(iq3,jq0);
1290
1291             /* EWALD ELECTROSTATICS */
1292
1293             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1294             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1295             ewitab           = _mm256_cvttpd_epi32(ewrt);
1296             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1297             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1298                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1299                                             &ewtabF,&ewtabFn);
1300             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1301             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1302
1303             fscal            = felec;
1304
1305             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1306
1307             /* Calculate temporary vectorial force */
1308             tx               = _mm256_mul_pd(fscal,dx30);
1309             ty               = _mm256_mul_pd(fscal,dy30);
1310             tz               = _mm256_mul_pd(fscal,dz30);
1311
1312             /* Update vectorial force */
1313             fix3             = _mm256_add_pd(fix3,tx);
1314             fiy3             = _mm256_add_pd(fiy3,ty);
1315             fiz3             = _mm256_add_pd(fiz3,tz);
1316
1317             fjx0             = _mm256_add_pd(fjx0,tx);
1318             fjy0             = _mm256_add_pd(fjy0,ty);
1319             fjz0             = _mm256_add_pd(fjz0,tz);
1320
1321             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1322             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1323             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1324             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1325
1326             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1327
1328             /* Inner loop uses 141 flops */
1329         }
1330
1331         /* End of innermost loop */
1332
1333         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1334                                                  f+i_coord_offset,fshift+i_shift_offset);
1335
1336         /* Increment number of inner iterations */
1337         inneriter                  += j_index_end - j_index_start;
1338
1339         /* Outer loop uses 24 flops */
1340     }
1341
1342     /* Increment number of outer iterations */
1343     outeriter        += nri;
1344
1345     /* Update outer/inner flops */
1346
1347     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*141);
1348 }