Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJ_GeomW4P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     real *           vdwioffsetptr3;
77     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
79     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
84     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
91     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
92     __m128i          ewitab;
93     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
95     real             *ewtab;
96     __m256d          dummy_mask,cutoff_mask;
97     __m128           tmpmask0,tmpmask1;
98     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
99     __m256d          one     = _mm256_set1_pd(1.0);
100     __m256d          two     = _mm256_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm256_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117
118     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
119     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
120     beta2            = _mm256_mul_pd(beta,beta);
121     beta3            = _mm256_mul_pd(beta,beta2);
122
123     ewtab            = fr->ic->tabq_coul_FDV0;
124     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
125     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
126
127     /* Setup water-specific parameters */
128     inr              = nlist->iinr[0];
129     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
130     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
131     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
132     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
165                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
166
167         fix0             = _mm256_setzero_pd();
168         fiy0             = _mm256_setzero_pd();
169         fiz0             = _mm256_setzero_pd();
170         fix1             = _mm256_setzero_pd();
171         fiy1             = _mm256_setzero_pd();
172         fiz1             = _mm256_setzero_pd();
173         fix2             = _mm256_setzero_pd();
174         fiy2             = _mm256_setzero_pd();
175         fiz2             = _mm256_setzero_pd();
176         fix3             = _mm256_setzero_pd();
177         fiy3             = _mm256_setzero_pd();
178         fiz3             = _mm256_setzero_pd();
179
180         /* Reset potential sums */
181         velecsum         = _mm256_setzero_pd();
182         vvdwsum          = _mm256_setzero_pd();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm256_sub_pd(ix0,jx0);
205             dy00             = _mm256_sub_pd(iy0,jy0);
206             dz00             = _mm256_sub_pd(iz0,jz0);
207             dx10             = _mm256_sub_pd(ix1,jx0);
208             dy10             = _mm256_sub_pd(iy1,jy0);
209             dz10             = _mm256_sub_pd(iz1,jz0);
210             dx20             = _mm256_sub_pd(ix2,jx0);
211             dy20             = _mm256_sub_pd(iy2,jy0);
212             dz20             = _mm256_sub_pd(iz2,jz0);
213             dx30             = _mm256_sub_pd(ix3,jx0);
214             dy30             = _mm256_sub_pd(iy3,jy0);
215             dz30             = _mm256_sub_pd(iz3,jz0);
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
219             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
220             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
221             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
222
223             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
224             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
225             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
226
227             rinvsq00         = gmx_mm256_inv_pd(rsq00);
228             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
229             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
230             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
234                                                                  charge+jnrC+0,charge+jnrD+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237             vdwjidx0C        = 2*vdwtype[jnrC+0];
238             vdwjidx0D        = 2*vdwtype[jnrD+0];
239
240             fjx0             = _mm256_setzero_pd();
241             fjy0             = _mm256_setzero_pd();
242             fjz0             = _mm256_setzero_pd();
243
244             /**************************
245              * CALCULATE INTERACTIONS *
246              **************************/
247
248             /* Compute parameters for interactions between i and j atoms */
249             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
250                                             vdwioffsetptr0+vdwjidx0B,
251                                             vdwioffsetptr0+vdwjidx0C,
252                                             vdwioffsetptr0+vdwjidx0D,
253                                             &c6_00,&c12_00);
254
255             /* LENNARD-JONES DISPERSION/REPULSION */
256
257             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
258             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
259             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
260             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
261             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
262
263             /* Update potential sum for this i atom from the interaction with this j atom. */
264             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
265
266             fscal            = fvdw;
267
268             /* Calculate temporary vectorial force */
269             tx               = _mm256_mul_pd(fscal,dx00);
270             ty               = _mm256_mul_pd(fscal,dy00);
271             tz               = _mm256_mul_pd(fscal,dz00);
272
273             /* Update vectorial force */
274             fix0             = _mm256_add_pd(fix0,tx);
275             fiy0             = _mm256_add_pd(fiy0,ty);
276             fiz0             = _mm256_add_pd(fiz0,tz);
277
278             fjx0             = _mm256_add_pd(fjx0,tx);
279             fjy0             = _mm256_add_pd(fjy0,ty);
280             fjz0             = _mm256_add_pd(fjz0,tz);
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             r10              = _mm256_mul_pd(rsq10,rinv10);
287
288             /* Compute parameters for interactions between i and j atoms */
289             qq10             = _mm256_mul_pd(iq1,jq0);
290
291             /* EWALD ELECTROSTATICS */
292
293             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
294             ewrt             = _mm256_mul_pd(r10,ewtabscale);
295             ewitab           = _mm256_cvttpd_epi32(ewrt);
296             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
297             ewitab           = _mm_slli_epi32(ewitab,2);
298             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
299             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
300             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
301             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
302             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
303             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
304             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
305             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
306             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             velecsum         = _mm256_add_pd(velecsum,velec);
310
311             fscal            = felec;
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm256_mul_pd(fscal,dx10);
315             ty               = _mm256_mul_pd(fscal,dy10);
316             tz               = _mm256_mul_pd(fscal,dz10);
317
318             /* Update vectorial force */
319             fix1             = _mm256_add_pd(fix1,tx);
320             fiy1             = _mm256_add_pd(fiy1,ty);
321             fiz1             = _mm256_add_pd(fiz1,tz);
322
323             fjx0             = _mm256_add_pd(fjx0,tx);
324             fjy0             = _mm256_add_pd(fjy0,ty);
325             fjz0             = _mm256_add_pd(fjz0,tz);
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             r20              = _mm256_mul_pd(rsq20,rinv20);
332
333             /* Compute parameters for interactions between i and j atoms */
334             qq20             = _mm256_mul_pd(iq2,jq0);
335
336             /* EWALD ELECTROSTATICS */
337
338             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
339             ewrt             = _mm256_mul_pd(r20,ewtabscale);
340             ewitab           = _mm256_cvttpd_epi32(ewrt);
341             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
342             ewitab           = _mm_slli_epi32(ewitab,2);
343             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
344             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
345             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
346             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
347             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
348             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
349             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
350             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
351             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velecsum         = _mm256_add_pd(velecsum,velec);
355
356             fscal            = felec;
357
358             /* Calculate temporary vectorial force */
359             tx               = _mm256_mul_pd(fscal,dx20);
360             ty               = _mm256_mul_pd(fscal,dy20);
361             tz               = _mm256_mul_pd(fscal,dz20);
362
363             /* Update vectorial force */
364             fix2             = _mm256_add_pd(fix2,tx);
365             fiy2             = _mm256_add_pd(fiy2,ty);
366             fiz2             = _mm256_add_pd(fiz2,tz);
367
368             fjx0             = _mm256_add_pd(fjx0,tx);
369             fjy0             = _mm256_add_pd(fjy0,ty);
370             fjz0             = _mm256_add_pd(fjz0,tz);
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             r30              = _mm256_mul_pd(rsq30,rinv30);
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq30             = _mm256_mul_pd(iq3,jq0);
380
381             /* EWALD ELECTROSTATICS */
382
383             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
384             ewrt             = _mm256_mul_pd(r30,ewtabscale);
385             ewitab           = _mm256_cvttpd_epi32(ewrt);
386             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
387             ewitab           = _mm_slli_epi32(ewitab,2);
388             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
389             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
390             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
391             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
392             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
393             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
394             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
395             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
396             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
397
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             velecsum         = _mm256_add_pd(velecsum,velec);
400
401             fscal            = felec;
402
403             /* Calculate temporary vectorial force */
404             tx               = _mm256_mul_pd(fscal,dx30);
405             ty               = _mm256_mul_pd(fscal,dy30);
406             tz               = _mm256_mul_pd(fscal,dz30);
407
408             /* Update vectorial force */
409             fix3             = _mm256_add_pd(fix3,tx);
410             fiy3             = _mm256_add_pd(fiy3,ty);
411             fiz3             = _mm256_add_pd(fiz3,tz);
412
413             fjx0             = _mm256_add_pd(fjx0,tx);
414             fjy0             = _mm256_add_pd(fjy0,ty);
415             fjz0             = _mm256_add_pd(fjz0,tz);
416
417             fjptrA             = f+j_coord_offsetA;
418             fjptrB             = f+j_coord_offsetB;
419             fjptrC             = f+j_coord_offsetC;
420             fjptrD             = f+j_coord_offsetD;
421
422             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
423
424             /* Inner loop uses 158 flops */
425         }
426
427         if(jidx<j_index_end)
428         {
429
430             /* Get j neighbor index, and coordinate index */
431             jnrlistA         = jjnr[jidx];
432             jnrlistB         = jjnr[jidx+1];
433             jnrlistC         = jjnr[jidx+2];
434             jnrlistD         = jjnr[jidx+3];
435             /* Sign of each element will be negative for non-real atoms.
436              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
437              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
438              */
439             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
440
441             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
442             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
443             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
444
445             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
446             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
447             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
448             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
449             j_coord_offsetA  = DIM*jnrA;
450             j_coord_offsetB  = DIM*jnrB;
451             j_coord_offsetC  = DIM*jnrC;
452             j_coord_offsetD  = DIM*jnrD;
453
454             /* load j atom coordinates */
455             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
456                                                  x+j_coord_offsetC,x+j_coord_offsetD,
457                                                  &jx0,&jy0,&jz0);
458
459             /* Calculate displacement vector */
460             dx00             = _mm256_sub_pd(ix0,jx0);
461             dy00             = _mm256_sub_pd(iy0,jy0);
462             dz00             = _mm256_sub_pd(iz0,jz0);
463             dx10             = _mm256_sub_pd(ix1,jx0);
464             dy10             = _mm256_sub_pd(iy1,jy0);
465             dz10             = _mm256_sub_pd(iz1,jz0);
466             dx20             = _mm256_sub_pd(ix2,jx0);
467             dy20             = _mm256_sub_pd(iy2,jy0);
468             dz20             = _mm256_sub_pd(iz2,jz0);
469             dx30             = _mm256_sub_pd(ix3,jx0);
470             dy30             = _mm256_sub_pd(iy3,jy0);
471             dz30             = _mm256_sub_pd(iz3,jz0);
472
473             /* Calculate squared distance and things based on it */
474             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
475             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
476             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
477             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
478
479             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
480             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
481             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
482
483             rinvsq00         = gmx_mm256_inv_pd(rsq00);
484             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
485             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
486             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
487
488             /* Load parameters for j particles */
489             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
490                                                                  charge+jnrC+0,charge+jnrD+0);
491             vdwjidx0A        = 2*vdwtype[jnrA+0];
492             vdwjidx0B        = 2*vdwtype[jnrB+0];
493             vdwjidx0C        = 2*vdwtype[jnrC+0];
494             vdwjidx0D        = 2*vdwtype[jnrD+0];
495
496             fjx0             = _mm256_setzero_pd();
497             fjy0             = _mm256_setzero_pd();
498             fjz0             = _mm256_setzero_pd();
499
500             /**************************
501              * CALCULATE INTERACTIONS *
502              **************************/
503
504             /* Compute parameters for interactions between i and j atoms */
505             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
506                                             vdwioffsetptr0+vdwjidx0B,
507                                             vdwioffsetptr0+vdwjidx0C,
508                                             vdwioffsetptr0+vdwjidx0D,
509                                             &c6_00,&c12_00);
510
511             /* LENNARD-JONES DISPERSION/REPULSION */
512
513             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
514             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
515             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
516             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
517             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
518
519             /* Update potential sum for this i atom from the interaction with this j atom. */
520             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
521             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
522
523             fscal            = fvdw;
524
525             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
526
527             /* Calculate temporary vectorial force */
528             tx               = _mm256_mul_pd(fscal,dx00);
529             ty               = _mm256_mul_pd(fscal,dy00);
530             tz               = _mm256_mul_pd(fscal,dz00);
531
532             /* Update vectorial force */
533             fix0             = _mm256_add_pd(fix0,tx);
534             fiy0             = _mm256_add_pd(fiy0,ty);
535             fiz0             = _mm256_add_pd(fiz0,tz);
536
537             fjx0             = _mm256_add_pd(fjx0,tx);
538             fjy0             = _mm256_add_pd(fjy0,ty);
539             fjz0             = _mm256_add_pd(fjz0,tz);
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             r10              = _mm256_mul_pd(rsq10,rinv10);
546             r10              = _mm256_andnot_pd(dummy_mask,r10);
547
548             /* Compute parameters for interactions between i and j atoms */
549             qq10             = _mm256_mul_pd(iq1,jq0);
550
551             /* EWALD ELECTROSTATICS */
552
553             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
554             ewrt             = _mm256_mul_pd(r10,ewtabscale);
555             ewitab           = _mm256_cvttpd_epi32(ewrt);
556             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
557             ewitab           = _mm_slli_epi32(ewitab,2);
558             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
559             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
560             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
561             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
562             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
563             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
564             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
565             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
566             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
567
568             /* Update potential sum for this i atom from the interaction with this j atom. */
569             velec            = _mm256_andnot_pd(dummy_mask,velec);
570             velecsum         = _mm256_add_pd(velecsum,velec);
571
572             fscal            = felec;
573
574             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
575
576             /* Calculate temporary vectorial force */
577             tx               = _mm256_mul_pd(fscal,dx10);
578             ty               = _mm256_mul_pd(fscal,dy10);
579             tz               = _mm256_mul_pd(fscal,dz10);
580
581             /* Update vectorial force */
582             fix1             = _mm256_add_pd(fix1,tx);
583             fiy1             = _mm256_add_pd(fiy1,ty);
584             fiz1             = _mm256_add_pd(fiz1,tz);
585
586             fjx0             = _mm256_add_pd(fjx0,tx);
587             fjy0             = _mm256_add_pd(fjy0,ty);
588             fjz0             = _mm256_add_pd(fjz0,tz);
589
590             /**************************
591              * CALCULATE INTERACTIONS *
592              **************************/
593
594             r20              = _mm256_mul_pd(rsq20,rinv20);
595             r20              = _mm256_andnot_pd(dummy_mask,r20);
596
597             /* Compute parameters for interactions between i and j atoms */
598             qq20             = _mm256_mul_pd(iq2,jq0);
599
600             /* EWALD ELECTROSTATICS */
601
602             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
603             ewrt             = _mm256_mul_pd(r20,ewtabscale);
604             ewitab           = _mm256_cvttpd_epi32(ewrt);
605             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
606             ewitab           = _mm_slli_epi32(ewitab,2);
607             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
608             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
609             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
610             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
611             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
612             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
613             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
614             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
615             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
616
617             /* Update potential sum for this i atom from the interaction with this j atom. */
618             velec            = _mm256_andnot_pd(dummy_mask,velec);
619             velecsum         = _mm256_add_pd(velecsum,velec);
620
621             fscal            = felec;
622
623             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
624
625             /* Calculate temporary vectorial force */
626             tx               = _mm256_mul_pd(fscal,dx20);
627             ty               = _mm256_mul_pd(fscal,dy20);
628             tz               = _mm256_mul_pd(fscal,dz20);
629
630             /* Update vectorial force */
631             fix2             = _mm256_add_pd(fix2,tx);
632             fiy2             = _mm256_add_pd(fiy2,ty);
633             fiz2             = _mm256_add_pd(fiz2,tz);
634
635             fjx0             = _mm256_add_pd(fjx0,tx);
636             fjy0             = _mm256_add_pd(fjy0,ty);
637             fjz0             = _mm256_add_pd(fjz0,tz);
638
639             /**************************
640              * CALCULATE INTERACTIONS *
641              **************************/
642
643             r30              = _mm256_mul_pd(rsq30,rinv30);
644             r30              = _mm256_andnot_pd(dummy_mask,r30);
645
646             /* Compute parameters for interactions between i and j atoms */
647             qq30             = _mm256_mul_pd(iq3,jq0);
648
649             /* EWALD ELECTROSTATICS */
650
651             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
652             ewrt             = _mm256_mul_pd(r30,ewtabscale);
653             ewitab           = _mm256_cvttpd_epi32(ewrt);
654             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
655             ewitab           = _mm_slli_epi32(ewitab,2);
656             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
657             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
658             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
659             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
660             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
661             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
662             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
663             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
664             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
665
666             /* Update potential sum for this i atom from the interaction with this j atom. */
667             velec            = _mm256_andnot_pd(dummy_mask,velec);
668             velecsum         = _mm256_add_pd(velecsum,velec);
669
670             fscal            = felec;
671
672             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
673
674             /* Calculate temporary vectorial force */
675             tx               = _mm256_mul_pd(fscal,dx30);
676             ty               = _mm256_mul_pd(fscal,dy30);
677             tz               = _mm256_mul_pd(fscal,dz30);
678
679             /* Update vectorial force */
680             fix3             = _mm256_add_pd(fix3,tx);
681             fiy3             = _mm256_add_pd(fiy3,ty);
682             fiz3             = _mm256_add_pd(fiz3,tz);
683
684             fjx0             = _mm256_add_pd(fjx0,tx);
685             fjy0             = _mm256_add_pd(fjy0,ty);
686             fjz0             = _mm256_add_pd(fjz0,tz);
687
688             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
689             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
690             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
691             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
692
693             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
694
695             /* Inner loop uses 161 flops */
696         }
697
698         /* End of innermost loop */
699
700         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
701                                                  f+i_coord_offset,fshift+i_shift_offset);
702
703         ggid                        = gid[iidx];
704         /* Update potential energies */
705         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
706         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
707
708         /* Increment number of inner iterations */
709         inneriter                  += j_index_end - j_index_start;
710
711         /* Outer loop uses 26 flops */
712     }
713
714     /* Increment number of outer iterations */
715     outeriter        += nri;
716
717     /* Update outer/inner flops */
718
719     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*161);
720 }
721 /*
722  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_256_double
723  * Electrostatics interaction: Ewald
724  * VdW interaction:            LennardJones
725  * Geometry:                   Water4-Particle
726  * Calculate force/pot:        Force
727  */
728 void
729 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_256_double
730                     (t_nblist * gmx_restrict                nlist,
731                      rvec * gmx_restrict                    xx,
732                      rvec * gmx_restrict                    ff,
733                      t_forcerec * gmx_restrict              fr,
734                      t_mdatoms * gmx_restrict               mdatoms,
735                      nb_kernel_data_t * gmx_restrict        kernel_data,
736                      t_nrnb * gmx_restrict                  nrnb)
737 {
738     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
739      * just 0 for non-waters.
740      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
741      * jnr indices corresponding to data put in the four positions in the SIMD register.
742      */
743     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
744     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
745     int              jnrA,jnrB,jnrC,jnrD;
746     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
747     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
748     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
749     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
750     real             rcutoff_scalar;
751     real             *shiftvec,*fshift,*x,*f;
752     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
753     real             scratch[4*DIM];
754     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
755     real *           vdwioffsetptr0;
756     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
757     real *           vdwioffsetptr1;
758     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
759     real *           vdwioffsetptr2;
760     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
761     real *           vdwioffsetptr3;
762     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
763     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
764     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
765     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
766     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
767     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
768     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
769     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
770     real             *charge;
771     int              nvdwtype;
772     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
773     int              *vdwtype;
774     real             *vdwparam;
775     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
776     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
777     __m128i          ewitab;
778     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
779     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
780     real             *ewtab;
781     __m256d          dummy_mask,cutoff_mask;
782     __m128           tmpmask0,tmpmask1;
783     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
784     __m256d          one     = _mm256_set1_pd(1.0);
785     __m256d          two     = _mm256_set1_pd(2.0);
786     x                = xx[0];
787     f                = ff[0];
788
789     nri              = nlist->nri;
790     iinr             = nlist->iinr;
791     jindex           = nlist->jindex;
792     jjnr             = nlist->jjnr;
793     shiftidx         = nlist->shift;
794     gid              = nlist->gid;
795     shiftvec         = fr->shift_vec[0];
796     fshift           = fr->fshift[0];
797     facel            = _mm256_set1_pd(fr->epsfac);
798     charge           = mdatoms->chargeA;
799     nvdwtype         = fr->ntype;
800     vdwparam         = fr->nbfp;
801     vdwtype          = mdatoms->typeA;
802
803     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
804     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
805     beta2            = _mm256_mul_pd(beta,beta);
806     beta3            = _mm256_mul_pd(beta,beta2);
807
808     ewtab            = fr->ic->tabq_coul_F;
809     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
810     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
811
812     /* Setup water-specific parameters */
813     inr              = nlist->iinr[0];
814     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
815     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
816     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
817     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
818
819     /* Avoid stupid compiler warnings */
820     jnrA = jnrB = jnrC = jnrD = 0;
821     j_coord_offsetA = 0;
822     j_coord_offsetB = 0;
823     j_coord_offsetC = 0;
824     j_coord_offsetD = 0;
825
826     outeriter        = 0;
827     inneriter        = 0;
828
829     for(iidx=0;iidx<4*DIM;iidx++)
830     {
831         scratch[iidx] = 0.0;
832     }
833
834     /* Start outer loop over neighborlists */
835     for(iidx=0; iidx<nri; iidx++)
836     {
837         /* Load shift vector for this list */
838         i_shift_offset   = DIM*shiftidx[iidx];
839
840         /* Load limits for loop over neighbors */
841         j_index_start    = jindex[iidx];
842         j_index_end      = jindex[iidx+1];
843
844         /* Get outer coordinate index */
845         inr              = iinr[iidx];
846         i_coord_offset   = DIM*inr;
847
848         /* Load i particle coords and add shift vector */
849         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
850                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
851
852         fix0             = _mm256_setzero_pd();
853         fiy0             = _mm256_setzero_pd();
854         fiz0             = _mm256_setzero_pd();
855         fix1             = _mm256_setzero_pd();
856         fiy1             = _mm256_setzero_pd();
857         fiz1             = _mm256_setzero_pd();
858         fix2             = _mm256_setzero_pd();
859         fiy2             = _mm256_setzero_pd();
860         fiz2             = _mm256_setzero_pd();
861         fix3             = _mm256_setzero_pd();
862         fiy3             = _mm256_setzero_pd();
863         fiz3             = _mm256_setzero_pd();
864
865         /* Start inner kernel loop */
866         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
867         {
868
869             /* Get j neighbor index, and coordinate index */
870             jnrA             = jjnr[jidx];
871             jnrB             = jjnr[jidx+1];
872             jnrC             = jjnr[jidx+2];
873             jnrD             = jjnr[jidx+3];
874             j_coord_offsetA  = DIM*jnrA;
875             j_coord_offsetB  = DIM*jnrB;
876             j_coord_offsetC  = DIM*jnrC;
877             j_coord_offsetD  = DIM*jnrD;
878
879             /* load j atom coordinates */
880             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
881                                                  x+j_coord_offsetC,x+j_coord_offsetD,
882                                                  &jx0,&jy0,&jz0);
883
884             /* Calculate displacement vector */
885             dx00             = _mm256_sub_pd(ix0,jx0);
886             dy00             = _mm256_sub_pd(iy0,jy0);
887             dz00             = _mm256_sub_pd(iz0,jz0);
888             dx10             = _mm256_sub_pd(ix1,jx0);
889             dy10             = _mm256_sub_pd(iy1,jy0);
890             dz10             = _mm256_sub_pd(iz1,jz0);
891             dx20             = _mm256_sub_pd(ix2,jx0);
892             dy20             = _mm256_sub_pd(iy2,jy0);
893             dz20             = _mm256_sub_pd(iz2,jz0);
894             dx30             = _mm256_sub_pd(ix3,jx0);
895             dy30             = _mm256_sub_pd(iy3,jy0);
896             dz30             = _mm256_sub_pd(iz3,jz0);
897
898             /* Calculate squared distance and things based on it */
899             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
900             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
901             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
902             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
903
904             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
905             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
906             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
907
908             rinvsq00         = gmx_mm256_inv_pd(rsq00);
909             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
910             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
911             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
912
913             /* Load parameters for j particles */
914             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
915                                                                  charge+jnrC+0,charge+jnrD+0);
916             vdwjidx0A        = 2*vdwtype[jnrA+0];
917             vdwjidx0B        = 2*vdwtype[jnrB+0];
918             vdwjidx0C        = 2*vdwtype[jnrC+0];
919             vdwjidx0D        = 2*vdwtype[jnrD+0];
920
921             fjx0             = _mm256_setzero_pd();
922             fjy0             = _mm256_setzero_pd();
923             fjz0             = _mm256_setzero_pd();
924
925             /**************************
926              * CALCULATE INTERACTIONS *
927              **************************/
928
929             /* Compute parameters for interactions between i and j atoms */
930             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
931                                             vdwioffsetptr0+vdwjidx0B,
932                                             vdwioffsetptr0+vdwjidx0C,
933                                             vdwioffsetptr0+vdwjidx0D,
934                                             &c6_00,&c12_00);
935
936             /* LENNARD-JONES DISPERSION/REPULSION */
937
938             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
939             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
940
941             fscal            = fvdw;
942
943             /* Calculate temporary vectorial force */
944             tx               = _mm256_mul_pd(fscal,dx00);
945             ty               = _mm256_mul_pd(fscal,dy00);
946             tz               = _mm256_mul_pd(fscal,dz00);
947
948             /* Update vectorial force */
949             fix0             = _mm256_add_pd(fix0,tx);
950             fiy0             = _mm256_add_pd(fiy0,ty);
951             fiz0             = _mm256_add_pd(fiz0,tz);
952
953             fjx0             = _mm256_add_pd(fjx0,tx);
954             fjy0             = _mm256_add_pd(fjy0,ty);
955             fjz0             = _mm256_add_pd(fjz0,tz);
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             r10              = _mm256_mul_pd(rsq10,rinv10);
962
963             /* Compute parameters for interactions between i and j atoms */
964             qq10             = _mm256_mul_pd(iq1,jq0);
965
966             /* EWALD ELECTROSTATICS */
967
968             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
969             ewrt             = _mm256_mul_pd(r10,ewtabscale);
970             ewitab           = _mm256_cvttpd_epi32(ewrt);
971             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
972             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
973                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
974                                             &ewtabF,&ewtabFn);
975             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
976             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
977
978             fscal            = felec;
979
980             /* Calculate temporary vectorial force */
981             tx               = _mm256_mul_pd(fscal,dx10);
982             ty               = _mm256_mul_pd(fscal,dy10);
983             tz               = _mm256_mul_pd(fscal,dz10);
984
985             /* Update vectorial force */
986             fix1             = _mm256_add_pd(fix1,tx);
987             fiy1             = _mm256_add_pd(fiy1,ty);
988             fiz1             = _mm256_add_pd(fiz1,tz);
989
990             fjx0             = _mm256_add_pd(fjx0,tx);
991             fjy0             = _mm256_add_pd(fjy0,ty);
992             fjz0             = _mm256_add_pd(fjz0,tz);
993
994             /**************************
995              * CALCULATE INTERACTIONS *
996              **************************/
997
998             r20              = _mm256_mul_pd(rsq20,rinv20);
999
1000             /* Compute parameters for interactions between i and j atoms */
1001             qq20             = _mm256_mul_pd(iq2,jq0);
1002
1003             /* EWALD ELECTROSTATICS */
1004
1005             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1006             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1007             ewitab           = _mm256_cvttpd_epi32(ewrt);
1008             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1009             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1010                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1011                                             &ewtabF,&ewtabFn);
1012             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1013             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1014
1015             fscal            = felec;
1016
1017             /* Calculate temporary vectorial force */
1018             tx               = _mm256_mul_pd(fscal,dx20);
1019             ty               = _mm256_mul_pd(fscal,dy20);
1020             tz               = _mm256_mul_pd(fscal,dz20);
1021
1022             /* Update vectorial force */
1023             fix2             = _mm256_add_pd(fix2,tx);
1024             fiy2             = _mm256_add_pd(fiy2,ty);
1025             fiz2             = _mm256_add_pd(fiz2,tz);
1026
1027             fjx0             = _mm256_add_pd(fjx0,tx);
1028             fjy0             = _mm256_add_pd(fjy0,ty);
1029             fjz0             = _mm256_add_pd(fjz0,tz);
1030
1031             /**************************
1032              * CALCULATE INTERACTIONS *
1033              **************************/
1034
1035             r30              = _mm256_mul_pd(rsq30,rinv30);
1036
1037             /* Compute parameters for interactions between i and j atoms */
1038             qq30             = _mm256_mul_pd(iq3,jq0);
1039
1040             /* EWALD ELECTROSTATICS */
1041
1042             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1043             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1044             ewitab           = _mm256_cvttpd_epi32(ewrt);
1045             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1046             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1047                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1048                                             &ewtabF,&ewtabFn);
1049             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1050             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1051
1052             fscal            = felec;
1053
1054             /* Calculate temporary vectorial force */
1055             tx               = _mm256_mul_pd(fscal,dx30);
1056             ty               = _mm256_mul_pd(fscal,dy30);
1057             tz               = _mm256_mul_pd(fscal,dz30);
1058
1059             /* Update vectorial force */
1060             fix3             = _mm256_add_pd(fix3,tx);
1061             fiy3             = _mm256_add_pd(fiy3,ty);
1062             fiz3             = _mm256_add_pd(fiz3,tz);
1063
1064             fjx0             = _mm256_add_pd(fjx0,tx);
1065             fjy0             = _mm256_add_pd(fjy0,ty);
1066             fjz0             = _mm256_add_pd(fjz0,tz);
1067
1068             fjptrA             = f+j_coord_offsetA;
1069             fjptrB             = f+j_coord_offsetB;
1070             fjptrC             = f+j_coord_offsetC;
1071             fjptrD             = f+j_coord_offsetD;
1072
1073             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1074
1075             /* Inner loop uses 138 flops */
1076         }
1077
1078         if(jidx<j_index_end)
1079         {
1080
1081             /* Get j neighbor index, and coordinate index */
1082             jnrlistA         = jjnr[jidx];
1083             jnrlistB         = jjnr[jidx+1];
1084             jnrlistC         = jjnr[jidx+2];
1085             jnrlistD         = jjnr[jidx+3];
1086             /* Sign of each element will be negative for non-real atoms.
1087              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1088              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1089              */
1090             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1091
1092             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1093             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1094             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1095
1096             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1097             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1098             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1099             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1100             j_coord_offsetA  = DIM*jnrA;
1101             j_coord_offsetB  = DIM*jnrB;
1102             j_coord_offsetC  = DIM*jnrC;
1103             j_coord_offsetD  = DIM*jnrD;
1104
1105             /* load j atom coordinates */
1106             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1107                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1108                                                  &jx0,&jy0,&jz0);
1109
1110             /* Calculate displacement vector */
1111             dx00             = _mm256_sub_pd(ix0,jx0);
1112             dy00             = _mm256_sub_pd(iy0,jy0);
1113             dz00             = _mm256_sub_pd(iz0,jz0);
1114             dx10             = _mm256_sub_pd(ix1,jx0);
1115             dy10             = _mm256_sub_pd(iy1,jy0);
1116             dz10             = _mm256_sub_pd(iz1,jz0);
1117             dx20             = _mm256_sub_pd(ix2,jx0);
1118             dy20             = _mm256_sub_pd(iy2,jy0);
1119             dz20             = _mm256_sub_pd(iz2,jz0);
1120             dx30             = _mm256_sub_pd(ix3,jx0);
1121             dy30             = _mm256_sub_pd(iy3,jy0);
1122             dz30             = _mm256_sub_pd(iz3,jz0);
1123
1124             /* Calculate squared distance and things based on it */
1125             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1126             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1127             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1128             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1129
1130             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1131             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1132             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1133
1134             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1135             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1136             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1137             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1138
1139             /* Load parameters for j particles */
1140             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1141                                                                  charge+jnrC+0,charge+jnrD+0);
1142             vdwjidx0A        = 2*vdwtype[jnrA+0];
1143             vdwjidx0B        = 2*vdwtype[jnrB+0];
1144             vdwjidx0C        = 2*vdwtype[jnrC+0];
1145             vdwjidx0D        = 2*vdwtype[jnrD+0];
1146
1147             fjx0             = _mm256_setzero_pd();
1148             fjy0             = _mm256_setzero_pd();
1149             fjz0             = _mm256_setzero_pd();
1150
1151             /**************************
1152              * CALCULATE INTERACTIONS *
1153              **************************/
1154
1155             /* Compute parameters for interactions between i and j atoms */
1156             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1157                                             vdwioffsetptr0+vdwjidx0B,
1158                                             vdwioffsetptr0+vdwjidx0C,
1159                                             vdwioffsetptr0+vdwjidx0D,
1160                                             &c6_00,&c12_00);
1161
1162             /* LENNARD-JONES DISPERSION/REPULSION */
1163
1164             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1165             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1166
1167             fscal            = fvdw;
1168
1169             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1170
1171             /* Calculate temporary vectorial force */
1172             tx               = _mm256_mul_pd(fscal,dx00);
1173             ty               = _mm256_mul_pd(fscal,dy00);
1174             tz               = _mm256_mul_pd(fscal,dz00);
1175
1176             /* Update vectorial force */
1177             fix0             = _mm256_add_pd(fix0,tx);
1178             fiy0             = _mm256_add_pd(fiy0,ty);
1179             fiz0             = _mm256_add_pd(fiz0,tz);
1180
1181             fjx0             = _mm256_add_pd(fjx0,tx);
1182             fjy0             = _mm256_add_pd(fjy0,ty);
1183             fjz0             = _mm256_add_pd(fjz0,tz);
1184
1185             /**************************
1186              * CALCULATE INTERACTIONS *
1187              **************************/
1188
1189             r10              = _mm256_mul_pd(rsq10,rinv10);
1190             r10              = _mm256_andnot_pd(dummy_mask,r10);
1191
1192             /* Compute parameters for interactions between i and j atoms */
1193             qq10             = _mm256_mul_pd(iq1,jq0);
1194
1195             /* EWALD ELECTROSTATICS */
1196
1197             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1198             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1199             ewitab           = _mm256_cvttpd_epi32(ewrt);
1200             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1201             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1202                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1203                                             &ewtabF,&ewtabFn);
1204             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1205             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1206
1207             fscal            = felec;
1208
1209             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1210
1211             /* Calculate temporary vectorial force */
1212             tx               = _mm256_mul_pd(fscal,dx10);
1213             ty               = _mm256_mul_pd(fscal,dy10);
1214             tz               = _mm256_mul_pd(fscal,dz10);
1215
1216             /* Update vectorial force */
1217             fix1             = _mm256_add_pd(fix1,tx);
1218             fiy1             = _mm256_add_pd(fiy1,ty);
1219             fiz1             = _mm256_add_pd(fiz1,tz);
1220
1221             fjx0             = _mm256_add_pd(fjx0,tx);
1222             fjy0             = _mm256_add_pd(fjy0,ty);
1223             fjz0             = _mm256_add_pd(fjz0,tz);
1224
1225             /**************************
1226              * CALCULATE INTERACTIONS *
1227              **************************/
1228
1229             r20              = _mm256_mul_pd(rsq20,rinv20);
1230             r20              = _mm256_andnot_pd(dummy_mask,r20);
1231
1232             /* Compute parameters for interactions between i and j atoms */
1233             qq20             = _mm256_mul_pd(iq2,jq0);
1234
1235             /* EWALD ELECTROSTATICS */
1236
1237             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1238             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1239             ewitab           = _mm256_cvttpd_epi32(ewrt);
1240             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1241             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1242                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1243                                             &ewtabF,&ewtabFn);
1244             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1245             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1246
1247             fscal            = felec;
1248
1249             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1250
1251             /* Calculate temporary vectorial force */
1252             tx               = _mm256_mul_pd(fscal,dx20);
1253             ty               = _mm256_mul_pd(fscal,dy20);
1254             tz               = _mm256_mul_pd(fscal,dz20);
1255
1256             /* Update vectorial force */
1257             fix2             = _mm256_add_pd(fix2,tx);
1258             fiy2             = _mm256_add_pd(fiy2,ty);
1259             fiz2             = _mm256_add_pd(fiz2,tz);
1260
1261             fjx0             = _mm256_add_pd(fjx0,tx);
1262             fjy0             = _mm256_add_pd(fjy0,ty);
1263             fjz0             = _mm256_add_pd(fjz0,tz);
1264
1265             /**************************
1266              * CALCULATE INTERACTIONS *
1267              **************************/
1268
1269             r30              = _mm256_mul_pd(rsq30,rinv30);
1270             r30              = _mm256_andnot_pd(dummy_mask,r30);
1271
1272             /* Compute parameters for interactions between i and j atoms */
1273             qq30             = _mm256_mul_pd(iq3,jq0);
1274
1275             /* EWALD ELECTROSTATICS */
1276
1277             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1278             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1279             ewitab           = _mm256_cvttpd_epi32(ewrt);
1280             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1281             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1282                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1283                                             &ewtabF,&ewtabFn);
1284             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1285             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1286
1287             fscal            = felec;
1288
1289             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1290
1291             /* Calculate temporary vectorial force */
1292             tx               = _mm256_mul_pd(fscal,dx30);
1293             ty               = _mm256_mul_pd(fscal,dy30);
1294             tz               = _mm256_mul_pd(fscal,dz30);
1295
1296             /* Update vectorial force */
1297             fix3             = _mm256_add_pd(fix3,tx);
1298             fiy3             = _mm256_add_pd(fiy3,ty);
1299             fiz3             = _mm256_add_pd(fiz3,tz);
1300
1301             fjx0             = _mm256_add_pd(fjx0,tx);
1302             fjy0             = _mm256_add_pd(fjy0,ty);
1303             fjz0             = _mm256_add_pd(fjz0,tz);
1304
1305             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1306             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1307             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1308             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1309
1310             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1311
1312             /* Inner loop uses 141 flops */
1313         }
1314
1315         /* End of innermost loop */
1316
1317         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1318                                                  f+i_coord_offset,fshift+i_shift_offset);
1319
1320         /* Increment number of inner iterations */
1321         inneriter                  += j_index_end - j_index_start;
1322
1323         /* Outer loop uses 24 flops */
1324     }
1325
1326     /* Increment number of outer iterations */
1327     outeriter        += nri;
1328
1329     /* Update outer/inner flops */
1330
1331     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*141);
1332 }