b44e4c6b4f4d25a497c425304adad55a88c2a4c7
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJ_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
98     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
105     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
106     __m128i          ewitab;
107     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
109     real             *ewtab;
110     __m256d          dummy_mask,cutoff_mask;
111     __m128           tmpmask0,tmpmask1;
112     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
113     __m256d          one     = _mm256_set1_pd(1.0);
114     __m256d          two     = _mm256_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm256_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
133     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
134     beta2            = _mm256_mul_pd(beta,beta);
135     beta3            = _mm256_mul_pd(beta,beta2);
136
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
144     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
145     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
146     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = jnrC = jnrD = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152     j_coord_offsetC = 0;
153     j_coord_offsetD = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
179                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
180
181         fix0             = _mm256_setzero_pd();
182         fiy0             = _mm256_setzero_pd();
183         fiz0             = _mm256_setzero_pd();
184         fix1             = _mm256_setzero_pd();
185         fiy1             = _mm256_setzero_pd();
186         fiz1             = _mm256_setzero_pd();
187         fix2             = _mm256_setzero_pd();
188         fiy2             = _mm256_setzero_pd();
189         fiz2             = _mm256_setzero_pd();
190         fix3             = _mm256_setzero_pd();
191         fiy3             = _mm256_setzero_pd();
192         fiz3             = _mm256_setzero_pd();
193
194         /* Reset potential sums */
195         velecsum         = _mm256_setzero_pd();
196         vvdwsum          = _mm256_setzero_pd();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211
212             /* load j atom coordinates */
213             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
214                                                  x+j_coord_offsetC,x+j_coord_offsetD,
215                                                  &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _mm256_sub_pd(ix0,jx0);
219             dy00             = _mm256_sub_pd(iy0,jy0);
220             dz00             = _mm256_sub_pd(iz0,jz0);
221             dx10             = _mm256_sub_pd(ix1,jx0);
222             dy10             = _mm256_sub_pd(iy1,jy0);
223             dz10             = _mm256_sub_pd(iz1,jz0);
224             dx20             = _mm256_sub_pd(ix2,jx0);
225             dy20             = _mm256_sub_pd(iy2,jy0);
226             dz20             = _mm256_sub_pd(iz2,jz0);
227             dx30             = _mm256_sub_pd(ix3,jx0);
228             dy30             = _mm256_sub_pd(iy3,jy0);
229             dz30             = _mm256_sub_pd(iz3,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
233             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
234             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
235             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
236
237             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
238             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
239             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
240
241             rinvsq00         = gmx_mm256_inv_pd(rsq00);
242             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
243             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
244             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
245
246             /* Load parameters for j particles */
247             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
248                                                                  charge+jnrC+0,charge+jnrD+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251             vdwjidx0C        = 2*vdwtype[jnrC+0];
252             vdwjidx0D        = 2*vdwtype[jnrD+0];
253
254             fjx0             = _mm256_setzero_pd();
255             fjy0             = _mm256_setzero_pd();
256             fjz0             = _mm256_setzero_pd();
257
258             /**************************
259              * CALCULATE INTERACTIONS *
260              **************************/
261
262             /* Compute parameters for interactions between i and j atoms */
263             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
264                                             vdwioffsetptr0+vdwjidx0B,
265                                             vdwioffsetptr0+vdwjidx0C,
266                                             vdwioffsetptr0+vdwjidx0D,
267                                             &c6_00,&c12_00);
268
269             /* LENNARD-JONES DISPERSION/REPULSION */
270
271             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
272             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
273             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
274             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
275             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
276
277             /* Update potential sum for this i atom from the interaction with this j atom. */
278             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
279
280             fscal            = fvdw;
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm256_mul_pd(fscal,dx00);
284             ty               = _mm256_mul_pd(fscal,dy00);
285             tz               = _mm256_mul_pd(fscal,dz00);
286
287             /* Update vectorial force */
288             fix0             = _mm256_add_pd(fix0,tx);
289             fiy0             = _mm256_add_pd(fiy0,ty);
290             fiz0             = _mm256_add_pd(fiz0,tz);
291
292             fjx0             = _mm256_add_pd(fjx0,tx);
293             fjy0             = _mm256_add_pd(fjy0,ty);
294             fjz0             = _mm256_add_pd(fjz0,tz);
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             r10              = _mm256_mul_pd(rsq10,rinv10);
301
302             /* Compute parameters for interactions between i and j atoms */
303             qq10             = _mm256_mul_pd(iq1,jq0);
304
305             /* EWALD ELECTROSTATICS */
306
307             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
308             ewrt             = _mm256_mul_pd(r10,ewtabscale);
309             ewitab           = _mm256_cvttpd_epi32(ewrt);
310             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
311             ewitab           = _mm_slli_epi32(ewitab,2);
312             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
313             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
314             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
315             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
316             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
317             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
318             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
319             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
320             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
321
322             /* Update potential sum for this i atom from the interaction with this j atom. */
323             velecsum         = _mm256_add_pd(velecsum,velec);
324
325             fscal            = felec;
326
327             /* Calculate temporary vectorial force */
328             tx               = _mm256_mul_pd(fscal,dx10);
329             ty               = _mm256_mul_pd(fscal,dy10);
330             tz               = _mm256_mul_pd(fscal,dz10);
331
332             /* Update vectorial force */
333             fix1             = _mm256_add_pd(fix1,tx);
334             fiy1             = _mm256_add_pd(fiy1,ty);
335             fiz1             = _mm256_add_pd(fiz1,tz);
336
337             fjx0             = _mm256_add_pd(fjx0,tx);
338             fjy0             = _mm256_add_pd(fjy0,ty);
339             fjz0             = _mm256_add_pd(fjz0,tz);
340
341             /**************************
342              * CALCULATE INTERACTIONS *
343              **************************/
344
345             r20              = _mm256_mul_pd(rsq20,rinv20);
346
347             /* Compute parameters for interactions between i and j atoms */
348             qq20             = _mm256_mul_pd(iq2,jq0);
349
350             /* EWALD ELECTROSTATICS */
351
352             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
353             ewrt             = _mm256_mul_pd(r20,ewtabscale);
354             ewitab           = _mm256_cvttpd_epi32(ewrt);
355             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
356             ewitab           = _mm_slli_epi32(ewitab,2);
357             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
358             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
359             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
360             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
361             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
362             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
363             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
364             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
365             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velecsum         = _mm256_add_pd(velecsum,velec);
369
370             fscal            = felec;
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm256_mul_pd(fscal,dx20);
374             ty               = _mm256_mul_pd(fscal,dy20);
375             tz               = _mm256_mul_pd(fscal,dz20);
376
377             /* Update vectorial force */
378             fix2             = _mm256_add_pd(fix2,tx);
379             fiy2             = _mm256_add_pd(fiy2,ty);
380             fiz2             = _mm256_add_pd(fiz2,tz);
381
382             fjx0             = _mm256_add_pd(fjx0,tx);
383             fjy0             = _mm256_add_pd(fjy0,ty);
384             fjz0             = _mm256_add_pd(fjz0,tz);
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             r30              = _mm256_mul_pd(rsq30,rinv30);
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq30             = _mm256_mul_pd(iq3,jq0);
394
395             /* EWALD ELECTROSTATICS */
396
397             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
398             ewrt             = _mm256_mul_pd(r30,ewtabscale);
399             ewitab           = _mm256_cvttpd_epi32(ewrt);
400             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
401             ewitab           = _mm_slli_epi32(ewitab,2);
402             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
403             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
404             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
405             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
406             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
407             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
408             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
409             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
410             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
411
412             /* Update potential sum for this i atom from the interaction with this j atom. */
413             velecsum         = _mm256_add_pd(velecsum,velec);
414
415             fscal            = felec;
416
417             /* Calculate temporary vectorial force */
418             tx               = _mm256_mul_pd(fscal,dx30);
419             ty               = _mm256_mul_pd(fscal,dy30);
420             tz               = _mm256_mul_pd(fscal,dz30);
421
422             /* Update vectorial force */
423             fix3             = _mm256_add_pd(fix3,tx);
424             fiy3             = _mm256_add_pd(fiy3,ty);
425             fiz3             = _mm256_add_pd(fiz3,tz);
426
427             fjx0             = _mm256_add_pd(fjx0,tx);
428             fjy0             = _mm256_add_pd(fjy0,ty);
429             fjz0             = _mm256_add_pd(fjz0,tz);
430
431             fjptrA             = f+j_coord_offsetA;
432             fjptrB             = f+j_coord_offsetB;
433             fjptrC             = f+j_coord_offsetC;
434             fjptrD             = f+j_coord_offsetD;
435
436             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
437
438             /* Inner loop uses 158 flops */
439         }
440
441         if(jidx<j_index_end)
442         {
443
444             /* Get j neighbor index, and coordinate index */
445             jnrlistA         = jjnr[jidx];
446             jnrlistB         = jjnr[jidx+1];
447             jnrlistC         = jjnr[jidx+2];
448             jnrlistD         = jjnr[jidx+3];
449             /* Sign of each element will be negative for non-real atoms.
450              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
451              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
452              */
453             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
454
455             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
456             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
457             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
458
459             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
460             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
461             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
462             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
463             j_coord_offsetA  = DIM*jnrA;
464             j_coord_offsetB  = DIM*jnrB;
465             j_coord_offsetC  = DIM*jnrC;
466             j_coord_offsetD  = DIM*jnrD;
467
468             /* load j atom coordinates */
469             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
470                                                  x+j_coord_offsetC,x+j_coord_offsetD,
471                                                  &jx0,&jy0,&jz0);
472
473             /* Calculate displacement vector */
474             dx00             = _mm256_sub_pd(ix0,jx0);
475             dy00             = _mm256_sub_pd(iy0,jy0);
476             dz00             = _mm256_sub_pd(iz0,jz0);
477             dx10             = _mm256_sub_pd(ix1,jx0);
478             dy10             = _mm256_sub_pd(iy1,jy0);
479             dz10             = _mm256_sub_pd(iz1,jz0);
480             dx20             = _mm256_sub_pd(ix2,jx0);
481             dy20             = _mm256_sub_pd(iy2,jy0);
482             dz20             = _mm256_sub_pd(iz2,jz0);
483             dx30             = _mm256_sub_pd(ix3,jx0);
484             dy30             = _mm256_sub_pd(iy3,jy0);
485             dz30             = _mm256_sub_pd(iz3,jz0);
486
487             /* Calculate squared distance and things based on it */
488             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
489             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
490             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
491             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
492
493             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
494             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
495             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
496
497             rinvsq00         = gmx_mm256_inv_pd(rsq00);
498             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
499             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
500             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
501
502             /* Load parameters for j particles */
503             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
504                                                                  charge+jnrC+0,charge+jnrD+0);
505             vdwjidx0A        = 2*vdwtype[jnrA+0];
506             vdwjidx0B        = 2*vdwtype[jnrB+0];
507             vdwjidx0C        = 2*vdwtype[jnrC+0];
508             vdwjidx0D        = 2*vdwtype[jnrD+0];
509
510             fjx0             = _mm256_setzero_pd();
511             fjy0             = _mm256_setzero_pd();
512             fjz0             = _mm256_setzero_pd();
513
514             /**************************
515              * CALCULATE INTERACTIONS *
516              **************************/
517
518             /* Compute parameters for interactions between i and j atoms */
519             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
520                                             vdwioffsetptr0+vdwjidx0B,
521                                             vdwioffsetptr0+vdwjidx0C,
522                                             vdwioffsetptr0+vdwjidx0D,
523                                             &c6_00,&c12_00);
524
525             /* LENNARD-JONES DISPERSION/REPULSION */
526
527             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
528             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
529             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
530             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
531             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
532
533             /* Update potential sum for this i atom from the interaction with this j atom. */
534             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
535             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
536
537             fscal            = fvdw;
538
539             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm256_mul_pd(fscal,dx00);
543             ty               = _mm256_mul_pd(fscal,dy00);
544             tz               = _mm256_mul_pd(fscal,dz00);
545
546             /* Update vectorial force */
547             fix0             = _mm256_add_pd(fix0,tx);
548             fiy0             = _mm256_add_pd(fiy0,ty);
549             fiz0             = _mm256_add_pd(fiz0,tz);
550
551             fjx0             = _mm256_add_pd(fjx0,tx);
552             fjy0             = _mm256_add_pd(fjy0,ty);
553             fjz0             = _mm256_add_pd(fjz0,tz);
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             r10              = _mm256_mul_pd(rsq10,rinv10);
560             r10              = _mm256_andnot_pd(dummy_mask,r10);
561
562             /* Compute parameters for interactions between i and j atoms */
563             qq10             = _mm256_mul_pd(iq1,jq0);
564
565             /* EWALD ELECTROSTATICS */
566
567             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
568             ewrt             = _mm256_mul_pd(r10,ewtabscale);
569             ewitab           = _mm256_cvttpd_epi32(ewrt);
570             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
571             ewitab           = _mm_slli_epi32(ewitab,2);
572             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
573             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
574             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
575             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
576             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
577             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
578             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
579             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
580             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
581
582             /* Update potential sum for this i atom from the interaction with this j atom. */
583             velec            = _mm256_andnot_pd(dummy_mask,velec);
584             velecsum         = _mm256_add_pd(velecsum,velec);
585
586             fscal            = felec;
587
588             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
589
590             /* Calculate temporary vectorial force */
591             tx               = _mm256_mul_pd(fscal,dx10);
592             ty               = _mm256_mul_pd(fscal,dy10);
593             tz               = _mm256_mul_pd(fscal,dz10);
594
595             /* Update vectorial force */
596             fix1             = _mm256_add_pd(fix1,tx);
597             fiy1             = _mm256_add_pd(fiy1,ty);
598             fiz1             = _mm256_add_pd(fiz1,tz);
599
600             fjx0             = _mm256_add_pd(fjx0,tx);
601             fjy0             = _mm256_add_pd(fjy0,ty);
602             fjz0             = _mm256_add_pd(fjz0,tz);
603
604             /**************************
605              * CALCULATE INTERACTIONS *
606              **************************/
607
608             r20              = _mm256_mul_pd(rsq20,rinv20);
609             r20              = _mm256_andnot_pd(dummy_mask,r20);
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq20             = _mm256_mul_pd(iq2,jq0);
613
614             /* EWALD ELECTROSTATICS */
615
616             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
617             ewrt             = _mm256_mul_pd(r20,ewtabscale);
618             ewitab           = _mm256_cvttpd_epi32(ewrt);
619             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
620             ewitab           = _mm_slli_epi32(ewitab,2);
621             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
622             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
623             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
624             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
625             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
626             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
627             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
628             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
629             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
630
631             /* Update potential sum for this i atom from the interaction with this j atom. */
632             velec            = _mm256_andnot_pd(dummy_mask,velec);
633             velecsum         = _mm256_add_pd(velecsum,velec);
634
635             fscal            = felec;
636
637             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
638
639             /* Calculate temporary vectorial force */
640             tx               = _mm256_mul_pd(fscal,dx20);
641             ty               = _mm256_mul_pd(fscal,dy20);
642             tz               = _mm256_mul_pd(fscal,dz20);
643
644             /* Update vectorial force */
645             fix2             = _mm256_add_pd(fix2,tx);
646             fiy2             = _mm256_add_pd(fiy2,ty);
647             fiz2             = _mm256_add_pd(fiz2,tz);
648
649             fjx0             = _mm256_add_pd(fjx0,tx);
650             fjy0             = _mm256_add_pd(fjy0,ty);
651             fjz0             = _mm256_add_pd(fjz0,tz);
652
653             /**************************
654              * CALCULATE INTERACTIONS *
655              **************************/
656
657             r30              = _mm256_mul_pd(rsq30,rinv30);
658             r30              = _mm256_andnot_pd(dummy_mask,r30);
659
660             /* Compute parameters for interactions between i and j atoms */
661             qq30             = _mm256_mul_pd(iq3,jq0);
662
663             /* EWALD ELECTROSTATICS */
664
665             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
666             ewrt             = _mm256_mul_pd(r30,ewtabscale);
667             ewitab           = _mm256_cvttpd_epi32(ewrt);
668             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
669             ewitab           = _mm_slli_epi32(ewitab,2);
670             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
671             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
672             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
673             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
674             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
675             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
676             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
677             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
678             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
679
680             /* Update potential sum for this i atom from the interaction with this j atom. */
681             velec            = _mm256_andnot_pd(dummy_mask,velec);
682             velecsum         = _mm256_add_pd(velecsum,velec);
683
684             fscal            = felec;
685
686             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
687
688             /* Calculate temporary vectorial force */
689             tx               = _mm256_mul_pd(fscal,dx30);
690             ty               = _mm256_mul_pd(fscal,dy30);
691             tz               = _mm256_mul_pd(fscal,dz30);
692
693             /* Update vectorial force */
694             fix3             = _mm256_add_pd(fix3,tx);
695             fiy3             = _mm256_add_pd(fiy3,ty);
696             fiz3             = _mm256_add_pd(fiz3,tz);
697
698             fjx0             = _mm256_add_pd(fjx0,tx);
699             fjy0             = _mm256_add_pd(fjy0,ty);
700             fjz0             = _mm256_add_pd(fjz0,tz);
701
702             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
703             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
704             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
705             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
706
707             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
708
709             /* Inner loop uses 161 flops */
710         }
711
712         /* End of innermost loop */
713
714         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
715                                                  f+i_coord_offset,fshift+i_shift_offset);
716
717         ggid                        = gid[iidx];
718         /* Update potential energies */
719         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
720         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
721
722         /* Increment number of inner iterations */
723         inneriter                  += j_index_end - j_index_start;
724
725         /* Outer loop uses 26 flops */
726     }
727
728     /* Increment number of outer iterations */
729     outeriter        += nri;
730
731     /* Update outer/inner flops */
732
733     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*161);
734 }
735 /*
736  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_256_double
737  * Electrostatics interaction: Ewald
738  * VdW interaction:            LennardJones
739  * Geometry:                   Water4-Particle
740  * Calculate force/pot:        Force
741  */
742 void
743 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_256_double
744                     (t_nblist                    * gmx_restrict       nlist,
745                      rvec                        * gmx_restrict          xx,
746                      rvec                        * gmx_restrict          ff,
747                      t_forcerec                  * gmx_restrict          fr,
748                      t_mdatoms                   * gmx_restrict     mdatoms,
749                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
750                      t_nrnb                      * gmx_restrict        nrnb)
751 {
752     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
753      * just 0 for non-waters.
754      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
755      * jnr indices corresponding to data put in the four positions in the SIMD register.
756      */
757     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
758     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
759     int              jnrA,jnrB,jnrC,jnrD;
760     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
761     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
762     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
763     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
764     real             rcutoff_scalar;
765     real             *shiftvec,*fshift,*x,*f;
766     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
767     real             scratch[4*DIM];
768     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
769     real *           vdwioffsetptr0;
770     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
771     real *           vdwioffsetptr1;
772     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
773     real *           vdwioffsetptr2;
774     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
775     real *           vdwioffsetptr3;
776     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
777     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
778     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
779     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
780     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
781     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
782     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
783     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
784     real             *charge;
785     int              nvdwtype;
786     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
787     int              *vdwtype;
788     real             *vdwparam;
789     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
790     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
791     __m128i          ewitab;
792     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
793     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
794     real             *ewtab;
795     __m256d          dummy_mask,cutoff_mask;
796     __m128           tmpmask0,tmpmask1;
797     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
798     __m256d          one     = _mm256_set1_pd(1.0);
799     __m256d          two     = _mm256_set1_pd(2.0);
800     x                = xx[0];
801     f                = ff[0];
802
803     nri              = nlist->nri;
804     iinr             = nlist->iinr;
805     jindex           = nlist->jindex;
806     jjnr             = nlist->jjnr;
807     shiftidx         = nlist->shift;
808     gid              = nlist->gid;
809     shiftvec         = fr->shift_vec[0];
810     fshift           = fr->fshift[0];
811     facel            = _mm256_set1_pd(fr->epsfac);
812     charge           = mdatoms->chargeA;
813     nvdwtype         = fr->ntype;
814     vdwparam         = fr->nbfp;
815     vdwtype          = mdatoms->typeA;
816
817     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
818     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
819     beta2            = _mm256_mul_pd(beta,beta);
820     beta3            = _mm256_mul_pd(beta,beta2);
821
822     ewtab            = fr->ic->tabq_coul_F;
823     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
824     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
825
826     /* Setup water-specific parameters */
827     inr              = nlist->iinr[0];
828     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
829     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
830     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
831     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
832
833     /* Avoid stupid compiler warnings */
834     jnrA = jnrB = jnrC = jnrD = 0;
835     j_coord_offsetA = 0;
836     j_coord_offsetB = 0;
837     j_coord_offsetC = 0;
838     j_coord_offsetD = 0;
839
840     outeriter        = 0;
841     inneriter        = 0;
842
843     for(iidx=0;iidx<4*DIM;iidx++)
844     {
845         scratch[iidx] = 0.0;
846     }
847
848     /* Start outer loop over neighborlists */
849     for(iidx=0; iidx<nri; iidx++)
850     {
851         /* Load shift vector for this list */
852         i_shift_offset   = DIM*shiftidx[iidx];
853
854         /* Load limits for loop over neighbors */
855         j_index_start    = jindex[iidx];
856         j_index_end      = jindex[iidx+1];
857
858         /* Get outer coordinate index */
859         inr              = iinr[iidx];
860         i_coord_offset   = DIM*inr;
861
862         /* Load i particle coords and add shift vector */
863         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
864                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
865
866         fix0             = _mm256_setzero_pd();
867         fiy0             = _mm256_setzero_pd();
868         fiz0             = _mm256_setzero_pd();
869         fix1             = _mm256_setzero_pd();
870         fiy1             = _mm256_setzero_pd();
871         fiz1             = _mm256_setzero_pd();
872         fix2             = _mm256_setzero_pd();
873         fiy2             = _mm256_setzero_pd();
874         fiz2             = _mm256_setzero_pd();
875         fix3             = _mm256_setzero_pd();
876         fiy3             = _mm256_setzero_pd();
877         fiz3             = _mm256_setzero_pd();
878
879         /* Start inner kernel loop */
880         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
881         {
882
883             /* Get j neighbor index, and coordinate index */
884             jnrA             = jjnr[jidx];
885             jnrB             = jjnr[jidx+1];
886             jnrC             = jjnr[jidx+2];
887             jnrD             = jjnr[jidx+3];
888             j_coord_offsetA  = DIM*jnrA;
889             j_coord_offsetB  = DIM*jnrB;
890             j_coord_offsetC  = DIM*jnrC;
891             j_coord_offsetD  = DIM*jnrD;
892
893             /* load j atom coordinates */
894             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
895                                                  x+j_coord_offsetC,x+j_coord_offsetD,
896                                                  &jx0,&jy0,&jz0);
897
898             /* Calculate displacement vector */
899             dx00             = _mm256_sub_pd(ix0,jx0);
900             dy00             = _mm256_sub_pd(iy0,jy0);
901             dz00             = _mm256_sub_pd(iz0,jz0);
902             dx10             = _mm256_sub_pd(ix1,jx0);
903             dy10             = _mm256_sub_pd(iy1,jy0);
904             dz10             = _mm256_sub_pd(iz1,jz0);
905             dx20             = _mm256_sub_pd(ix2,jx0);
906             dy20             = _mm256_sub_pd(iy2,jy0);
907             dz20             = _mm256_sub_pd(iz2,jz0);
908             dx30             = _mm256_sub_pd(ix3,jx0);
909             dy30             = _mm256_sub_pd(iy3,jy0);
910             dz30             = _mm256_sub_pd(iz3,jz0);
911
912             /* Calculate squared distance and things based on it */
913             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
914             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
915             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
916             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
917
918             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
919             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
920             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
921
922             rinvsq00         = gmx_mm256_inv_pd(rsq00);
923             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
924             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
925             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
926
927             /* Load parameters for j particles */
928             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
929                                                                  charge+jnrC+0,charge+jnrD+0);
930             vdwjidx0A        = 2*vdwtype[jnrA+0];
931             vdwjidx0B        = 2*vdwtype[jnrB+0];
932             vdwjidx0C        = 2*vdwtype[jnrC+0];
933             vdwjidx0D        = 2*vdwtype[jnrD+0];
934
935             fjx0             = _mm256_setzero_pd();
936             fjy0             = _mm256_setzero_pd();
937             fjz0             = _mm256_setzero_pd();
938
939             /**************************
940              * CALCULATE INTERACTIONS *
941              **************************/
942
943             /* Compute parameters for interactions between i and j atoms */
944             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
945                                             vdwioffsetptr0+vdwjidx0B,
946                                             vdwioffsetptr0+vdwjidx0C,
947                                             vdwioffsetptr0+vdwjidx0D,
948                                             &c6_00,&c12_00);
949
950             /* LENNARD-JONES DISPERSION/REPULSION */
951
952             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
953             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
954
955             fscal            = fvdw;
956
957             /* Calculate temporary vectorial force */
958             tx               = _mm256_mul_pd(fscal,dx00);
959             ty               = _mm256_mul_pd(fscal,dy00);
960             tz               = _mm256_mul_pd(fscal,dz00);
961
962             /* Update vectorial force */
963             fix0             = _mm256_add_pd(fix0,tx);
964             fiy0             = _mm256_add_pd(fiy0,ty);
965             fiz0             = _mm256_add_pd(fiz0,tz);
966
967             fjx0             = _mm256_add_pd(fjx0,tx);
968             fjy0             = _mm256_add_pd(fjy0,ty);
969             fjz0             = _mm256_add_pd(fjz0,tz);
970
971             /**************************
972              * CALCULATE INTERACTIONS *
973              **************************/
974
975             r10              = _mm256_mul_pd(rsq10,rinv10);
976
977             /* Compute parameters for interactions between i and j atoms */
978             qq10             = _mm256_mul_pd(iq1,jq0);
979
980             /* EWALD ELECTROSTATICS */
981
982             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
983             ewrt             = _mm256_mul_pd(r10,ewtabscale);
984             ewitab           = _mm256_cvttpd_epi32(ewrt);
985             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
986             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
987                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
988                                             &ewtabF,&ewtabFn);
989             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
990             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
991
992             fscal            = felec;
993
994             /* Calculate temporary vectorial force */
995             tx               = _mm256_mul_pd(fscal,dx10);
996             ty               = _mm256_mul_pd(fscal,dy10);
997             tz               = _mm256_mul_pd(fscal,dz10);
998
999             /* Update vectorial force */
1000             fix1             = _mm256_add_pd(fix1,tx);
1001             fiy1             = _mm256_add_pd(fiy1,ty);
1002             fiz1             = _mm256_add_pd(fiz1,tz);
1003
1004             fjx0             = _mm256_add_pd(fjx0,tx);
1005             fjy0             = _mm256_add_pd(fjy0,ty);
1006             fjz0             = _mm256_add_pd(fjz0,tz);
1007
1008             /**************************
1009              * CALCULATE INTERACTIONS *
1010              **************************/
1011
1012             r20              = _mm256_mul_pd(rsq20,rinv20);
1013
1014             /* Compute parameters for interactions between i and j atoms */
1015             qq20             = _mm256_mul_pd(iq2,jq0);
1016
1017             /* EWALD ELECTROSTATICS */
1018
1019             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1020             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1021             ewitab           = _mm256_cvttpd_epi32(ewrt);
1022             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1023             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1024                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1025                                             &ewtabF,&ewtabFn);
1026             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1027             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1028
1029             fscal            = felec;
1030
1031             /* Calculate temporary vectorial force */
1032             tx               = _mm256_mul_pd(fscal,dx20);
1033             ty               = _mm256_mul_pd(fscal,dy20);
1034             tz               = _mm256_mul_pd(fscal,dz20);
1035
1036             /* Update vectorial force */
1037             fix2             = _mm256_add_pd(fix2,tx);
1038             fiy2             = _mm256_add_pd(fiy2,ty);
1039             fiz2             = _mm256_add_pd(fiz2,tz);
1040
1041             fjx0             = _mm256_add_pd(fjx0,tx);
1042             fjy0             = _mm256_add_pd(fjy0,ty);
1043             fjz0             = _mm256_add_pd(fjz0,tz);
1044
1045             /**************************
1046              * CALCULATE INTERACTIONS *
1047              **************************/
1048
1049             r30              = _mm256_mul_pd(rsq30,rinv30);
1050
1051             /* Compute parameters for interactions between i and j atoms */
1052             qq30             = _mm256_mul_pd(iq3,jq0);
1053
1054             /* EWALD ELECTROSTATICS */
1055
1056             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1057             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1058             ewitab           = _mm256_cvttpd_epi32(ewrt);
1059             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1060             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1061                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1062                                             &ewtabF,&ewtabFn);
1063             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1064             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1065
1066             fscal            = felec;
1067
1068             /* Calculate temporary vectorial force */
1069             tx               = _mm256_mul_pd(fscal,dx30);
1070             ty               = _mm256_mul_pd(fscal,dy30);
1071             tz               = _mm256_mul_pd(fscal,dz30);
1072
1073             /* Update vectorial force */
1074             fix3             = _mm256_add_pd(fix3,tx);
1075             fiy3             = _mm256_add_pd(fiy3,ty);
1076             fiz3             = _mm256_add_pd(fiz3,tz);
1077
1078             fjx0             = _mm256_add_pd(fjx0,tx);
1079             fjy0             = _mm256_add_pd(fjy0,ty);
1080             fjz0             = _mm256_add_pd(fjz0,tz);
1081
1082             fjptrA             = f+j_coord_offsetA;
1083             fjptrB             = f+j_coord_offsetB;
1084             fjptrC             = f+j_coord_offsetC;
1085             fjptrD             = f+j_coord_offsetD;
1086
1087             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1088
1089             /* Inner loop uses 138 flops */
1090         }
1091
1092         if(jidx<j_index_end)
1093         {
1094
1095             /* Get j neighbor index, and coordinate index */
1096             jnrlistA         = jjnr[jidx];
1097             jnrlistB         = jjnr[jidx+1];
1098             jnrlistC         = jjnr[jidx+2];
1099             jnrlistD         = jjnr[jidx+3];
1100             /* Sign of each element will be negative for non-real atoms.
1101              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1102              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1103              */
1104             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1105
1106             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1107             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1108             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1109
1110             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1111             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1112             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1113             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1114             j_coord_offsetA  = DIM*jnrA;
1115             j_coord_offsetB  = DIM*jnrB;
1116             j_coord_offsetC  = DIM*jnrC;
1117             j_coord_offsetD  = DIM*jnrD;
1118
1119             /* load j atom coordinates */
1120             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1121                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1122                                                  &jx0,&jy0,&jz0);
1123
1124             /* Calculate displacement vector */
1125             dx00             = _mm256_sub_pd(ix0,jx0);
1126             dy00             = _mm256_sub_pd(iy0,jy0);
1127             dz00             = _mm256_sub_pd(iz0,jz0);
1128             dx10             = _mm256_sub_pd(ix1,jx0);
1129             dy10             = _mm256_sub_pd(iy1,jy0);
1130             dz10             = _mm256_sub_pd(iz1,jz0);
1131             dx20             = _mm256_sub_pd(ix2,jx0);
1132             dy20             = _mm256_sub_pd(iy2,jy0);
1133             dz20             = _mm256_sub_pd(iz2,jz0);
1134             dx30             = _mm256_sub_pd(ix3,jx0);
1135             dy30             = _mm256_sub_pd(iy3,jy0);
1136             dz30             = _mm256_sub_pd(iz3,jz0);
1137
1138             /* Calculate squared distance and things based on it */
1139             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1140             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1141             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1142             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1143
1144             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1145             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1146             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1147
1148             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1149             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1150             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1151             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1152
1153             /* Load parameters for j particles */
1154             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1155                                                                  charge+jnrC+0,charge+jnrD+0);
1156             vdwjidx0A        = 2*vdwtype[jnrA+0];
1157             vdwjidx0B        = 2*vdwtype[jnrB+0];
1158             vdwjidx0C        = 2*vdwtype[jnrC+0];
1159             vdwjidx0D        = 2*vdwtype[jnrD+0];
1160
1161             fjx0             = _mm256_setzero_pd();
1162             fjy0             = _mm256_setzero_pd();
1163             fjz0             = _mm256_setzero_pd();
1164
1165             /**************************
1166              * CALCULATE INTERACTIONS *
1167              **************************/
1168
1169             /* Compute parameters for interactions between i and j atoms */
1170             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1171                                             vdwioffsetptr0+vdwjidx0B,
1172                                             vdwioffsetptr0+vdwjidx0C,
1173                                             vdwioffsetptr0+vdwjidx0D,
1174                                             &c6_00,&c12_00);
1175
1176             /* LENNARD-JONES DISPERSION/REPULSION */
1177
1178             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1179             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1180
1181             fscal            = fvdw;
1182
1183             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1184
1185             /* Calculate temporary vectorial force */
1186             tx               = _mm256_mul_pd(fscal,dx00);
1187             ty               = _mm256_mul_pd(fscal,dy00);
1188             tz               = _mm256_mul_pd(fscal,dz00);
1189
1190             /* Update vectorial force */
1191             fix0             = _mm256_add_pd(fix0,tx);
1192             fiy0             = _mm256_add_pd(fiy0,ty);
1193             fiz0             = _mm256_add_pd(fiz0,tz);
1194
1195             fjx0             = _mm256_add_pd(fjx0,tx);
1196             fjy0             = _mm256_add_pd(fjy0,ty);
1197             fjz0             = _mm256_add_pd(fjz0,tz);
1198
1199             /**************************
1200              * CALCULATE INTERACTIONS *
1201              **************************/
1202
1203             r10              = _mm256_mul_pd(rsq10,rinv10);
1204             r10              = _mm256_andnot_pd(dummy_mask,r10);
1205
1206             /* Compute parameters for interactions between i and j atoms */
1207             qq10             = _mm256_mul_pd(iq1,jq0);
1208
1209             /* EWALD ELECTROSTATICS */
1210
1211             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1212             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1213             ewitab           = _mm256_cvttpd_epi32(ewrt);
1214             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1215             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1216                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1217                                             &ewtabF,&ewtabFn);
1218             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1219             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1220
1221             fscal            = felec;
1222
1223             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1224
1225             /* Calculate temporary vectorial force */
1226             tx               = _mm256_mul_pd(fscal,dx10);
1227             ty               = _mm256_mul_pd(fscal,dy10);
1228             tz               = _mm256_mul_pd(fscal,dz10);
1229
1230             /* Update vectorial force */
1231             fix1             = _mm256_add_pd(fix1,tx);
1232             fiy1             = _mm256_add_pd(fiy1,ty);
1233             fiz1             = _mm256_add_pd(fiz1,tz);
1234
1235             fjx0             = _mm256_add_pd(fjx0,tx);
1236             fjy0             = _mm256_add_pd(fjy0,ty);
1237             fjz0             = _mm256_add_pd(fjz0,tz);
1238
1239             /**************************
1240              * CALCULATE INTERACTIONS *
1241              **************************/
1242
1243             r20              = _mm256_mul_pd(rsq20,rinv20);
1244             r20              = _mm256_andnot_pd(dummy_mask,r20);
1245
1246             /* Compute parameters for interactions between i and j atoms */
1247             qq20             = _mm256_mul_pd(iq2,jq0);
1248
1249             /* EWALD ELECTROSTATICS */
1250
1251             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1252             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1253             ewitab           = _mm256_cvttpd_epi32(ewrt);
1254             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1255             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1256                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1257                                             &ewtabF,&ewtabFn);
1258             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1259             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1260
1261             fscal            = felec;
1262
1263             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1264
1265             /* Calculate temporary vectorial force */
1266             tx               = _mm256_mul_pd(fscal,dx20);
1267             ty               = _mm256_mul_pd(fscal,dy20);
1268             tz               = _mm256_mul_pd(fscal,dz20);
1269
1270             /* Update vectorial force */
1271             fix2             = _mm256_add_pd(fix2,tx);
1272             fiy2             = _mm256_add_pd(fiy2,ty);
1273             fiz2             = _mm256_add_pd(fiz2,tz);
1274
1275             fjx0             = _mm256_add_pd(fjx0,tx);
1276             fjy0             = _mm256_add_pd(fjy0,ty);
1277             fjz0             = _mm256_add_pd(fjz0,tz);
1278
1279             /**************************
1280              * CALCULATE INTERACTIONS *
1281              **************************/
1282
1283             r30              = _mm256_mul_pd(rsq30,rinv30);
1284             r30              = _mm256_andnot_pd(dummy_mask,r30);
1285
1286             /* Compute parameters for interactions between i and j atoms */
1287             qq30             = _mm256_mul_pd(iq3,jq0);
1288
1289             /* EWALD ELECTROSTATICS */
1290
1291             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1292             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1293             ewitab           = _mm256_cvttpd_epi32(ewrt);
1294             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1295             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1296                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1297                                             &ewtabF,&ewtabFn);
1298             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1299             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1300
1301             fscal            = felec;
1302
1303             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1304
1305             /* Calculate temporary vectorial force */
1306             tx               = _mm256_mul_pd(fscal,dx30);
1307             ty               = _mm256_mul_pd(fscal,dy30);
1308             tz               = _mm256_mul_pd(fscal,dz30);
1309
1310             /* Update vectorial force */
1311             fix3             = _mm256_add_pd(fix3,tx);
1312             fiy3             = _mm256_add_pd(fiy3,ty);
1313             fiz3             = _mm256_add_pd(fiz3,tz);
1314
1315             fjx0             = _mm256_add_pd(fjx0,tx);
1316             fjy0             = _mm256_add_pd(fjy0,ty);
1317             fjz0             = _mm256_add_pd(fjz0,tz);
1318
1319             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1320             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1321             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1322             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1323
1324             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1325
1326             /* Inner loop uses 141 flops */
1327         }
1328
1329         /* End of innermost loop */
1330
1331         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1332                                                  f+i_coord_offset,fshift+i_shift_offset);
1333
1334         /* Increment number of inner iterations */
1335         inneriter                  += j_index_end - j_index_start;
1336
1337         /* Outer loop uses 24 flops */
1338     }
1339
1340     /* Increment number of outer iterations */
1341     outeriter        += nri;
1342
1343     /* Update outer/inner flops */
1344
1345     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*141);
1346 }