1764908d00a6468fda49a9fdb7ca33bddf6680c2
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJ_GeomW3W3_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3W3_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Water3
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomW3W3_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
93     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
94     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
95     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
96     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
98     __m256d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
99     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
100     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
101     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
102     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
103     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
104     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
105     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
106     real             *charge;
107     int              nvdwtype;
108     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
109     int              *vdwtype;
110     real             *vdwparam;
111     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
112     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
113     __m128i          ewitab;
114     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
115     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
116     real             *ewtab;
117     __m256d          dummy_mask,cutoff_mask;
118     __m128           tmpmask0,tmpmask1;
119     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
120     __m256d          one     = _mm256_set1_pd(1.0);
121     __m256d          two     = _mm256_set1_pd(2.0);
122     x                = xx[0];
123     f                = ff[0];
124
125     nri              = nlist->nri;
126     iinr             = nlist->iinr;
127     jindex           = nlist->jindex;
128     jjnr             = nlist->jjnr;
129     shiftidx         = nlist->shift;
130     gid              = nlist->gid;
131     shiftvec         = fr->shift_vec[0];
132     fshift           = fr->fshift[0];
133     facel            = _mm256_set1_pd(fr->epsfac);
134     charge           = mdatoms->chargeA;
135     nvdwtype         = fr->ntype;
136     vdwparam         = fr->nbfp;
137     vdwtype          = mdatoms->typeA;
138
139     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
140     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
141     beta2            = _mm256_mul_pd(beta,beta);
142     beta3            = _mm256_mul_pd(beta,beta2);
143
144     ewtab            = fr->ic->tabq_coul_FDV0;
145     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
146     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
147
148     /* Setup water-specific parameters */
149     inr              = nlist->iinr[0];
150     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
151     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
152     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
153     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
154
155     jq0              = _mm256_set1_pd(charge[inr+0]);
156     jq1              = _mm256_set1_pd(charge[inr+1]);
157     jq2              = _mm256_set1_pd(charge[inr+2]);
158     vdwjidx0A        = 2*vdwtype[inr+0];
159     qq00             = _mm256_mul_pd(iq0,jq0);
160     c6_00            = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A]);
161     c12_00           = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A+1]);
162     qq01             = _mm256_mul_pd(iq0,jq1);
163     qq02             = _mm256_mul_pd(iq0,jq2);
164     qq10             = _mm256_mul_pd(iq1,jq0);
165     qq11             = _mm256_mul_pd(iq1,jq1);
166     qq12             = _mm256_mul_pd(iq1,jq2);
167     qq20             = _mm256_mul_pd(iq2,jq0);
168     qq21             = _mm256_mul_pd(iq2,jq1);
169     qq22             = _mm256_mul_pd(iq2,jq2);
170
171     /* Avoid stupid compiler warnings */
172     jnrA = jnrB = jnrC = jnrD = 0;
173     j_coord_offsetA = 0;
174     j_coord_offsetB = 0;
175     j_coord_offsetC = 0;
176     j_coord_offsetD = 0;
177
178     outeriter        = 0;
179     inneriter        = 0;
180
181     for(iidx=0;iidx<4*DIM;iidx++)
182     {
183         scratch[iidx] = 0.0;
184     }
185
186     /* Start outer loop over neighborlists */
187     for(iidx=0; iidx<nri; iidx++)
188     {
189         /* Load shift vector for this list */
190         i_shift_offset   = DIM*shiftidx[iidx];
191
192         /* Load limits for loop over neighbors */
193         j_index_start    = jindex[iidx];
194         j_index_end      = jindex[iidx+1];
195
196         /* Get outer coordinate index */
197         inr              = iinr[iidx];
198         i_coord_offset   = DIM*inr;
199
200         /* Load i particle coords and add shift vector */
201         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
202                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
203
204         fix0             = _mm256_setzero_pd();
205         fiy0             = _mm256_setzero_pd();
206         fiz0             = _mm256_setzero_pd();
207         fix1             = _mm256_setzero_pd();
208         fiy1             = _mm256_setzero_pd();
209         fiz1             = _mm256_setzero_pd();
210         fix2             = _mm256_setzero_pd();
211         fiy2             = _mm256_setzero_pd();
212         fiz2             = _mm256_setzero_pd();
213
214         /* Reset potential sums */
215         velecsum         = _mm256_setzero_pd();
216         vvdwsum          = _mm256_setzero_pd();
217
218         /* Start inner kernel loop */
219         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
220         {
221
222             /* Get j neighbor index, and coordinate index */
223             jnrA             = jjnr[jidx];
224             jnrB             = jjnr[jidx+1];
225             jnrC             = jjnr[jidx+2];
226             jnrD             = jjnr[jidx+3];
227             j_coord_offsetA  = DIM*jnrA;
228             j_coord_offsetB  = DIM*jnrB;
229             j_coord_offsetC  = DIM*jnrC;
230             j_coord_offsetD  = DIM*jnrD;
231
232             /* load j atom coordinates */
233             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
234                                                  x+j_coord_offsetC,x+j_coord_offsetD,
235                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
236
237             /* Calculate displacement vector */
238             dx00             = _mm256_sub_pd(ix0,jx0);
239             dy00             = _mm256_sub_pd(iy0,jy0);
240             dz00             = _mm256_sub_pd(iz0,jz0);
241             dx01             = _mm256_sub_pd(ix0,jx1);
242             dy01             = _mm256_sub_pd(iy0,jy1);
243             dz01             = _mm256_sub_pd(iz0,jz1);
244             dx02             = _mm256_sub_pd(ix0,jx2);
245             dy02             = _mm256_sub_pd(iy0,jy2);
246             dz02             = _mm256_sub_pd(iz0,jz2);
247             dx10             = _mm256_sub_pd(ix1,jx0);
248             dy10             = _mm256_sub_pd(iy1,jy0);
249             dz10             = _mm256_sub_pd(iz1,jz0);
250             dx11             = _mm256_sub_pd(ix1,jx1);
251             dy11             = _mm256_sub_pd(iy1,jy1);
252             dz11             = _mm256_sub_pd(iz1,jz1);
253             dx12             = _mm256_sub_pd(ix1,jx2);
254             dy12             = _mm256_sub_pd(iy1,jy2);
255             dz12             = _mm256_sub_pd(iz1,jz2);
256             dx20             = _mm256_sub_pd(ix2,jx0);
257             dy20             = _mm256_sub_pd(iy2,jy0);
258             dz20             = _mm256_sub_pd(iz2,jz0);
259             dx21             = _mm256_sub_pd(ix2,jx1);
260             dy21             = _mm256_sub_pd(iy2,jy1);
261             dz21             = _mm256_sub_pd(iz2,jz1);
262             dx22             = _mm256_sub_pd(ix2,jx2);
263             dy22             = _mm256_sub_pd(iy2,jy2);
264             dz22             = _mm256_sub_pd(iz2,jz2);
265
266             /* Calculate squared distance and things based on it */
267             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
268             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
269             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
270             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
271             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
272             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
273             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
274             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
275             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
276
277             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
278             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
279             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
280             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
281             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
282             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
283             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
284             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
285             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
286
287             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
288             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
289             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
290             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
291             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
292             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
293             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
294             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
295             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
296
297             fjx0             = _mm256_setzero_pd();
298             fjy0             = _mm256_setzero_pd();
299             fjz0             = _mm256_setzero_pd();
300             fjx1             = _mm256_setzero_pd();
301             fjy1             = _mm256_setzero_pd();
302             fjz1             = _mm256_setzero_pd();
303             fjx2             = _mm256_setzero_pd();
304             fjy2             = _mm256_setzero_pd();
305             fjz2             = _mm256_setzero_pd();
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             r00              = _mm256_mul_pd(rsq00,rinv00);
312
313             /* EWALD ELECTROSTATICS */
314
315             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
316             ewrt             = _mm256_mul_pd(r00,ewtabscale);
317             ewitab           = _mm256_cvttpd_epi32(ewrt);
318             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
319             ewitab           = _mm_slli_epi32(ewitab,2);
320             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
321             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
322             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
323             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
324             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
325             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
326             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
327             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
328             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
329
330             /* LENNARD-JONES DISPERSION/REPULSION */
331
332             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
333             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
334             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
335             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
336             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velecsum         = _mm256_add_pd(velecsum,velec);
340             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
341
342             fscal            = _mm256_add_pd(felec,fvdw);
343
344             /* Calculate temporary vectorial force */
345             tx               = _mm256_mul_pd(fscal,dx00);
346             ty               = _mm256_mul_pd(fscal,dy00);
347             tz               = _mm256_mul_pd(fscal,dz00);
348
349             /* Update vectorial force */
350             fix0             = _mm256_add_pd(fix0,tx);
351             fiy0             = _mm256_add_pd(fiy0,ty);
352             fiz0             = _mm256_add_pd(fiz0,tz);
353
354             fjx0             = _mm256_add_pd(fjx0,tx);
355             fjy0             = _mm256_add_pd(fjy0,ty);
356             fjz0             = _mm256_add_pd(fjz0,tz);
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             r01              = _mm256_mul_pd(rsq01,rinv01);
363
364             /* EWALD ELECTROSTATICS */
365
366             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
367             ewrt             = _mm256_mul_pd(r01,ewtabscale);
368             ewitab           = _mm256_cvttpd_epi32(ewrt);
369             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
370             ewitab           = _mm_slli_epi32(ewitab,2);
371             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
372             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
373             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
374             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
375             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
376             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
377             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
378             velec            = _mm256_mul_pd(qq01,_mm256_sub_pd(rinv01,velec));
379             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
380
381             /* Update potential sum for this i atom from the interaction with this j atom. */
382             velecsum         = _mm256_add_pd(velecsum,velec);
383
384             fscal            = felec;
385
386             /* Calculate temporary vectorial force */
387             tx               = _mm256_mul_pd(fscal,dx01);
388             ty               = _mm256_mul_pd(fscal,dy01);
389             tz               = _mm256_mul_pd(fscal,dz01);
390
391             /* Update vectorial force */
392             fix0             = _mm256_add_pd(fix0,tx);
393             fiy0             = _mm256_add_pd(fiy0,ty);
394             fiz0             = _mm256_add_pd(fiz0,tz);
395
396             fjx1             = _mm256_add_pd(fjx1,tx);
397             fjy1             = _mm256_add_pd(fjy1,ty);
398             fjz1             = _mm256_add_pd(fjz1,tz);
399
400             /**************************
401              * CALCULATE INTERACTIONS *
402              **************************/
403
404             r02              = _mm256_mul_pd(rsq02,rinv02);
405
406             /* EWALD ELECTROSTATICS */
407
408             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
409             ewrt             = _mm256_mul_pd(r02,ewtabscale);
410             ewitab           = _mm256_cvttpd_epi32(ewrt);
411             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
412             ewitab           = _mm_slli_epi32(ewitab,2);
413             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
414             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
415             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
416             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
417             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
418             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
419             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
420             velec            = _mm256_mul_pd(qq02,_mm256_sub_pd(rinv02,velec));
421             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
422
423             /* Update potential sum for this i atom from the interaction with this j atom. */
424             velecsum         = _mm256_add_pd(velecsum,velec);
425
426             fscal            = felec;
427
428             /* Calculate temporary vectorial force */
429             tx               = _mm256_mul_pd(fscal,dx02);
430             ty               = _mm256_mul_pd(fscal,dy02);
431             tz               = _mm256_mul_pd(fscal,dz02);
432
433             /* Update vectorial force */
434             fix0             = _mm256_add_pd(fix0,tx);
435             fiy0             = _mm256_add_pd(fiy0,ty);
436             fiz0             = _mm256_add_pd(fiz0,tz);
437
438             fjx2             = _mm256_add_pd(fjx2,tx);
439             fjy2             = _mm256_add_pd(fjy2,ty);
440             fjz2             = _mm256_add_pd(fjz2,tz);
441
442             /**************************
443              * CALCULATE INTERACTIONS *
444              **************************/
445
446             r10              = _mm256_mul_pd(rsq10,rinv10);
447
448             /* EWALD ELECTROSTATICS */
449
450             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
451             ewrt             = _mm256_mul_pd(r10,ewtabscale);
452             ewitab           = _mm256_cvttpd_epi32(ewrt);
453             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
454             ewitab           = _mm_slli_epi32(ewitab,2);
455             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
456             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
457             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
458             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
459             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
460             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
461             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
462             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
463             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
464
465             /* Update potential sum for this i atom from the interaction with this j atom. */
466             velecsum         = _mm256_add_pd(velecsum,velec);
467
468             fscal            = felec;
469
470             /* Calculate temporary vectorial force */
471             tx               = _mm256_mul_pd(fscal,dx10);
472             ty               = _mm256_mul_pd(fscal,dy10);
473             tz               = _mm256_mul_pd(fscal,dz10);
474
475             /* Update vectorial force */
476             fix1             = _mm256_add_pd(fix1,tx);
477             fiy1             = _mm256_add_pd(fiy1,ty);
478             fiz1             = _mm256_add_pd(fiz1,tz);
479
480             fjx0             = _mm256_add_pd(fjx0,tx);
481             fjy0             = _mm256_add_pd(fjy0,ty);
482             fjz0             = _mm256_add_pd(fjz0,tz);
483
484             /**************************
485              * CALCULATE INTERACTIONS *
486              **************************/
487
488             r11              = _mm256_mul_pd(rsq11,rinv11);
489
490             /* EWALD ELECTROSTATICS */
491
492             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
493             ewrt             = _mm256_mul_pd(r11,ewtabscale);
494             ewitab           = _mm256_cvttpd_epi32(ewrt);
495             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
496             ewitab           = _mm_slli_epi32(ewitab,2);
497             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
498             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
499             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
500             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
501             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
502             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
503             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
504             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(rinv11,velec));
505             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
506
507             /* Update potential sum for this i atom from the interaction with this j atom. */
508             velecsum         = _mm256_add_pd(velecsum,velec);
509
510             fscal            = felec;
511
512             /* Calculate temporary vectorial force */
513             tx               = _mm256_mul_pd(fscal,dx11);
514             ty               = _mm256_mul_pd(fscal,dy11);
515             tz               = _mm256_mul_pd(fscal,dz11);
516
517             /* Update vectorial force */
518             fix1             = _mm256_add_pd(fix1,tx);
519             fiy1             = _mm256_add_pd(fiy1,ty);
520             fiz1             = _mm256_add_pd(fiz1,tz);
521
522             fjx1             = _mm256_add_pd(fjx1,tx);
523             fjy1             = _mm256_add_pd(fjy1,ty);
524             fjz1             = _mm256_add_pd(fjz1,tz);
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             r12              = _mm256_mul_pd(rsq12,rinv12);
531
532             /* EWALD ELECTROSTATICS */
533
534             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
535             ewrt             = _mm256_mul_pd(r12,ewtabscale);
536             ewitab           = _mm256_cvttpd_epi32(ewrt);
537             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
538             ewitab           = _mm_slli_epi32(ewitab,2);
539             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
540             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
541             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
542             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
543             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
544             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
545             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
546             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(rinv12,velec));
547             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
548
549             /* Update potential sum for this i atom from the interaction with this j atom. */
550             velecsum         = _mm256_add_pd(velecsum,velec);
551
552             fscal            = felec;
553
554             /* Calculate temporary vectorial force */
555             tx               = _mm256_mul_pd(fscal,dx12);
556             ty               = _mm256_mul_pd(fscal,dy12);
557             tz               = _mm256_mul_pd(fscal,dz12);
558
559             /* Update vectorial force */
560             fix1             = _mm256_add_pd(fix1,tx);
561             fiy1             = _mm256_add_pd(fiy1,ty);
562             fiz1             = _mm256_add_pd(fiz1,tz);
563
564             fjx2             = _mm256_add_pd(fjx2,tx);
565             fjy2             = _mm256_add_pd(fjy2,ty);
566             fjz2             = _mm256_add_pd(fjz2,tz);
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             r20              = _mm256_mul_pd(rsq20,rinv20);
573
574             /* EWALD ELECTROSTATICS */
575
576             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
577             ewrt             = _mm256_mul_pd(r20,ewtabscale);
578             ewitab           = _mm256_cvttpd_epi32(ewrt);
579             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
580             ewitab           = _mm_slli_epi32(ewitab,2);
581             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
582             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
583             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
584             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
585             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
586             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
587             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
588             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
589             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
590
591             /* Update potential sum for this i atom from the interaction with this j atom. */
592             velecsum         = _mm256_add_pd(velecsum,velec);
593
594             fscal            = felec;
595
596             /* Calculate temporary vectorial force */
597             tx               = _mm256_mul_pd(fscal,dx20);
598             ty               = _mm256_mul_pd(fscal,dy20);
599             tz               = _mm256_mul_pd(fscal,dz20);
600
601             /* Update vectorial force */
602             fix2             = _mm256_add_pd(fix2,tx);
603             fiy2             = _mm256_add_pd(fiy2,ty);
604             fiz2             = _mm256_add_pd(fiz2,tz);
605
606             fjx0             = _mm256_add_pd(fjx0,tx);
607             fjy0             = _mm256_add_pd(fjy0,ty);
608             fjz0             = _mm256_add_pd(fjz0,tz);
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             r21              = _mm256_mul_pd(rsq21,rinv21);
615
616             /* EWALD ELECTROSTATICS */
617
618             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
619             ewrt             = _mm256_mul_pd(r21,ewtabscale);
620             ewitab           = _mm256_cvttpd_epi32(ewrt);
621             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
622             ewitab           = _mm_slli_epi32(ewitab,2);
623             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
624             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
625             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
626             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
627             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
628             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
629             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
630             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(rinv21,velec));
631             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
632
633             /* Update potential sum for this i atom from the interaction with this j atom. */
634             velecsum         = _mm256_add_pd(velecsum,velec);
635
636             fscal            = felec;
637
638             /* Calculate temporary vectorial force */
639             tx               = _mm256_mul_pd(fscal,dx21);
640             ty               = _mm256_mul_pd(fscal,dy21);
641             tz               = _mm256_mul_pd(fscal,dz21);
642
643             /* Update vectorial force */
644             fix2             = _mm256_add_pd(fix2,tx);
645             fiy2             = _mm256_add_pd(fiy2,ty);
646             fiz2             = _mm256_add_pd(fiz2,tz);
647
648             fjx1             = _mm256_add_pd(fjx1,tx);
649             fjy1             = _mm256_add_pd(fjy1,ty);
650             fjz1             = _mm256_add_pd(fjz1,tz);
651
652             /**************************
653              * CALCULATE INTERACTIONS *
654              **************************/
655
656             r22              = _mm256_mul_pd(rsq22,rinv22);
657
658             /* EWALD ELECTROSTATICS */
659
660             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
661             ewrt             = _mm256_mul_pd(r22,ewtabscale);
662             ewitab           = _mm256_cvttpd_epi32(ewrt);
663             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
664             ewitab           = _mm_slli_epi32(ewitab,2);
665             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
666             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
667             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
668             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
669             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
670             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
671             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
672             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(rinv22,velec));
673             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
674
675             /* Update potential sum for this i atom from the interaction with this j atom. */
676             velecsum         = _mm256_add_pd(velecsum,velec);
677
678             fscal            = felec;
679
680             /* Calculate temporary vectorial force */
681             tx               = _mm256_mul_pd(fscal,dx22);
682             ty               = _mm256_mul_pd(fscal,dy22);
683             tz               = _mm256_mul_pd(fscal,dz22);
684
685             /* Update vectorial force */
686             fix2             = _mm256_add_pd(fix2,tx);
687             fiy2             = _mm256_add_pd(fiy2,ty);
688             fiz2             = _mm256_add_pd(fiz2,tz);
689
690             fjx2             = _mm256_add_pd(fjx2,tx);
691             fjy2             = _mm256_add_pd(fjy2,ty);
692             fjz2             = _mm256_add_pd(fjz2,tz);
693
694             fjptrA             = f+j_coord_offsetA;
695             fjptrB             = f+j_coord_offsetB;
696             fjptrC             = f+j_coord_offsetC;
697             fjptrD             = f+j_coord_offsetD;
698
699             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
700                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
701
702             /* Inner loop uses 381 flops */
703         }
704
705         if(jidx<j_index_end)
706         {
707
708             /* Get j neighbor index, and coordinate index */
709             jnrlistA         = jjnr[jidx];
710             jnrlistB         = jjnr[jidx+1];
711             jnrlistC         = jjnr[jidx+2];
712             jnrlistD         = jjnr[jidx+3];
713             /* Sign of each element will be negative for non-real atoms.
714              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
715              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
716              */
717             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
718
719             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
720             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
721             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
722
723             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
724             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
725             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
726             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
727             j_coord_offsetA  = DIM*jnrA;
728             j_coord_offsetB  = DIM*jnrB;
729             j_coord_offsetC  = DIM*jnrC;
730             j_coord_offsetD  = DIM*jnrD;
731
732             /* load j atom coordinates */
733             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
734                                                  x+j_coord_offsetC,x+j_coord_offsetD,
735                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
736
737             /* Calculate displacement vector */
738             dx00             = _mm256_sub_pd(ix0,jx0);
739             dy00             = _mm256_sub_pd(iy0,jy0);
740             dz00             = _mm256_sub_pd(iz0,jz0);
741             dx01             = _mm256_sub_pd(ix0,jx1);
742             dy01             = _mm256_sub_pd(iy0,jy1);
743             dz01             = _mm256_sub_pd(iz0,jz1);
744             dx02             = _mm256_sub_pd(ix0,jx2);
745             dy02             = _mm256_sub_pd(iy0,jy2);
746             dz02             = _mm256_sub_pd(iz0,jz2);
747             dx10             = _mm256_sub_pd(ix1,jx0);
748             dy10             = _mm256_sub_pd(iy1,jy0);
749             dz10             = _mm256_sub_pd(iz1,jz0);
750             dx11             = _mm256_sub_pd(ix1,jx1);
751             dy11             = _mm256_sub_pd(iy1,jy1);
752             dz11             = _mm256_sub_pd(iz1,jz1);
753             dx12             = _mm256_sub_pd(ix1,jx2);
754             dy12             = _mm256_sub_pd(iy1,jy2);
755             dz12             = _mm256_sub_pd(iz1,jz2);
756             dx20             = _mm256_sub_pd(ix2,jx0);
757             dy20             = _mm256_sub_pd(iy2,jy0);
758             dz20             = _mm256_sub_pd(iz2,jz0);
759             dx21             = _mm256_sub_pd(ix2,jx1);
760             dy21             = _mm256_sub_pd(iy2,jy1);
761             dz21             = _mm256_sub_pd(iz2,jz1);
762             dx22             = _mm256_sub_pd(ix2,jx2);
763             dy22             = _mm256_sub_pd(iy2,jy2);
764             dz22             = _mm256_sub_pd(iz2,jz2);
765
766             /* Calculate squared distance and things based on it */
767             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
768             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
769             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
770             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
771             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
772             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
773             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
774             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
775             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
776
777             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
778             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
779             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
780             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
781             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
782             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
783             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
784             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
785             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
786
787             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
788             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
789             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
790             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
791             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
792             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
793             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
794             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
795             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
796
797             fjx0             = _mm256_setzero_pd();
798             fjy0             = _mm256_setzero_pd();
799             fjz0             = _mm256_setzero_pd();
800             fjx1             = _mm256_setzero_pd();
801             fjy1             = _mm256_setzero_pd();
802             fjz1             = _mm256_setzero_pd();
803             fjx2             = _mm256_setzero_pd();
804             fjy2             = _mm256_setzero_pd();
805             fjz2             = _mm256_setzero_pd();
806
807             /**************************
808              * CALCULATE INTERACTIONS *
809              **************************/
810
811             r00              = _mm256_mul_pd(rsq00,rinv00);
812             r00              = _mm256_andnot_pd(dummy_mask,r00);
813
814             /* EWALD ELECTROSTATICS */
815
816             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
817             ewrt             = _mm256_mul_pd(r00,ewtabscale);
818             ewitab           = _mm256_cvttpd_epi32(ewrt);
819             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
820             ewitab           = _mm_slli_epi32(ewitab,2);
821             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
822             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
823             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
824             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
825             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
826             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
827             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
828             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
829             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
830
831             /* LENNARD-JONES DISPERSION/REPULSION */
832
833             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
834             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
835             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
836             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
837             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
838
839             /* Update potential sum for this i atom from the interaction with this j atom. */
840             velec            = _mm256_andnot_pd(dummy_mask,velec);
841             velecsum         = _mm256_add_pd(velecsum,velec);
842             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
843             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
844
845             fscal            = _mm256_add_pd(felec,fvdw);
846
847             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
848
849             /* Calculate temporary vectorial force */
850             tx               = _mm256_mul_pd(fscal,dx00);
851             ty               = _mm256_mul_pd(fscal,dy00);
852             tz               = _mm256_mul_pd(fscal,dz00);
853
854             /* Update vectorial force */
855             fix0             = _mm256_add_pd(fix0,tx);
856             fiy0             = _mm256_add_pd(fiy0,ty);
857             fiz0             = _mm256_add_pd(fiz0,tz);
858
859             fjx0             = _mm256_add_pd(fjx0,tx);
860             fjy0             = _mm256_add_pd(fjy0,ty);
861             fjz0             = _mm256_add_pd(fjz0,tz);
862
863             /**************************
864              * CALCULATE INTERACTIONS *
865              **************************/
866
867             r01              = _mm256_mul_pd(rsq01,rinv01);
868             r01              = _mm256_andnot_pd(dummy_mask,r01);
869
870             /* EWALD ELECTROSTATICS */
871
872             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
873             ewrt             = _mm256_mul_pd(r01,ewtabscale);
874             ewitab           = _mm256_cvttpd_epi32(ewrt);
875             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
876             ewitab           = _mm_slli_epi32(ewitab,2);
877             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
878             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
879             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
880             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
881             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
882             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
883             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
884             velec            = _mm256_mul_pd(qq01,_mm256_sub_pd(rinv01,velec));
885             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
886
887             /* Update potential sum for this i atom from the interaction with this j atom. */
888             velec            = _mm256_andnot_pd(dummy_mask,velec);
889             velecsum         = _mm256_add_pd(velecsum,velec);
890
891             fscal            = felec;
892
893             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
894
895             /* Calculate temporary vectorial force */
896             tx               = _mm256_mul_pd(fscal,dx01);
897             ty               = _mm256_mul_pd(fscal,dy01);
898             tz               = _mm256_mul_pd(fscal,dz01);
899
900             /* Update vectorial force */
901             fix0             = _mm256_add_pd(fix0,tx);
902             fiy0             = _mm256_add_pd(fiy0,ty);
903             fiz0             = _mm256_add_pd(fiz0,tz);
904
905             fjx1             = _mm256_add_pd(fjx1,tx);
906             fjy1             = _mm256_add_pd(fjy1,ty);
907             fjz1             = _mm256_add_pd(fjz1,tz);
908
909             /**************************
910              * CALCULATE INTERACTIONS *
911              **************************/
912
913             r02              = _mm256_mul_pd(rsq02,rinv02);
914             r02              = _mm256_andnot_pd(dummy_mask,r02);
915
916             /* EWALD ELECTROSTATICS */
917
918             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
919             ewrt             = _mm256_mul_pd(r02,ewtabscale);
920             ewitab           = _mm256_cvttpd_epi32(ewrt);
921             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
922             ewitab           = _mm_slli_epi32(ewitab,2);
923             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
924             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
925             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
926             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
927             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
928             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
929             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
930             velec            = _mm256_mul_pd(qq02,_mm256_sub_pd(rinv02,velec));
931             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
932
933             /* Update potential sum for this i atom from the interaction with this j atom. */
934             velec            = _mm256_andnot_pd(dummy_mask,velec);
935             velecsum         = _mm256_add_pd(velecsum,velec);
936
937             fscal            = felec;
938
939             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
940
941             /* Calculate temporary vectorial force */
942             tx               = _mm256_mul_pd(fscal,dx02);
943             ty               = _mm256_mul_pd(fscal,dy02);
944             tz               = _mm256_mul_pd(fscal,dz02);
945
946             /* Update vectorial force */
947             fix0             = _mm256_add_pd(fix0,tx);
948             fiy0             = _mm256_add_pd(fiy0,ty);
949             fiz0             = _mm256_add_pd(fiz0,tz);
950
951             fjx2             = _mm256_add_pd(fjx2,tx);
952             fjy2             = _mm256_add_pd(fjy2,ty);
953             fjz2             = _mm256_add_pd(fjz2,tz);
954
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             r10              = _mm256_mul_pd(rsq10,rinv10);
960             r10              = _mm256_andnot_pd(dummy_mask,r10);
961
962             /* EWALD ELECTROSTATICS */
963
964             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
965             ewrt             = _mm256_mul_pd(r10,ewtabscale);
966             ewitab           = _mm256_cvttpd_epi32(ewrt);
967             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
968             ewitab           = _mm_slli_epi32(ewitab,2);
969             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
970             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
971             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
972             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
973             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
974             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
975             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
976             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
977             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
978
979             /* Update potential sum for this i atom from the interaction with this j atom. */
980             velec            = _mm256_andnot_pd(dummy_mask,velec);
981             velecsum         = _mm256_add_pd(velecsum,velec);
982
983             fscal            = felec;
984
985             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
986
987             /* Calculate temporary vectorial force */
988             tx               = _mm256_mul_pd(fscal,dx10);
989             ty               = _mm256_mul_pd(fscal,dy10);
990             tz               = _mm256_mul_pd(fscal,dz10);
991
992             /* Update vectorial force */
993             fix1             = _mm256_add_pd(fix1,tx);
994             fiy1             = _mm256_add_pd(fiy1,ty);
995             fiz1             = _mm256_add_pd(fiz1,tz);
996
997             fjx0             = _mm256_add_pd(fjx0,tx);
998             fjy0             = _mm256_add_pd(fjy0,ty);
999             fjz0             = _mm256_add_pd(fjz0,tz);
1000
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             r11              = _mm256_mul_pd(rsq11,rinv11);
1006             r11              = _mm256_andnot_pd(dummy_mask,r11);
1007
1008             /* EWALD ELECTROSTATICS */
1009
1010             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1011             ewrt             = _mm256_mul_pd(r11,ewtabscale);
1012             ewitab           = _mm256_cvttpd_epi32(ewrt);
1013             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1014             ewitab           = _mm_slli_epi32(ewitab,2);
1015             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1016             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1017             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1018             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1019             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1020             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1021             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1022             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(rinv11,velec));
1023             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1024
1025             /* Update potential sum for this i atom from the interaction with this j atom. */
1026             velec            = _mm256_andnot_pd(dummy_mask,velec);
1027             velecsum         = _mm256_add_pd(velecsum,velec);
1028
1029             fscal            = felec;
1030
1031             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1032
1033             /* Calculate temporary vectorial force */
1034             tx               = _mm256_mul_pd(fscal,dx11);
1035             ty               = _mm256_mul_pd(fscal,dy11);
1036             tz               = _mm256_mul_pd(fscal,dz11);
1037
1038             /* Update vectorial force */
1039             fix1             = _mm256_add_pd(fix1,tx);
1040             fiy1             = _mm256_add_pd(fiy1,ty);
1041             fiz1             = _mm256_add_pd(fiz1,tz);
1042
1043             fjx1             = _mm256_add_pd(fjx1,tx);
1044             fjy1             = _mm256_add_pd(fjy1,ty);
1045             fjz1             = _mm256_add_pd(fjz1,tz);
1046
1047             /**************************
1048              * CALCULATE INTERACTIONS *
1049              **************************/
1050
1051             r12              = _mm256_mul_pd(rsq12,rinv12);
1052             r12              = _mm256_andnot_pd(dummy_mask,r12);
1053
1054             /* EWALD ELECTROSTATICS */
1055
1056             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1057             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1058             ewitab           = _mm256_cvttpd_epi32(ewrt);
1059             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1060             ewitab           = _mm_slli_epi32(ewitab,2);
1061             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1062             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1063             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1064             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1065             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1066             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1067             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1068             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(rinv12,velec));
1069             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1070
1071             /* Update potential sum for this i atom from the interaction with this j atom. */
1072             velec            = _mm256_andnot_pd(dummy_mask,velec);
1073             velecsum         = _mm256_add_pd(velecsum,velec);
1074
1075             fscal            = felec;
1076
1077             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1078
1079             /* Calculate temporary vectorial force */
1080             tx               = _mm256_mul_pd(fscal,dx12);
1081             ty               = _mm256_mul_pd(fscal,dy12);
1082             tz               = _mm256_mul_pd(fscal,dz12);
1083
1084             /* Update vectorial force */
1085             fix1             = _mm256_add_pd(fix1,tx);
1086             fiy1             = _mm256_add_pd(fiy1,ty);
1087             fiz1             = _mm256_add_pd(fiz1,tz);
1088
1089             fjx2             = _mm256_add_pd(fjx2,tx);
1090             fjy2             = _mm256_add_pd(fjy2,ty);
1091             fjz2             = _mm256_add_pd(fjz2,tz);
1092
1093             /**************************
1094              * CALCULATE INTERACTIONS *
1095              **************************/
1096
1097             r20              = _mm256_mul_pd(rsq20,rinv20);
1098             r20              = _mm256_andnot_pd(dummy_mask,r20);
1099
1100             /* EWALD ELECTROSTATICS */
1101
1102             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1103             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1104             ewitab           = _mm256_cvttpd_epi32(ewrt);
1105             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1106             ewitab           = _mm_slli_epi32(ewitab,2);
1107             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1108             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1109             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1110             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1111             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1112             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1113             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1114             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
1115             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1116
1117             /* Update potential sum for this i atom from the interaction with this j atom. */
1118             velec            = _mm256_andnot_pd(dummy_mask,velec);
1119             velecsum         = _mm256_add_pd(velecsum,velec);
1120
1121             fscal            = felec;
1122
1123             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1124
1125             /* Calculate temporary vectorial force */
1126             tx               = _mm256_mul_pd(fscal,dx20);
1127             ty               = _mm256_mul_pd(fscal,dy20);
1128             tz               = _mm256_mul_pd(fscal,dz20);
1129
1130             /* Update vectorial force */
1131             fix2             = _mm256_add_pd(fix2,tx);
1132             fiy2             = _mm256_add_pd(fiy2,ty);
1133             fiz2             = _mm256_add_pd(fiz2,tz);
1134
1135             fjx0             = _mm256_add_pd(fjx0,tx);
1136             fjy0             = _mm256_add_pd(fjy0,ty);
1137             fjz0             = _mm256_add_pd(fjz0,tz);
1138
1139             /**************************
1140              * CALCULATE INTERACTIONS *
1141              **************************/
1142
1143             r21              = _mm256_mul_pd(rsq21,rinv21);
1144             r21              = _mm256_andnot_pd(dummy_mask,r21);
1145
1146             /* EWALD ELECTROSTATICS */
1147
1148             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1149             ewrt             = _mm256_mul_pd(r21,ewtabscale);
1150             ewitab           = _mm256_cvttpd_epi32(ewrt);
1151             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1152             ewitab           = _mm_slli_epi32(ewitab,2);
1153             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1154             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1155             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1156             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1157             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1158             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1159             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1160             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(rinv21,velec));
1161             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
1162
1163             /* Update potential sum for this i atom from the interaction with this j atom. */
1164             velec            = _mm256_andnot_pd(dummy_mask,velec);
1165             velecsum         = _mm256_add_pd(velecsum,velec);
1166
1167             fscal            = felec;
1168
1169             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1170
1171             /* Calculate temporary vectorial force */
1172             tx               = _mm256_mul_pd(fscal,dx21);
1173             ty               = _mm256_mul_pd(fscal,dy21);
1174             tz               = _mm256_mul_pd(fscal,dz21);
1175
1176             /* Update vectorial force */
1177             fix2             = _mm256_add_pd(fix2,tx);
1178             fiy2             = _mm256_add_pd(fiy2,ty);
1179             fiz2             = _mm256_add_pd(fiz2,tz);
1180
1181             fjx1             = _mm256_add_pd(fjx1,tx);
1182             fjy1             = _mm256_add_pd(fjy1,ty);
1183             fjz1             = _mm256_add_pd(fjz1,tz);
1184
1185             /**************************
1186              * CALCULATE INTERACTIONS *
1187              **************************/
1188
1189             r22              = _mm256_mul_pd(rsq22,rinv22);
1190             r22              = _mm256_andnot_pd(dummy_mask,r22);
1191
1192             /* EWALD ELECTROSTATICS */
1193
1194             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1195             ewrt             = _mm256_mul_pd(r22,ewtabscale);
1196             ewitab           = _mm256_cvttpd_epi32(ewrt);
1197             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1198             ewitab           = _mm_slli_epi32(ewitab,2);
1199             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1200             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1201             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1202             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1203             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1204             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1205             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1206             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(rinv22,velec));
1207             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
1208
1209             /* Update potential sum for this i atom from the interaction with this j atom. */
1210             velec            = _mm256_andnot_pd(dummy_mask,velec);
1211             velecsum         = _mm256_add_pd(velecsum,velec);
1212
1213             fscal            = felec;
1214
1215             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1216
1217             /* Calculate temporary vectorial force */
1218             tx               = _mm256_mul_pd(fscal,dx22);
1219             ty               = _mm256_mul_pd(fscal,dy22);
1220             tz               = _mm256_mul_pd(fscal,dz22);
1221
1222             /* Update vectorial force */
1223             fix2             = _mm256_add_pd(fix2,tx);
1224             fiy2             = _mm256_add_pd(fiy2,ty);
1225             fiz2             = _mm256_add_pd(fiz2,tz);
1226
1227             fjx2             = _mm256_add_pd(fjx2,tx);
1228             fjy2             = _mm256_add_pd(fjy2,ty);
1229             fjz2             = _mm256_add_pd(fjz2,tz);
1230
1231             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1232             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1233             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1234             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1235
1236             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
1237                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1238
1239             /* Inner loop uses 390 flops */
1240         }
1241
1242         /* End of innermost loop */
1243
1244         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1245                                                  f+i_coord_offset,fshift+i_shift_offset);
1246
1247         ggid                        = gid[iidx];
1248         /* Update potential energies */
1249         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1250         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1251
1252         /* Increment number of inner iterations */
1253         inneriter                  += j_index_end - j_index_start;
1254
1255         /* Outer loop uses 20 flops */
1256     }
1257
1258     /* Increment number of outer iterations */
1259     outeriter        += nri;
1260
1261     /* Update outer/inner flops */
1262
1263     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*390);
1264 }
1265 /*
1266  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3W3_F_avx_256_double
1267  * Electrostatics interaction: Ewald
1268  * VdW interaction:            LennardJones
1269  * Geometry:                   Water3-Water3
1270  * Calculate force/pot:        Force
1271  */
1272 void
1273 nb_kernel_ElecEw_VdwLJ_GeomW3W3_F_avx_256_double
1274                     (t_nblist                    * gmx_restrict       nlist,
1275                      rvec                        * gmx_restrict          xx,
1276                      rvec                        * gmx_restrict          ff,
1277                      t_forcerec                  * gmx_restrict          fr,
1278                      t_mdatoms                   * gmx_restrict     mdatoms,
1279                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1280                      t_nrnb                      * gmx_restrict        nrnb)
1281 {
1282     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1283      * just 0 for non-waters.
1284      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
1285      * jnr indices corresponding to data put in the four positions in the SIMD register.
1286      */
1287     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1288     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1289     int              jnrA,jnrB,jnrC,jnrD;
1290     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1291     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
1292     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1293     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1294     real             rcutoff_scalar;
1295     real             *shiftvec,*fshift,*x,*f;
1296     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1297     real             scratch[4*DIM];
1298     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1299     real *           vdwioffsetptr0;
1300     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1301     real *           vdwioffsetptr1;
1302     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1303     real *           vdwioffsetptr2;
1304     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1305     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
1306     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1307     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1308     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1309     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1310     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1311     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1312     __m256d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1313     __m256d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1314     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1315     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1316     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1317     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1318     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1319     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1320     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
1321     real             *charge;
1322     int              nvdwtype;
1323     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1324     int              *vdwtype;
1325     real             *vdwparam;
1326     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
1327     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
1328     __m128i          ewitab;
1329     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1330     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
1331     real             *ewtab;
1332     __m256d          dummy_mask,cutoff_mask;
1333     __m128           tmpmask0,tmpmask1;
1334     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
1335     __m256d          one     = _mm256_set1_pd(1.0);
1336     __m256d          two     = _mm256_set1_pd(2.0);
1337     x                = xx[0];
1338     f                = ff[0];
1339
1340     nri              = nlist->nri;
1341     iinr             = nlist->iinr;
1342     jindex           = nlist->jindex;
1343     jjnr             = nlist->jjnr;
1344     shiftidx         = nlist->shift;
1345     gid              = nlist->gid;
1346     shiftvec         = fr->shift_vec[0];
1347     fshift           = fr->fshift[0];
1348     facel            = _mm256_set1_pd(fr->epsfac);
1349     charge           = mdatoms->chargeA;
1350     nvdwtype         = fr->ntype;
1351     vdwparam         = fr->nbfp;
1352     vdwtype          = mdatoms->typeA;
1353
1354     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
1355     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
1356     beta2            = _mm256_mul_pd(beta,beta);
1357     beta3            = _mm256_mul_pd(beta,beta2);
1358
1359     ewtab            = fr->ic->tabq_coul_F;
1360     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
1361     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
1362
1363     /* Setup water-specific parameters */
1364     inr              = nlist->iinr[0];
1365     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
1366     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
1367     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
1368     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
1369
1370     jq0              = _mm256_set1_pd(charge[inr+0]);
1371     jq1              = _mm256_set1_pd(charge[inr+1]);
1372     jq2              = _mm256_set1_pd(charge[inr+2]);
1373     vdwjidx0A        = 2*vdwtype[inr+0];
1374     qq00             = _mm256_mul_pd(iq0,jq0);
1375     c6_00            = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A]);
1376     c12_00           = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A+1]);
1377     qq01             = _mm256_mul_pd(iq0,jq1);
1378     qq02             = _mm256_mul_pd(iq0,jq2);
1379     qq10             = _mm256_mul_pd(iq1,jq0);
1380     qq11             = _mm256_mul_pd(iq1,jq1);
1381     qq12             = _mm256_mul_pd(iq1,jq2);
1382     qq20             = _mm256_mul_pd(iq2,jq0);
1383     qq21             = _mm256_mul_pd(iq2,jq1);
1384     qq22             = _mm256_mul_pd(iq2,jq2);
1385
1386     /* Avoid stupid compiler warnings */
1387     jnrA = jnrB = jnrC = jnrD = 0;
1388     j_coord_offsetA = 0;
1389     j_coord_offsetB = 0;
1390     j_coord_offsetC = 0;
1391     j_coord_offsetD = 0;
1392
1393     outeriter        = 0;
1394     inneriter        = 0;
1395
1396     for(iidx=0;iidx<4*DIM;iidx++)
1397     {
1398         scratch[iidx] = 0.0;
1399     }
1400
1401     /* Start outer loop over neighborlists */
1402     for(iidx=0; iidx<nri; iidx++)
1403     {
1404         /* Load shift vector for this list */
1405         i_shift_offset   = DIM*shiftidx[iidx];
1406
1407         /* Load limits for loop over neighbors */
1408         j_index_start    = jindex[iidx];
1409         j_index_end      = jindex[iidx+1];
1410
1411         /* Get outer coordinate index */
1412         inr              = iinr[iidx];
1413         i_coord_offset   = DIM*inr;
1414
1415         /* Load i particle coords and add shift vector */
1416         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1417                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1418
1419         fix0             = _mm256_setzero_pd();
1420         fiy0             = _mm256_setzero_pd();
1421         fiz0             = _mm256_setzero_pd();
1422         fix1             = _mm256_setzero_pd();
1423         fiy1             = _mm256_setzero_pd();
1424         fiz1             = _mm256_setzero_pd();
1425         fix2             = _mm256_setzero_pd();
1426         fiy2             = _mm256_setzero_pd();
1427         fiz2             = _mm256_setzero_pd();
1428
1429         /* Start inner kernel loop */
1430         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1431         {
1432
1433             /* Get j neighbor index, and coordinate index */
1434             jnrA             = jjnr[jidx];
1435             jnrB             = jjnr[jidx+1];
1436             jnrC             = jjnr[jidx+2];
1437             jnrD             = jjnr[jidx+3];
1438             j_coord_offsetA  = DIM*jnrA;
1439             j_coord_offsetB  = DIM*jnrB;
1440             j_coord_offsetC  = DIM*jnrC;
1441             j_coord_offsetD  = DIM*jnrD;
1442
1443             /* load j atom coordinates */
1444             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1445                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1446                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1447
1448             /* Calculate displacement vector */
1449             dx00             = _mm256_sub_pd(ix0,jx0);
1450             dy00             = _mm256_sub_pd(iy0,jy0);
1451             dz00             = _mm256_sub_pd(iz0,jz0);
1452             dx01             = _mm256_sub_pd(ix0,jx1);
1453             dy01             = _mm256_sub_pd(iy0,jy1);
1454             dz01             = _mm256_sub_pd(iz0,jz1);
1455             dx02             = _mm256_sub_pd(ix0,jx2);
1456             dy02             = _mm256_sub_pd(iy0,jy2);
1457             dz02             = _mm256_sub_pd(iz0,jz2);
1458             dx10             = _mm256_sub_pd(ix1,jx0);
1459             dy10             = _mm256_sub_pd(iy1,jy0);
1460             dz10             = _mm256_sub_pd(iz1,jz0);
1461             dx11             = _mm256_sub_pd(ix1,jx1);
1462             dy11             = _mm256_sub_pd(iy1,jy1);
1463             dz11             = _mm256_sub_pd(iz1,jz1);
1464             dx12             = _mm256_sub_pd(ix1,jx2);
1465             dy12             = _mm256_sub_pd(iy1,jy2);
1466             dz12             = _mm256_sub_pd(iz1,jz2);
1467             dx20             = _mm256_sub_pd(ix2,jx0);
1468             dy20             = _mm256_sub_pd(iy2,jy0);
1469             dz20             = _mm256_sub_pd(iz2,jz0);
1470             dx21             = _mm256_sub_pd(ix2,jx1);
1471             dy21             = _mm256_sub_pd(iy2,jy1);
1472             dz21             = _mm256_sub_pd(iz2,jz1);
1473             dx22             = _mm256_sub_pd(ix2,jx2);
1474             dy22             = _mm256_sub_pd(iy2,jy2);
1475             dz22             = _mm256_sub_pd(iz2,jz2);
1476
1477             /* Calculate squared distance and things based on it */
1478             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1479             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
1480             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
1481             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1482             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
1483             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
1484             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1485             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
1486             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
1487
1488             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1489             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
1490             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
1491             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1492             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
1493             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
1494             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1495             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
1496             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
1497
1498             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1499             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
1500             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
1501             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1502             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
1503             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
1504             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1505             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
1506             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
1507
1508             fjx0             = _mm256_setzero_pd();
1509             fjy0             = _mm256_setzero_pd();
1510             fjz0             = _mm256_setzero_pd();
1511             fjx1             = _mm256_setzero_pd();
1512             fjy1             = _mm256_setzero_pd();
1513             fjz1             = _mm256_setzero_pd();
1514             fjx2             = _mm256_setzero_pd();
1515             fjy2             = _mm256_setzero_pd();
1516             fjz2             = _mm256_setzero_pd();
1517
1518             /**************************
1519              * CALCULATE INTERACTIONS *
1520              **************************/
1521
1522             r00              = _mm256_mul_pd(rsq00,rinv00);
1523
1524             /* EWALD ELECTROSTATICS */
1525
1526             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1527             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1528             ewitab           = _mm256_cvttpd_epi32(ewrt);
1529             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1530             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1531                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1532                                             &ewtabF,&ewtabFn);
1533             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1534             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1535
1536             /* LENNARD-JONES DISPERSION/REPULSION */
1537
1538             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1539             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1540
1541             fscal            = _mm256_add_pd(felec,fvdw);
1542
1543             /* Calculate temporary vectorial force */
1544             tx               = _mm256_mul_pd(fscal,dx00);
1545             ty               = _mm256_mul_pd(fscal,dy00);
1546             tz               = _mm256_mul_pd(fscal,dz00);
1547
1548             /* Update vectorial force */
1549             fix0             = _mm256_add_pd(fix0,tx);
1550             fiy0             = _mm256_add_pd(fiy0,ty);
1551             fiz0             = _mm256_add_pd(fiz0,tz);
1552
1553             fjx0             = _mm256_add_pd(fjx0,tx);
1554             fjy0             = _mm256_add_pd(fjy0,ty);
1555             fjz0             = _mm256_add_pd(fjz0,tz);
1556
1557             /**************************
1558              * CALCULATE INTERACTIONS *
1559              **************************/
1560
1561             r01              = _mm256_mul_pd(rsq01,rinv01);
1562
1563             /* EWALD ELECTROSTATICS */
1564
1565             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1566             ewrt             = _mm256_mul_pd(r01,ewtabscale);
1567             ewitab           = _mm256_cvttpd_epi32(ewrt);
1568             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1569             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1570                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1571                                             &ewtabF,&ewtabFn);
1572             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1573             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
1574
1575             fscal            = felec;
1576
1577             /* Calculate temporary vectorial force */
1578             tx               = _mm256_mul_pd(fscal,dx01);
1579             ty               = _mm256_mul_pd(fscal,dy01);
1580             tz               = _mm256_mul_pd(fscal,dz01);
1581
1582             /* Update vectorial force */
1583             fix0             = _mm256_add_pd(fix0,tx);
1584             fiy0             = _mm256_add_pd(fiy0,ty);
1585             fiz0             = _mm256_add_pd(fiz0,tz);
1586
1587             fjx1             = _mm256_add_pd(fjx1,tx);
1588             fjy1             = _mm256_add_pd(fjy1,ty);
1589             fjz1             = _mm256_add_pd(fjz1,tz);
1590
1591             /**************************
1592              * CALCULATE INTERACTIONS *
1593              **************************/
1594
1595             r02              = _mm256_mul_pd(rsq02,rinv02);
1596
1597             /* EWALD ELECTROSTATICS */
1598
1599             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1600             ewrt             = _mm256_mul_pd(r02,ewtabscale);
1601             ewitab           = _mm256_cvttpd_epi32(ewrt);
1602             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1603             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1604                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1605                                             &ewtabF,&ewtabFn);
1606             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1607             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
1608
1609             fscal            = felec;
1610
1611             /* Calculate temporary vectorial force */
1612             tx               = _mm256_mul_pd(fscal,dx02);
1613             ty               = _mm256_mul_pd(fscal,dy02);
1614             tz               = _mm256_mul_pd(fscal,dz02);
1615
1616             /* Update vectorial force */
1617             fix0             = _mm256_add_pd(fix0,tx);
1618             fiy0             = _mm256_add_pd(fiy0,ty);
1619             fiz0             = _mm256_add_pd(fiz0,tz);
1620
1621             fjx2             = _mm256_add_pd(fjx2,tx);
1622             fjy2             = _mm256_add_pd(fjy2,ty);
1623             fjz2             = _mm256_add_pd(fjz2,tz);
1624
1625             /**************************
1626              * CALCULATE INTERACTIONS *
1627              **************************/
1628
1629             r10              = _mm256_mul_pd(rsq10,rinv10);
1630
1631             /* EWALD ELECTROSTATICS */
1632
1633             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1634             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1635             ewitab           = _mm256_cvttpd_epi32(ewrt);
1636             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1637             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1638                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1639                                             &ewtabF,&ewtabFn);
1640             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1641             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1642
1643             fscal            = felec;
1644
1645             /* Calculate temporary vectorial force */
1646             tx               = _mm256_mul_pd(fscal,dx10);
1647             ty               = _mm256_mul_pd(fscal,dy10);
1648             tz               = _mm256_mul_pd(fscal,dz10);
1649
1650             /* Update vectorial force */
1651             fix1             = _mm256_add_pd(fix1,tx);
1652             fiy1             = _mm256_add_pd(fiy1,ty);
1653             fiz1             = _mm256_add_pd(fiz1,tz);
1654
1655             fjx0             = _mm256_add_pd(fjx0,tx);
1656             fjy0             = _mm256_add_pd(fjy0,ty);
1657             fjz0             = _mm256_add_pd(fjz0,tz);
1658
1659             /**************************
1660              * CALCULATE INTERACTIONS *
1661              **************************/
1662
1663             r11              = _mm256_mul_pd(rsq11,rinv11);
1664
1665             /* EWALD ELECTROSTATICS */
1666
1667             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1668             ewrt             = _mm256_mul_pd(r11,ewtabscale);
1669             ewitab           = _mm256_cvttpd_epi32(ewrt);
1670             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1671             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1672                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1673                                             &ewtabF,&ewtabFn);
1674             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1675             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1676
1677             fscal            = felec;
1678
1679             /* Calculate temporary vectorial force */
1680             tx               = _mm256_mul_pd(fscal,dx11);
1681             ty               = _mm256_mul_pd(fscal,dy11);
1682             tz               = _mm256_mul_pd(fscal,dz11);
1683
1684             /* Update vectorial force */
1685             fix1             = _mm256_add_pd(fix1,tx);
1686             fiy1             = _mm256_add_pd(fiy1,ty);
1687             fiz1             = _mm256_add_pd(fiz1,tz);
1688
1689             fjx1             = _mm256_add_pd(fjx1,tx);
1690             fjy1             = _mm256_add_pd(fjy1,ty);
1691             fjz1             = _mm256_add_pd(fjz1,tz);
1692
1693             /**************************
1694              * CALCULATE INTERACTIONS *
1695              **************************/
1696
1697             r12              = _mm256_mul_pd(rsq12,rinv12);
1698
1699             /* EWALD ELECTROSTATICS */
1700
1701             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1702             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1703             ewitab           = _mm256_cvttpd_epi32(ewrt);
1704             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1705             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1706                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1707                                             &ewtabF,&ewtabFn);
1708             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1709             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1710
1711             fscal            = felec;
1712
1713             /* Calculate temporary vectorial force */
1714             tx               = _mm256_mul_pd(fscal,dx12);
1715             ty               = _mm256_mul_pd(fscal,dy12);
1716             tz               = _mm256_mul_pd(fscal,dz12);
1717
1718             /* Update vectorial force */
1719             fix1             = _mm256_add_pd(fix1,tx);
1720             fiy1             = _mm256_add_pd(fiy1,ty);
1721             fiz1             = _mm256_add_pd(fiz1,tz);
1722
1723             fjx2             = _mm256_add_pd(fjx2,tx);
1724             fjy2             = _mm256_add_pd(fjy2,ty);
1725             fjz2             = _mm256_add_pd(fjz2,tz);
1726
1727             /**************************
1728              * CALCULATE INTERACTIONS *
1729              **************************/
1730
1731             r20              = _mm256_mul_pd(rsq20,rinv20);
1732
1733             /* EWALD ELECTROSTATICS */
1734
1735             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1736             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1737             ewitab           = _mm256_cvttpd_epi32(ewrt);
1738             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1739             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1740                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1741                                             &ewtabF,&ewtabFn);
1742             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1743             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1744
1745             fscal            = felec;
1746
1747             /* Calculate temporary vectorial force */
1748             tx               = _mm256_mul_pd(fscal,dx20);
1749             ty               = _mm256_mul_pd(fscal,dy20);
1750             tz               = _mm256_mul_pd(fscal,dz20);
1751
1752             /* Update vectorial force */
1753             fix2             = _mm256_add_pd(fix2,tx);
1754             fiy2             = _mm256_add_pd(fiy2,ty);
1755             fiz2             = _mm256_add_pd(fiz2,tz);
1756
1757             fjx0             = _mm256_add_pd(fjx0,tx);
1758             fjy0             = _mm256_add_pd(fjy0,ty);
1759             fjz0             = _mm256_add_pd(fjz0,tz);
1760
1761             /**************************
1762              * CALCULATE INTERACTIONS *
1763              **************************/
1764
1765             r21              = _mm256_mul_pd(rsq21,rinv21);
1766
1767             /* EWALD ELECTROSTATICS */
1768
1769             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1770             ewrt             = _mm256_mul_pd(r21,ewtabscale);
1771             ewitab           = _mm256_cvttpd_epi32(ewrt);
1772             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1773             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1774                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1775                                             &ewtabF,&ewtabFn);
1776             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1777             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
1778
1779             fscal            = felec;
1780
1781             /* Calculate temporary vectorial force */
1782             tx               = _mm256_mul_pd(fscal,dx21);
1783             ty               = _mm256_mul_pd(fscal,dy21);
1784             tz               = _mm256_mul_pd(fscal,dz21);
1785
1786             /* Update vectorial force */
1787             fix2             = _mm256_add_pd(fix2,tx);
1788             fiy2             = _mm256_add_pd(fiy2,ty);
1789             fiz2             = _mm256_add_pd(fiz2,tz);
1790
1791             fjx1             = _mm256_add_pd(fjx1,tx);
1792             fjy1             = _mm256_add_pd(fjy1,ty);
1793             fjz1             = _mm256_add_pd(fjz1,tz);
1794
1795             /**************************
1796              * CALCULATE INTERACTIONS *
1797              **************************/
1798
1799             r22              = _mm256_mul_pd(rsq22,rinv22);
1800
1801             /* EWALD ELECTROSTATICS */
1802
1803             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1804             ewrt             = _mm256_mul_pd(r22,ewtabscale);
1805             ewitab           = _mm256_cvttpd_epi32(ewrt);
1806             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1807             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1808                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1809                                             &ewtabF,&ewtabFn);
1810             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1811             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
1812
1813             fscal            = felec;
1814
1815             /* Calculate temporary vectorial force */
1816             tx               = _mm256_mul_pd(fscal,dx22);
1817             ty               = _mm256_mul_pd(fscal,dy22);
1818             tz               = _mm256_mul_pd(fscal,dz22);
1819
1820             /* Update vectorial force */
1821             fix2             = _mm256_add_pd(fix2,tx);
1822             fiy2             = _mm256_add_pd(fiy2,ty);
1823             fiz2             = _mm256_add_pd(fiz2,tz);
1824
1825             fjx2             = _mm256_add_pd(fjx2,tx);
1826             fjy2             = _mm256_add_pd(fjy2,ty);
1827             fjz2             = _mm256_add_pd(fjz2,tz);
1828
1829             fjptrA             = f+j_coord_offsetA;
1830             fjptrB             = f+j_coord_offsetB;
1831             fjptrC             = f+j_coord_offsetC;
1832             fjptrD             = f+j_coord_offsetD;
1833
1834             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
1835                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1836
1837             /* Inner loop uses 331 flops */
1838         }
1839
1840         if(jidx<j_index_end)
1841         {
1842
1843             /* Get j neighbor index, and coordinate index */
1844             jnrlistA         = jjnr[jidx];
1845             jnrlistB         = jjnr[jidx+1];
1846             jnrlistC         = jjnr[jidx+2];
1847             jnrlistD         = jjnr[jidx+3];
1848             /* Sign of each element will be negative for non-real atoms.
1849              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1850              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1851              */
1852             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1853
1854             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1855             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1856             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1857
1858             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1859             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1860             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1861             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1862             j_coord_offsetA  = DIM*jnrA;
1863             j_coord_offsetB  = DIM*jnrB;
1864             j_coord_offsetC  = DIM*jnrC;
1865             j_coord_offsetD  = DIM*jnrD;
1866
1867             /* load j atom coordinates */
1868             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1869                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1870                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1871
1872             /* Calculate displacement vector */
1873             dx00             = _mm256_sub_pd(ix0,jx0);
1874             dy00             = _mm256_sub_pd(iy0,jy0);
1875             dz00             = _mm256_sub_pd(iz0,jz0);
1876             dx01             = _mm256_sub_pd(ix0,jx1);
1877             dy01             = _mm256_sub_pd(iy0,jy1);
1878             dz01             = _mm256_sub_pd(iz0,jz1);
1879             dx02             = _mm256_sub_pd(ix0,jx2);
1880             dy02             = _mm256_sub_pd(iy0,jy2);
1881             dz02             = _mm256_sub_pd(iz0,jz2);
1882             dx10             = _mm256_sub_pd(ix1,jx0);
1883             dy10             = _mm256_sub_pd(iy1,jy0);
1884             dz10             = _mm256_sub_pd(iz1,jz0);
1885             dx11             = _mm256_sub_pd(ix1,jx1);
1886             dy11             = _mm256_sub_pd(iy1,jy1);
1887             dz11             = _mm256_sub_pd(iz1,jz1);
1888             dx12             = _mm256_sub_pd(ix1,jx2);
1889             dy12             = _mm256_sub_pd(iy1,jy2);
1890             dz12             = _mm256_sub_pd(iz1,jz2);
1891             dx20             = _mm256_sub_pd(ix2,jx0);
1892             dy20             = _mm256_sub_pd(iy2,jy0);
1893             dz20             = _mm256_sub_pd(iz2,jz0);
1894             dx21             = _mm256_sub_pd(ix2,jx1);
1895             dy21             = _mm256_sub_pd(iy2,jy1);
1896             dz21             = _mm256_sub_pd(iz2,jz1);
1897             dx22             = _mm256_sub_pd(ix2,jx2);
1898             dy22             = _mm256_sub_pd(iy2,jy2);
1899             dz22             = _mm256_sub_pd(iz2,jz2);
1900
1901             /* Calculate squared distance and things based on it */
1902             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1903             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
1904             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
1905             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1906             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
1907             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
1908             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1909             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
1910             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
1911
1912             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1913             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
1914             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
1915             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1916             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
1917             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
1918             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1919             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
1920             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
1921
1922             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1923             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
1924             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
1925             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1926             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
1927             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
1928             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1929             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
1930             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
1931
1932             fjx0             = _mm256_setzero_pd();
1933             fjy0             = _mm256_setzero_pd();
1934             fjz0             = _mm256_setzero_pd();
1935             fjx1             = _mm256_setzero_pd();
1936             fjy1             = _mm256_setzero_pd();
1937             fjz1             = _mm256_setzero_pd();
1938             fjx2             = _mm256_setzero_pd();
1939             fjy2             = _mm256_setzero_pd();
1940             fjz2             = _mm256_setzero_pd();
1941
1942             /**************************
1943              * CALCULATE INTERACTIONS *
1944              **************************/
1945
1946             r00              = _mm256_mul_pd(rsq00,rinv00);
1947             r00              = _mm256_andnot_pd(dummy_mask,r00);
1948
1949             /* EWALD ELECTROSTATICS */
1950
1951             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1952             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1953             ewitab           = _mm256_cvttpd_epi32(ewrt);
1954             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1955             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1956                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1957                                             &ewtabF,&ewtabFn);
1958             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1959             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1960
1961             /* LENNARD-JONES DISPERSION/REPULSION */
1962
1963             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1964             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1965
1966             fscal            = _mm256_add_pd(felec,fvdw);
1967
1968             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1969
1970             /* Calculate temporary vectorial force */
1971             tx               = _mm256_mul_pd(fscal,dx00);
1972             ty               = _mm256_mul_pd(fscal,dy00);
1973             tz               = _mm256_mul_pd(fscal,dz00);
1974
1975             /* Update vectorial force */
1976             fix0             = _mm256_add_pd(fix0,tx);
1977             fiy0             = _mm256_add_pd(fiy0,ty);
1978             fiz0             = _mm256_add_pd(fiz0,tz);
1979
1980             fjx0             = _mm256_add_pd(fjx0,tx);
1981             fjy0             = _mm256_add_pd(fjy0,ty);
1982             fjz0             = _mm256_add_pd(fjz0,tz);
1983
1984             /**************************
1985              * CALCULATE INTERACTIONS *
1986              **************************/
1987
1988             r01              = _mm256_mul_pd(rsq01,rinv01);
1989             r01              = _mm256_andnot_pd(dummy_mask,r01);
1990
1991             /* EWALD ELECTROSTATICS */
1992
1993             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1994             ewrt             = _mm256_mul_pd(r01,ewtabscale);
1995             ewitab           = _mm256_cvttpd_epi32(ewrt);
1996             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1997             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1998                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1999                                             &ewtabF,&ewtabFn);
2000             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2001             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
2002
2003             fscal            = felec;
2004
2005             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2006
2007             /* Calculate temporary vectorial force */
2008             tx               = _mm256_mul_pd(fscal,dx01);
2009             ty               = _mm256_mul_pd(fscal,dy01);
2010             tz               = _mm256_mul_pd(fscal,dz01);
2011
2012             /* Update vectorial force */
2013             fix0             = _mm256_add_pd(fix0,tx);
2014             fiy0             = _mm256_add_pd(fiy0,ty);
2015             fiz0             = _mm256_add_pd(fiz0,tz);
2016
2017             fjx1             = _mm256_add_pd(fjx1,tx);
2018             fjy1             = _mm256_add_pd(fjy1,ty);
2019             fjz1             = _mm256_add_pd(fjz1,tz);
2020
2021             /**************************
2022              * CALCULATE INTERACTIONS *
2023              **************************/
2024
2025             r02              = _mm256_mul_pd(rsq02,rinv02);
2026             r02              = _mm256_andnot_pd(dummy_mask,r02);
2027
2028             /* EWALD ELECTROSTATICS */
2029
2030             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2031             ewrt             = _mm256_mul_pd(r02,ewtabscale);
2032             ewitab           = _mm256_cvttpd_epi32(ewrt);
2033             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2034             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2035                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2036                                             &ewtabF,&ewtabFn);
2037             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2038             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
2039
2040             fscal            = felec;
2041
2042             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2043
2044             /* Calculate temporary vectorial force */
2045             tx               = _mm256_mul_pd(fscal,dx02);
2046             ty               = _mm256_mul_pd(fscal,dy02);
2047             tz               = _mm256_mul_pd(fscal,dz02);
2048
2049             /* Update vectorial force */
2050             fix0             = _mm256_add_pd(fix0,tx);
2051             fiy0             = _mm256_add_pd(fiy0,ty);
2052             fiz0             = _mm256_add_pd(fiz0,tz);
2053
2054             fjx2             = _mm256_add_pd(fjx2,tx);
2055             fjy2             = _mm256_add_pd(fjy2,ty);
2056             fjz2             = _mm256_add_pd(fjz2,tz);
2057
2058             /**************************
2059              * CALCULATE INTERACTIONS *
2060              **************************/
2061
2062             r10              = _mm256_mul_pd(rsq10,rinv10);
2063             r10              = _mm256_andnot_pd(dummy_mask,r10);
2064
2065             /* EWALD ELECTROSTATICS */
2066
2067             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2068             ewrt             = _mm256_mul_pd(r10,ewtabscale);
2069             ewitab           = _mm256_cvttpd_epi32(ewrt);
2070             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2071             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2072                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2073                                             &ewtabF,&ewtabFn);
2074             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2075             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
2076
2077             fscal            = felec;
2078
2079             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2080
2081             /* Calculate temporary vectorial force */
2082             tx               = _mm256_mul_pd(fscal,dx10);
2083             ty               = _mm256_mul_pd(fscal,dy10);
2084             tz               = _mm256_mul_pd(fscal,dz10);
2085
2086             /* Update vectorial force */
2087             fix1             = _mm256_add_pd(fix1,tx);
2088             fiy1             = _mm256_add_pd(fiy1,ty);
2089             fiz1             = _mm256_add_pd(fiz1,tz);
2090
2091             fjx0             = _mm256_add_pd(fjx0,tx);
2092             fjy0             = _mm256_add_pd(fjy0,ty);
2093             fjz0             = _mm256_add_pd(fjz0,tz);
2094
2095             /**************************
2096              * CALCULATE INTERACTIONS *
2097              **************************/
2098
2099             r11              = _mm256_mul_pd(rsq11,rinv11);
2100             r11              = _mm256_andnot_pd(dummy_mask,r11);
2101
2102             /* EWALD ELECTROSTATICS */
2103
2104             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2105             ewrt             = _mm256_mul_pd(r11,ewtabscale);
2106             ewitab           = _mm256_cvttpd_epi32(ewrt);
2107             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2108             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2109                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2110                                             &ewtabF,&ewtabFn);
2111             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2112             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
2113
2114             fscal            = felec;
2115
2116             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2117
2118             /* Calculate temporary vectorial force */
2119             tx               = _mm256_mul_pd(fscal,dx11);
2120             ty               = _mm256_mul_pd(fscal,dy11);
2121             tz               = _mm256_mul_pd(fscal,dz11);
2122
2123             /* Update vectorial force */
2124             fix1             = _mm256_add_pd(fix1,tx);
2125             fiy1             = _mm256_add_pd(fiy1,ty);
2126             fiz1             = _mm256_add_pd(fiz1,tz);
2127
2128             fjx1             = _mm256_add_pd(fjx1,tx);
2129             fjy1             = _mm256_add_pd(fjy1,ty);
2130             fjz1             = _mm256_add_pd(fjz1,tz);
2131
2132             /**************************
2133              * CALCULATE INTERACTIONS *
2134              **************************/
2135
2136             r12              = _mm256_mul_pd(rsq12,rinv12);
2137             r12              = _mm256_andnot_pd(dummy_mask,r12);
2138
2139             /* EWALD ELECTROSTATICS */
2140
2141             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2142             ewrt             = _mm256_mul_pd(r12,ewtabscale);
2143             ewitab           = _mm256_cvttpd_epi32(ewrt);
2144             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2145             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2146                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2147                                             &ewtabF,&ewtabFn);
2148             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2149             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
2150
2151             fscal            = felec;
2152
2153             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2154
2155             /* Calculate temporary vectorial force */
2156             tx               = _mm256_mul_pd(fscal,dx12);
2157             ty               = _mm256_mul_pd(fscal,dy12);
2158             tz               = _mm256_mul_pd(fscal,dz12);
2159
2160             /* Update vectorial force */
2161             fix1             = _mm256_add_pd(fix1,tx);
2162             fiy1             = _mm256_add_pd(fiy1,ty);
2163             fiz1             = _mm256_add_pd(fiz1,tz);
2164
2165             fjx2             = _mm256_add_pd(fjx2,tx);
2166             fjy2             = _mm256_add_pd(fjy2,ty);
2167             fjz2             = _mm256_add_pd(fjz2,tz);
2168
2169             /**************************
2170              * CALCULATE INTERACTIONS *
2171              **************************/
2172
2173             r20              = _mm256_mul_pd(rsq20,rinv20);
2174             r20              = _mm256_andnot_pd(dummy_mask,r20);
2175
2176             /* EWALD ELECTROSTATICS */
2177
2178             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2179             ewrt             = _mm256_mul_pd(r20,ewtabscale);
2180             ewitab           = _mm256_cvttpd_epi32(ewrt);
2181             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2182             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2183                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2184                                             &ewtabF,&ewtabFn);
2185             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2186             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
2187
2188             fscal            = felec;
2189
2190             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2191
2192             /* Calculate temporary vectorial force */
2193             tx               = _mm256_mul_pd(fscal,dx20);
2194             ty               = _mm256_mul_pd(fscal,dy20);
2195             tz               = _mm256_mul_pd(fscal,dz20);
2196
2197             /* Update vectorial force */
2198             fix2             = _mm256_add_pd(fix2,tx);
2199             fiy2             = _mm256_add_pd(fiy2,ty);
2200             fiz2             = _mm256_add_pd(fiz2,tz);
2201
2202             fjx0             = _mm256_add_pd(fjx0,tx);
2203             fjy0             = _mm256_add_pd(fjy0,ty);
2204             fjz0             = _mm256_add_pd(fjz0,tz);
2205
2206             /**************************
2207              * CALCULATE INTERACTIONS *
2208              **************************/
2209
2210             r21              = _mm256_mul_pd(rsq21,rinv21);
2211             r21              = _mm256_andnot_pd(dummy_mask,r21);
2212
2213             /* EWALD ELECTROSTATICS */
2214
2215             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2216             ewrt             = _mm256_mul_pd(r21,ewtabscale);
2217             ewitab           = _mm256_cvttpd_epi32(ewrt);
2218             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2219             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2220                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2221                                             &ewtabF,&ewtabFn);
2222             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2223             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
2224
2225             fscal            = felec;
2226
2227             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2228
2229             /* Calculate temporary vectorial force */
2230             tx               = _mm256_mul_pd(fscal,dx21);
2231             ty               = _mm256_mul_pd(fscal,dy21);
2232             tz               = _mm256_mul_pd(fscal,dz21);
2233
2234             /* Update vectorial force */
2235             fix2             = _mm256_add_pd(fix2,tx);
2236             fiy2             = _mm256_add_pd(fiy2,ty);
2237             fiz2             = _mm256_add_pd(fiz2,tz);
2238
2239             fjx1             = _mm256_add_pd(fjx1,tx);
2240             fjy1             = _mm256_add_pd(fjy1,ty);
2241             fjz1             = _mm256_add_pd(fjz1,tz);
2242
2243             /**************************
2244              * CALCULATE INTERACTIONS *
2245              **************************/
2246
2247             r22              = _mm256_mul_pd(rsq22,rinv22);
2248             r22              = _mm256_andnot_pd(dummy_mask,r22);
2249
2250             /* EWALD ELECTROSTATICS */
2251
2252             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2253             ewrt             = _mm256_mul_pd(r22,ewtabscale);
2254             ewitab           = _mm256_cvttpd_epi32(ewrt);
2255             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2256             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2257                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2258                                             &ewtabF,&ewtabFn);
2259             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2260             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
2261
2262             fscal            = felec;
2263
2264             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2265
2266             /* Calculate temporary vectorial force */
2267             tx               = _mm256_mul_pd(fscal,dx22);
2268             ty               = _mm256_mul_pd(fscal,dy22);
2269             tz               = _mm256_mul_pd(fscal,dz22);
2270
2271             /* Update vectorial force */
2272             fix2             = _mm256_add_pd(fix2,tx);
2273             fiy2             = _mm256_add_pd(fiy2,ty);
2274             fiz2             = _mm256_add_pd(fiz2,tz);
2275
2276             fjx2             = _mm256_add_pd(fjx2,tx);
2277             fjy2             = _mm256_add_pd(fjy2,ty);
2278             fjz2             = _mm256_add_pd(fjz2,tz);
2279
2280             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2281             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2282             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2283             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2284
2285             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
2286                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2287
2288             /* Inner loop uses 340 flops */
2289         }
2290
2291         /* End of innermost loop */
2292
2293         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2294                                                  f+i_coord_offset,fshift+i_shift_offset);
2295
2296         /* Increment number of inner iterations */
2297         inneriter                  += j_index_end - j_index_start;
2298
2299         /* Outer loop uses 18 flops */
2300     }
2301
2302     /* Increment number of outer iterations */
2303     outeriter        += nri;
2304
2305     /* Update outer/inner flops */
2306
2307     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*340);
2308 }