Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJ_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m128i          ewitab;
106     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
108     real             *ewtab;
109     __m256d          dummy_mask,cutoff_mask;
110     __m128           tmpmask0,tmpmask1;
111     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
112     __m256d          one     = _mm256_set1_pd(1.0);
113     __m256d          two     = _mm256_set1_pd(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_pd(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
132     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
133     beta2            = _mm256_mul_pd(beta,beta);
134     beta3            = _mm256_mul_pd(beta,beta2);
135
136     ewtab            = fr->ic->tabq_coul_FDV0;
137     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
138     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
139
140     /* Setup water-specific parameters */
141     inr              = nlist->iinr[0];
142     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
143     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
144     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
145     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = jnrC = jnrD = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151     j_coord_offsetC = 0;
152     j_coord_offsetD = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _mm256_setzero_pd();
181         fiy0             = _mm256_setzero_pd();
182         fiz0             = _mm256_setzero_pd();
183         fix1             = _mm256_setzero_pd();
184         fiy1             = _mm256_setzero_pd();
185         fiz1             = _mm256_setzero_pd();
186         fix2             = _mm256_setzero_pd();
187         fiy2             = _mm256_setzero_pd();
188         fiz2             = _mm256_setzero_pd();
189
190         /* Reset potential sums */
191         velecsum         = _mm256_setzero_pd();
192         vvdwsum          = _mm256_setzero_pd();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207
208             /* load j atom coordinates */
209             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
210                                                  x+j_coord_offsetC,x+j_coord_offsetD,
211                                                  &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm256_sub_pd(ix0,jx0);
215             dy00             = _mm256_sub_pd(iy0,jy0);
216             dz00             = _mm256_sub_pd(iz0,jz0);
217             dx10             = _mm256_sub_pd(ix1,jx0);
218             dy10             = _mm256_sub_pd(iy1,jy0);
219             dz10             = _mm256_sub_pd(iz1,jz0);
220             dx20             = _mm256_sub_pd(ix2,jx0);
221             dy20             = _mm256_sub_pd(iy2,jy0);
222             dz20             = _mm256_sub_pd(iz2,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
226             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
227             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
228
229             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
230             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
231             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
232
233             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
234             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
235             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
239                                                                  charge+jnrC+0,charge+jnrD+0);
240             vdwjidx0A        = 2*vdwtype[jnrA+0];
241             vdwjidx0B        = 2*vdwtype[jnrB+0];
242             vdwjidx0C        = 2*vdwtype[jnrC+0];
243             vdwjidx0D        = 2*vdwtype[jnrD+0];
244
245             fjx0             = _mm256_setzero_pd();
246             fjy0             = _mm256_setzero_pd();
247             fjz0             = _mm256_setzero_pd();
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             r00              = _mm256_mul_pd(rsq00,rinv00);
254
255             /* Compute parameters for interactions between i and j atoms */
256             qq00             = _mm256_mul_pd(iq0,jq0);
257             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
258                                             vdwioffsetptr0+vdwjidx0B,
259                                             vdwioffsetptr0+vdwjidx0C,
260                                             vdwioffsetptr0+vdwjidx0D,
261                                             &c6_00,&c12_00);
262
263             /* EWALD ELECTROSTATICS */
264
265             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
266             ewrt             = _mm256_mul_pd(r00,ewtabscale);
267             ewitab           = _mm256_cvttpd_epi32(ewrt);
268             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
269             ewitab           = _mm_slli_epi32(ewitab,2);
270             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
271             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
272             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
273             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
274             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
275             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
276             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
277             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
278             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
279
280             /* LENNARD-JONES DISPERSION/REPULSION */
281
282             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
283             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
284             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
285             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
286             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             velecsum         = _mm256_add_pd(velecsum,velec);
290             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
291
292             fscal            = _mm256_add_pd(felec,fvdw);
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm256_mul_pd(fscal,dx00);
296             ty               = _mm256_mul_pd(fscal,dy00);
297             tz               = _mm256_mul_pd(fscal,dz00);
298
299             /* Update vectorial force */
300             fix0             = _mm256_add_pd(fix0,tx);
301             fiy0             = _mm256_add_pd(fiy0,ty);
302             fiz0             = _mm256_add_pd(fiz0,tz);
303
304             fjx0             = _mm256_add_pd(fjx0,tx);
305             fjy0             = _mm256_add_pd(fjy0,ty);
306             fjz0             = _mm256_add_pd(fjz0,tz);
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             r10              = _mm256_mul_pd(rsq10,rinv10);
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq10             = _mm256_mul_pd(iq1,jq0);
316
317             /* EWALD ELECTROSTATICS */
318
319             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
320             ewrt             = _mm256_mul_pd(r10,ewtabscale);
321             ewitab           = _mm256_cvttpd_epi32(ewrt);
322             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
323             ewitab           = _mm_slli_epi32(ewitab,2);
324             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
325             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
326             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
327             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
328             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
329             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
330             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
331             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
332             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
333
334             /* Update potential sum for this i atom from the interaction with this j atom. */
335             velecsum         = _mm256_add_pd(velecsum,velec);
336
337             fscal            = felec;
338
339             /* Calculate temporary vectorial force */
340             tx               = _mm256_mul_pd(fscal,dx10);
341             ty               = _mm256_mul_pd(fscal,dy10);
342             tz               = _mm256_mul_pd(fscal,dz10);
343
344             /* Update vectorial force */
345             fix1             = _mm256_add_pd(fix1,tx);
346             fiy1             = _mm256_add_pd(fiy1,ty);
347             fiz1             = _mm256_add_pd(fiz1,tz);
348
349             fjx0             = _mm256_add_pd(fjx0,tx);
350             fjy0             = _mm256_add_pd(fjy0,ty);
351             fjz0             = _mm256_add_pd(fjz0,tz);
352
353             /**************************
354              * CALCULATE INTERACTIONS *
355              **************************/
356
357             r20              = _mm256_mul_pd(rsq20,rinv20);
358
359             /* Compute parameters for interactions between i and j atoms */
360             qq20             = _mm256_mul_pd(iq2,jq0);
361
362             /* EWALD ELECTROSTATICS */
363
364             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
365             ewrt             = _mm256_mul_pd(r20,ewtabscale);
366             ewitab           = _mm256_cvttpd_epi32(ewrt);
367             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
368             ewitab           = _mm_slli_epi32(ewitab,2);
369             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
370             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
371             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
372             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
373             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
374             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
375             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
376             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
377             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
378
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velecsum         = _mm256_add_pd(velecsum,velec);
381
382             fscal            = felec;
383
384             /* Calculate temporary vectorial force */
385             tx               = _mm256_mul_pd(fscal,dx20);
386             ty               = _mm256_mul_pd(fscal,dy20);
387             tz               = _mm256_mul_pd(fscal,dz20);
388
389             /* Update vectorial force */
390             fix2             = _mm256_add_pd(fix2,tx);
391             fiy2             = _mm256_add_pd(fiy2,ty);
392             fiz2             = _mm256_add_pd(fiz2,tz);
393
394             fjx0             = _mm256_add_pd(fjx0,tx);
395             fjy0             = _mm256_add_pd(fjy0,ty);
396             fjz0             = _mm256_add_pd(fjz0,tz);
397
398             fjptrA             = f+j_coord_offsetA;
399             fjptrB             = f+j_coord_offsetB;
400             fjptrC             = f+j_coord_offsetC;
401             fjptrD             = f+j_coord_offsetD;
402
403             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
404
405             /* Inner loop uses 138 flops */
406         }
407
408         if(jidx<j_index_end)
409         {
410
411             /* Get j neighbor index, and coordinate index */
412             jnrlistA         = jjnr[jidx];
413             jnrlistB         = jjnr[jidx+1];
414             jnrlistC         = jjnr[jidx+2];
415             jnrlistD         = jjnr[jidx+3];
416             /* Sign of each element will be negative for non-real atoms.
417              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
418              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
419              */
420             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
421
422             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
423             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
424             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
425
426             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
427             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
428             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
429             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
430             j_coord_offsetA  = DIM*jnrA;
431             j_coord_offsetB  = DIM*jnrB;
432             j_coord_offsetC  = DIM*jnrC;
433             j_coord_offsetD  = DIM*jnrD;
434
435             /* load j atom coordinates */
436             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
437                                                  x+j_coord_offsetC,x+j_coord_offsetD,
438                                                  &jx0,&jy0,&jz0);
439
440             /* Calculate displacement vector */
441             dx00             = _mm256_sub_pd(ix0,jx0);
442             dy00             = _mm256_sub_pd(iy0,jy0);
443             dz00             = _mm256_sub_pd(iz0,jz0);
444             dx10             = _mm256_sub_pd(ix1,jx0);
445             dy10             = _mm256_sub_pd(iy1,jy0);
446             dz10             = _mm256_sub_pd(iz1,jz0);
447             dx20             = _mm256_sub_pd(ix2,jx0);
448             dy20             = _mm256_sub_pd(iy2,jy0);
449             dz20             = _mm256_sub_pd(iz2,jz0);
450
451             /* Calculate squared distance and things based on it */
452             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
453             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
454             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
455
456             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
457             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
458             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
459
460             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
461             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
462             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
463
464             /* Load parameters for j particles */
465             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
466                                                                  charge+jnrC+0,charge+jnrD+0);
467             vdwjidx0A        = 2*vdwtype[jnrA+0];
468             vdwjidx0B        = 2*vdwtype[jnrB+0];
469             vdwjidx0C        = 2*vdwtype[jnrC+0];
470             vdwjidx0D        = 2*vdwtype[jnrD+0];
471
472             fjx0             = _mm256_setzero_pd();
473             fjy0             = _mm256_setzero_pd();
474             fjz0             = _mm256_setzero_pd();
475
476             /**************************
477              * CALCULATE INTERACTIONS *
478              **************************/
479
480             r00              = _mm256_mul_pd(rsq00,rinv00);
481             r00              = _mm256_andnot_pd(dummy_mask,r00);
482
483             /* Compute parameters for interactions between i and j atoms */
484             qq00             = _mm256_mul_pd(iq0,jq0);
485             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
486                                             vdwioffsetptr0+vdwjidx0B,
487                                             vdwioffsetptr0+vdwjidx0C,
488                                             vdwioffsetptr0+vdwjidx0D,
489                                             &c6_00,&c12_00);
490
491             /* EWALD ELECTROSTATICS */
492
493             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
494             ewrt             = _mm256_mul_pd(r00,ewtabscale);
495             ewitab           = _mm256_cvttpd_epi32(ewrt);
496             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
497             ewitab           = _mm_slli_epi32(ewitab,2);
498             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
499             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
500             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
501             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
502             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
503             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
504             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
505             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
506             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
507
508             /* LENNARD-JONES DISPERSION/REPULSION */
509
510             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
511             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
512             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
513             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
514             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
515
516             /* Update potential sum for this i atom from the interaction with this j atom. */
517             velec            = _mm256_andnot_pd(dummy_mask,velec);
518             velecsum         = _mm256_add_pd(velecsum,velec);
519             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
520             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
521
522             fscal            = _mm256_add_pd(felec,fvdw);
523
524             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
525
526             /* Calculate temporary vectorial force */
527             tx               = _mm256_mul_pd(fscal,dx00);
528             ty               = _mm256_mul_pd(fscal,dy00);
529             tz               = _mm256_mul_pd(fscal,dz00);
530
531             /* Update vectorial force */
532             fix0             = _mm256_add_pd(fix0,tx);
533             fiy0             = _mm256_add_pd(fiy0,ty);
534             fiz0             = _mm256_add_pd(fiz0,tz);
535
536             fjx0             = _mm256_add_pd(fjx0,tx);
537             fjy0             = _mm256_add_pd(fjy0,ty);
538             fjz0             = _mm256_add_pd(fjz0,tz);
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             r10              = _mm256_mul_pd(rsq10,rinv10);
545             r10              = _mm256_andnot_pd(dummy_mask,r10);
546
547             /* Compute parameters for interactions between i and j atoms */
548             qq10             = _mm256_mul_pd(iq1,jq0);
549
550             /* EWALD ELECTROSTATICS */
551
552             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
553             ewrt             = _mm256_mul_pd(r10,ewtabscale);
554             ewitab           = _mm256_cvttpd_epi32(ewrt);
555             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
556             ewitab           = _mm_slli_epi32(ewitab,2);
557             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
558             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
559             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
560             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
561             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
562             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
563             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
564             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
565             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
566
567             /* Update potential sum for this i atom from the interaction with this j atom. */
568             velec            = _mm256_andnot_pd(dummy_mask,velec);
569             velecsum         = _mm256_add_pd(velecsum,velec);
570
571             fscal            = felec;
572
573             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
574
575             /* Calculate temporary vectorial force */
576             tx               = _mm256_mul_pd(fscal,dx10);
577             ty               = _mm256_mul_pd(fscal,dy10);
578             tz               = _mm256_mul_pd(fscal,dz10);
579
580             /* Update vectorial force */
581             fix1             = _mm256_add_pd(fix1,tx);
582             fiy1             = _mm256_add_pd(fiy1,ty);
583             fiz1             = _mm256_add_pd(fiz1,tz);
584
585             fjx0             = _mm256_add_pd(fjx0,tx);
586             fjy0             = _mm256_add_pd(fjy0,ty);
587             fjz0             = _mm256_add_pd(fjz0,tz);
588
589             /**************************
590              * CALCULATE INTERACTIONS *
591              **************************/
592
593             r20              = _mm256_mul_pd(rsq20,rinv20);
594             r20              = _mm256_andnot_pd(dummy_mask,r20);
595
596             /* Compute parameters for interactions between i and j atoms */
597             qq20             = _mm256_mul_pd(iq2,jq0);
598
599             /* EWALD ELECTROSTATICS */
600
601             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
602             ewrt             = _mm256_mul_pd(r20,ewtabscale);
603             ewitab           = _mm256_cvttpd_epi32(ewrt);
604             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
605             ewitab           = _mm_slli_epi32(ewitab,2);
606             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
607             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
608             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
609             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
610             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
611             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
612             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
613             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
614             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
615
616             /* Update potential sum for this i atom from the interaction with this j atom. */
617             velec            = _mm256_andnot_pd(dummy_mask,velec);
618             velecsum         = _mm256_add_pd(velecsum,velec);
619
620             fscal            = felec;
621
622             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
623
624             /* Calculate temporary vectorial force */
625             tx               = _mm256_mul_pd(fscal,dx20);
626             ty               = _mm256_mul_pd(fscal,dy20);
627             tz               = _mm256_mul_pd(fscal,dz20);
628
629             /* Update vectorial force */
630             fix2             = _mm256_add_pd(fix2,tx);
631             fiy2             = _mm256_add_pd(fiy2,ty);
632             fiz2             = _mm256_add_pd(fiz2,tz);
633
634             fjx0             = _mm256_add_pd(fjx0,tx);
635             fjy0             = _mm256_add_pd(fjy0,ty);
636             fjz0             = _mm256_add_pd(fjz0,tz);
637
638             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
639             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
640             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
641             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
642
643             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
644
645             /* Inner loop uses 141 flops */
646         }
647
648         /* End of innermost loop */
649
650         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
651                                                  f+i_coord_offset,fshift+i_shift_offset);
652
653         ggid                        = gid[iidx];
654         /* Update potential energies */
655         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
656         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
657
658         /* Increment number of inner iterations */
659         inneriter                  += j_index_end - j_index_start;
660
661         /* Outer loop uses 20 flops */
662     }
663
664     /* Increment number of outer iterations */
665     outeriter        += nri;
666
667     /* Update outer/inner flops */
668
669     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*141);
670 }
671 /*
672  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_256_double
673  * Electrostatics interaction: Ewald
674  * VdW interaction:            LennardJones
675  * Geometry:                   Water3-Particle
676  * Calculate force/pot:        Force
677  */
678 void
679 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_256_double
680                     (t_nblist                    * gmx_restrict       nlist,
681                      rvec                        * gmx_restrict          xx,
682                      rvec                        * gmx_restrict          ff,
683                      t_forcerec                  * gmx_restrict          fr,
684                      t_mdatoms                   * gmx_restrict     mdatoms,
685                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
686                      t_nrnb                      * gmx_restrict        nrnb)
687 {
688     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
689      * just 0 for non-waters.
690      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
691      * jnr indices corresponding to data put in the four positions in the SIMD register.
692      */
693     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
694     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
695     int              jnrA,jnrB,jnrC,jnrD;
696     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
697     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
698     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
699     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
700     real             rcutoff_scalar;
701     real             *shiftvec,*fshift,*x,*f;
702     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
703     real             scratch[4*DIM];
704     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
705     real *           vdwioffsetptr0;
706     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
707     real *           vdwioffsetptr1;
708     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
709     real *           vdwioffsetptr2;
710     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
711     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
712     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
713     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
714     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
715     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
716     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
717     real             *charge;
718     int              nvdwtype;
719     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
720     int              *vdwtype;
721     real             *vdwparam;
722     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
723     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
724     __m128i          ewitab;
725     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
726     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
727     real             *ewtab;
728     __m256d          dummy_mask,cutoff_mask;
729     __m128           tmpmask0,tmpmask1;
730     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
731     __m256d          one     = _mm256_set1_pd(1.0);
732     __m256d          two     = _mm256_set1_pd(2.0);
733     x                = xx[0];
734     f                = ff[0];
735
736     nri              = nlist->nri;
737     iinr             = nlist->iinr;
738     jindex           = nlist->jindex;
739     jjnr             = nlist->jjnr;
740     shiftidx         = nlist->shift;
741     gid              = nlist->gid;
742     shiftvec         = fr->shift_vec[0];
743     fshift           = fr->fshift[0];
744     facel            = _mm256_set1_pd(fr->epsfac);
745     charge           = mdatoms->chargeA;
746     nvdwtype         = fr->ntype;
747     vdwparam         = fr->nbfp;
748     vdwtype          = mdatoms->typeA;
749
750     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
751     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
752     beta2            = _mm256_mul_pd(beta,beta);
753     beta3            = _mm256_mul_pd(beta,beta2);
754
755     ewtab            = fr->ic->tabq_coul_F;
756     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
757     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
758
759     /* Setup water-specific parameters */
760     inr              = nlist->iinr[0];
761     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
762     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
763     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
764     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
765
766     /* Avoid stupid compiler warnings */
767     jnrA = jnrB = jnrC = jnrD = 0;
768     j_coord_offsetA = 0;
769     j_coord_offsetB = 0;
770     j_coord_offsetC = 0;
771     j_coord_offsetD = 0;
772
773     outeriter        = 0;
774     inneriter        = 0;
775
776     for(iidx=0;iidx<4*DIM;iidx++)
777     {
778         scratch[iidx] = 0.0;
779     }
780
781     /* Start outer loop over neighborlists */
782     for(iidx=0; iidx<nri; iidx++)
783     {
784         /* Load shift vector for this list */
785         i_shift_offset   = DIM*shiftidx[iidx];
786
787         /* Load limits for loop over neighbors */
788         j_index_start    = jindex[iidx];
789         j_index_end      = jindex[iidx+1];
790
791         /* Get outer coordinate index */
792         inr              = iinr[iidx];
793         i_coord_offset   = DIM*inr;
794
795         /* Load i particle coords and add shift vector */
796         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
797                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
798
799         fix0             = _mm256_setzero_pd();
800         fiy0             = _mm256_setzero_pd();
801         fiz0             = _mm256_setzero_pd();
802         fix1             = _mm256_setzero_pd();
803         fiy1             = _mm256_setzero_pd();
804         fiz1             = _mm256_setzero_pd();
805         fix2             = _mm256_setzero_pd();
806         fiy2             = _mm256_setzero_pd();
807         fiz2             = _mm256_setzero_pd();
808
809         /* Start inner kernel loop */
810         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
811         {
812
813             /* Get j neighbor index, and coordinate index */
814             jnrA             = jjnr[jidx];
815             jnrB             = jjnr[jidx+1];
816             jnrC             = jjnr[jidx+2];
817             jnrD             = jjnr[jidx+3];
818             j_coord_offsetA  = DIM*jnrA;
819             j_coord_offsetB  = DIM*jnrB;
820             j_coord_offsetC  = DIM*jnrC;
821             j_coord_offsetD  = DIM*jnrD;
822
823             /* load j atom coordinates */
824             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
825                                                  x+j_coord_offsetC,x+j_coord_offsetD,
826                                                  &jx0,&jy0,&jz0);
827
828             /* Calculate displacement vector */
829             dx00             = _mm256_sub_pd(ix0,jx0);
830             dy00             = _mm256_sub_pd(iy0,jy0);
831             dz00             = _mm256_sub_pd(iz0,jz0);
832             dx10             = _mm256_sub_pd(ix1,jx0);
833             dy10             = _mm256_sub_pd(iy1,jy0);
834             dz10             = _mm256_sub_pd(iz1,jz0);
835             dx20             = _mm256_sub_pd(ix2,jx0);
836             dy20             = _mm256_sub_pd(iy2,jy0);
837             dz20             = _mm256_sub_pd(iz2,jz0);
838
839             /* Calculate squared distance and things based on it */
840             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
841             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
842             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
843
844             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
845             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
846             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
847
848             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
849             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
850             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
851
852             /* Load parameters for j particles */
853             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
854                                                                  charge+jnrC+0,charge+jnrD+0);
855             vdwjidx0A        = 2*vdwtype[jnrA+0];
856             vdwjidx0B        = 2*vdwtype[jnrB+0];
857             vdwjidx0C        = 2*vdwtype[jnrC+0];
858             vdwjidx0D        = 2*vdwtype[jnrD+0];
859
860             fjx0             = _mm256_setzero_pd();
861             fjy0             = _mm256_setzero_pd();
862             fjz0             = _mm256_setzero_pd();
863
864             /**************************
865              * CALCULATE INTERACTIONS *
866              **************************/
867
868             r00              = _mm256_mul_pd(rsq00,rinv00);
869
870             /* Compute parameters for interactions between i and j atoms */
871             qq00             = _mm256_mul_pd(iq0,jq0);
872             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
873                                             vdwioffsetptr0+vdwjidx0B,
874                                             vdwioffsetptr0+vdwjidx0C,
875                                             vdwioffsetptr0+vdwjidx0D,
876                                             &c6_00,&c12_00);
877
878             /* EWALD ELECTROSTATICS */
879
880             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
881             ewrt             = _mm256_mul_pd(r00,ewtabscale);
882             ewitab           = _mm256_cvttpd_epi32(ewrt);
883             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
884             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
885                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
886                                             &ewtabF,&ewtabFn);
887             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
888             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
889
890             /* LENNARD-JONES DISPERSION/REPULSION */
891
892             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
893             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
894
895             fscal            = _mm256_add_pd(felec,fvdw);
896
897             /* Calculate temporary vectorial force */
898             tx               = _mm256_mul_pd(fscal,dx00);
899             ty               = _mm256_mul_pd(fscal,dy00);
900             tz               = _mm256_mul_pd(fscal,dz00);
901
902             /* Update vectorial force */
903             fix0             = _mm256_add_pd(fix0,tx);
904             fiy0             = _mm256_add_pd(fiy0,ty);
905             fiz0             = _mm256_add_pd(fiz0,tz);
906
907             fjx0             = _mm256_add_pd(fjx0,tx);
908             fjy0             = _mm256_add_pd(fjy0,ty);
909             fjz0             = _mm256_add_pd(fjz0,tz);
910
911             /**************************
912              * CALCULATE INTERACTIONS *
913              **************************/
914
915             r10              = _mm256_mul_pd(rsq10,rinv10);
916
917             /* Compute parameters for interactions between i and j atoms */
918             qq10             = _mm256_mul_pd(iq1,jq0);
919
920             /* EWALD ELECTROSTATICS */
921
922             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
923             ewrt             = _mm256_mul_pd(r10,ewtabscale);
924             ewitab           = _mm256_cvttpd_epi32(ewrt);
925             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
926             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
927                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
928                                             &ewtabF,&ewtabFn);
929             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
930             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
931
932             fscal            = felec;
933
934             /* Calculate temporary vectorial force */
935             tx               = _mm256_mul_pd(fscal,dx10);
936             ty               = _mm256_mul_pd(fscal,dy10);
937             tz               = _mm256_mul_pd(fscal,dz10);
938
939             /* Update vectorial force */
940             fix1             = _mm256_add_pd(fix1,tx);
941             fiy1             = _mm256_add_pd(fiy1,ty);
942             fiz1             = _mm256_add_pd(fiz1,tz);
943
944             fjx0             = _mm256_add_pd(fjx0,tx);
945             fjy0             = _mm256_add_pd(fjy0,ty);
946             fjz0             = _mm256_add_pd(fjz0,tz);
947
948             /**************************
949              * CALCULATE INTERACTIONS *
950              **************************/
951
952             r20              = _mm256_mul_pd(rsq20,rinv20);
953
954             /* Compute parameters for interactions between i and j atoms */
955             qq20             = _mm256_mul_pd(iq2,jq0);
956
957             /* EWALD ELECTROSTATICS */
958
959             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
960             ewrt             = _mm256_mul_pd(r20,ewtabscale);
961             ewitab           = _mm256_cvttpd_epi32(ewrt);
962             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
963             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
964                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
965                                             &ewtabF,&ewtabFn);
966             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
967             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
968
969             fscal            = felec;
970
971             /* Calculate temporary vectorial force */
972             tx               = _mm256_mul_pd(fscal,dx20);
973             ty               = _mm256_mul_pd(fscal,dy20);
974             tz               = _mm256_mul_pd(fscal,dz20);
975
976             /* Update vectorial force */
977             fix2             = _mm256_add_pd(fix2,tx);
978             fiy2             = _mm256_add_pd(fiy2,ty);
979             fiz2             = _mm256_add_pd(fiz2,tz);
980
981             fjx0             = _mm256_add_pd(fjx0,tx);
982             fjy0             = _mm256_add_pd(fjy0,ty);
983             fjz0             = _mm256_add_pd(fjz0,tz);
984
985             fjptrA             = f+j_coord_offsetA;
986             fjptrB             = f+j_coord_offsetB;
987             fjptrC             = f+j_coord_offsetC;
988             fjptrD             = f+j_coord_offsetD;
989
990             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
991
992             /* Inner loop uses 118 flops */
993         }
994
995         if(jidx<j_index_end)
996         {
997
998             /* Get j neighbor index, and coordinate index */
999             jnrlistA         = jjnr[jidx];
1000             jnrlistB         = jjnr[jidx+1];
1001             jnrlistC         = jjnr[jidx+2];
1002             jnrlistD         = jjnr[jidx+3];
1003             /* Sign of each element will be negative for non-real atoms.
1004              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1005              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1006              */
1007             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1008
1009             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1010             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1011             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1012
1013             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1014             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1015             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1016             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1017             j_coord_offsetA  = DIM*jnrA;
1018             j_coord_offsetB  = DIM*jnrB;
1019             j_coord_offsetC  = DIM*jnrC;
1020             j_coord_offsetD  = DIM*jnrD;
1021
1022             /* load j atom coordinates */
1023             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1024                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1025                                                  &jx0,&jy0,&jz0);
1026
1027             /* Calculate displacement vector */
1028             dx00             = _mm256_sub_pd(ix0,jx0);
1029             dy00             = _mm256_sub_pd(iy0,jy0);
1030             dz00             = _mm256_sub_pd(iz0,jz0);
1031             dx10             = _mm256_sub_pd(ix1,jx0);
1032             dy10             = _mm256_sub_pd(iy1,jy0);
1033             dz10             = _mm256_sub_pd(iz1,jz0);
1034             dx20             = _mm256_sub_pd(ix2,jx0);
1035             dy20             = _mm256_sub_pd(iy2,jy0);
1036             dz20             = _mm256_sub_pd(iz2,jz0);
1037
1038             /* Calculate squared distance and things based on it */
1039             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1040             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1041             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1042
1043             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1044             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1045             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1046
1047             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1048             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1049             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1050
1051             /* Load parameters for j particles */
1052             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1053                                                                  charge+jnrC+0,charge+jnrD+0);
1054             vdwjidx0A        = 2*vdwtype[jnrA+0];
1055             vdwjidx0B        = 2*vdwtype[jnrB+0];
1056             vdwjidx0C        = 2*vdwtype[jnrC+0];
1057             vdwjidx0D        = 2*vdwtype[jnrD+0];
1058
1059             fjx0             = _mm256_setzero_pd();
1060             fjy0             = _mm256_setzero_pd();
1061             fjz0             = _mm256_setzero_pd();
1062
1063             /**************************
1064              * CALCULATE INTERACTIONS *
1065              **************************/
1066
1067             r00              = _mm256_mul_pd(rsq00,rinv00);
1068             r00              = _mm256_andnot_pd(dummy_mask,r00);
1069
1070             /* Compute parameters for interactions between i and j atoms */
1071             qq00             = _mm256_mul_pd(iq0,jq0);
1072             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1073                                             vdwioffsetptr0+vdwjidx0B,
1074                                             vdwioffsetptr0+vdwjidx0C,
1075                                             vdwioffsetptr0+vdwjidx0D,
1076                                             &c6_00,&c12_00);
1077
1078             /* EWALD ELECTROSTATICS */
1079
1080             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1081             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1082             ewitab           = _mm256_cvttpd_epi32(ewrt);
1083             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1084             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1085                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1086                                             &ewtabF,&ewtabFn);
1087             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1088             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1089
1090             /* LENNARD-JONES DISPERSION/REPULSION */
1091
1092             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1093             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1094
1095             fscal            = _mm256_add_pd(felec,fvdw);
1096
1097             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1098
1099             /* Calculate temporary vectorial force */
1100             tx               = _mm256_mul_pd(fscal,dx00);
1101             ty               = _mm256_mul_pd(fscal,dy00);
1102             tz               = _mm256_mul_pd(fscal,dz00);
1103
1104             /* Update vectorial force */
1105             fix0             = _mm256_add_pd(fix0,tx);
1106             fiy0             = _mm256_add_pd(fiy0,ty);
1107             fiz0             = _mm256_add_pd(fiz0,tz);
1108
1109             fjx0             = _mm256_add_pd(fjx0,tx);
1110             fjy0             = _mm256_add_pd(fjy0,ty);
1111             fjz0             = _mm256_add_pd(fjz0,tz);
1112
1113             /**************************
1114              * CALCULATE INTERACTIONS *
1115              **************************/
1116
1117             r10              = _mm256_mul_pd(rsq10,rinv10);
1118             r10              = _mm256_andnot_pd(dummy_mask,r10);
1119
1120             /* Compute parameters for interactions between i and j atoms */
1121             qq10             = _mm256_mul_pd(iq1,jq0);
1122
1123             /* EWALD ELECTROSTATICS */
1124
1125             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1126             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1127             ewitab           = _mm256_cvttpd_epi32(ewrt);
1128             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1129             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1130                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1131                                             &ewtabF,&ewtabFn);
1132             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1133             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1134
1135             fscal            = felec;
1136
1137             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1138
1139             /* Calculate temporary vectorial force */
1140             tx               = _mm256_mul_pd(fscal,dx10);
1141             ty               = _mm256_mul_pd(fscal,dy10);
1142             tz               = _mm256_mul_pd(fscal,dz10);
1143
1144             /* Update vectorial force */
1145             fix1             = _mm256_add_pd(fix1,tx);
1146             fiy1             = _mm256_add_pd(fiy1,ty);
1147             fiz1             = _mm256_add_pd(fiz1,tz);
1148
1149             fjx0             = _mm256_add_pd(fjx0,tx);
1150             fjy0             = _mm256_add_pd(fjy0,ty);
1151             fjz0             = _mm256_add_pd(fjz0,tz);
1152
1153             /**************************
1154              * CALCULATE INTERACTIONS *
1155              **************************/
1156
1157             r20              = _mm256_mul_pd(rsq20,rinv20);
1158             r20              = _mm256_andnot_pd(dummy_mask,r20);
1159
1160             /* Compute parameters for interactions between i and j atoms */
1161             qq20             = _mm256_mul_pd(iq2,jq0);
1162
1163             /* EWALD ELECTROSTATICS */
1164
1165             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1166             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1167             ewitab           = _mm256_cvttpd_epi32(ewrt);
1168             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1169             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1170                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1171                                             &ewtabF,&ewtabFn);
1172             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1173             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1174
1175             fscal            = felec;
1176
1177             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1178
1179             /* Calculate temporary vectorial force */
1180             tx               = _mm256_mul_pd(fscal,dx20);
1181             ty               = _mm256_mul_pd(fscal,dy20);
1182             tz               = _mm256_mul_pd(fscal,dz20);
1183
1184             /* Update vectorial force */
1185             fix2             = _mm256_add_pd(fix2,tx);
1186             fiy2             = _mm256_add_pd(fiy2,ty);
1187             fiz2             = _mm256_add_pd(fiz2,tz);
1188
1189             fjx0             = _mm256_add_pd(fjx0,tx);
1190             fjy0             = _mm256_add_pd(fjy0,ty);
1191             fjz0             = _mm256_add_pd(fjz0,tz);
1192
1193             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1194             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1195             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1196             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1197
1198             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1199
1200             /* Inner loop uses 121 flops */
1201         }
1202
1203         /* End of innermost loop */
1204
1205         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1206                                                  f+i_coord_offset,fshift+i_shift_offset);
1207
1208         /* Increment number of inner iterations */
1209         inneriter                  += j_index_end - j_index_start;
1210
1211         /* Outer loop uses 18 flops */
1212     }
1213
1214     /* Increment number of outer iterations */
1215     outeriter        += nri;
1216
1217     /* Update outer/inner flops */
1218
1219     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*121);
1220 }