Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJ_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     int              nvdwtype;
84     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
85     int              *vdwtype;
86     real             *vdwparam;
87     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
88     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
89     __m128i          ewitab;
90     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
91     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
92     real             *ewtab;
93     __m256d          dummy_mask,cutoff_mask;
94     __m128           tmpmask0,tmpmask1;
95     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
96     __m256d          one     = _mm256_set1_pd(1.0);
97     __m256d          two     = _mm256_set1_pd(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm256_set1_pd(fr->epsfac);
110     charge           = mdatoms->chargeA;
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
116     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
117     beta2            = _mm256_mul_pd(beta,beta);
118     beta3            = _mm256_mul_pd(beta,beta2);
119
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
123
124     /* Setup water-specific parameters */
125     inr              = nlist->iinr[0];
126     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
127     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
128     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
129     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
162                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
163
164         fix0             = _mm256_setzero_pd();
165         fiy0             = _mm256_setzero_pd();
166         fiz0             = _mm256_setzero_pd();
167         fix1             = _mm256_setzero_pd();
168         fiy1             = _mm256_setzero_pd();
169         fiz1             = _mm256_setzero_pd();
170         fix2             = _mm256_setzero_pd();
171         fiy2             = _mm256_setzero_pd();
172         fiz2             = _mm256_setzero_pd();
173
174         /* Reset potential sums */
175         velecsum         = _mm256_setzero_pd();
176         vvdwsum          = _mm256_setzero_pd();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                                  x+j_coord_offsetC,x+j_coord_offsetD,
195                                                  &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm256_sub_pd(ix0,jx0);
199             dy00             = _mm256_sub_pd(iy0,jy0);
200             dz00             = _mm256_sub_pd(iz0,jz0);
201             dx10             = _mm256_sub_pd(ix1,jx0);
202             dy10             = _mm256_sub_pd(iy1,jy0);
203             dz10             = _mm256_sub_pd(iz1,jz0);
204             dx20             = _mm256_sub_pd(ix2,jx0);
205             dy20             = _mm256_sub_pd(iy2,jy0);
206             dz20             = _mm256_sub_pd(iz2,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
210             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
211             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
212
213             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
214             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
215             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
216
217             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
218             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
219             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
223                                                                  charge+jnrC+0,charge+jnrD+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226             vdwjidx0C        = 2*vdwtype[jnrC+0];
227             vdwjidx0D        = 2*vdwtype[jnrD+0];
228
229             fjx0             = _mm256_setzero_pd();
230             fjy0             = _mm256_setzero_pd();
231             fjz0             = _mm256_setzero_pd();
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             r00              = _mm256_mul_pd(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _mm256_mul_pd(iq0,jq0);
241             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
242                                             vdwioffsetptr0+vdwjidx0B,
243                                             vdwioffsetptr0+vdwjidx0C,
244                                             vdwioffsetptr0+vdwjidx0D,
245                                             &c6_00,&c12_00);
246
247             /* EWALD ELECTROSTATICS */
248
249             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
250             ewrt             = _mm256_mul_pd(r00,ewtabscale);
251             ewitab           = _mm256_cvttpd_epi32(ewrt);
252             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
253             ewitab           = _mm_slli_epi32(ewitab,2);
254             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
255             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
256             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
257             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
258             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
259             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
260             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
261             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
262             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
263
264             /* LENNARD-JONES DISPERSION/REPULSION */
265
266             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
267             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
268             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
269             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
270             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
271
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             velecsum         = _mm256_add_pd(velecsum,velec);
274             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
275
276             fscal            = _mm256_add_pd(felec,fvdw);
277
278             /* Calculate temporary vectorial force */
279             tx               = _mm256_mul_pd(fscal,dx00);
280             ty               = _mm256_mul_pd(fscal,dy00);
281             tz               = _mm256_mul_pd(fscal,dz00);
282
283             /* Update vectorial force */
284             fix0             = _mm256_add_pd(fix0,tx);
285             fiy0             = _mm256_add_pd(fiy0,ty);
286             fiz0             = _mm256_add_pd(fiz0,tz);
287
288             fjx0             = _mm256_add_pd(fjx0,tx);
289             fjy0             = _mm256_add_pd(fjy0,ty);
290             fjz0             = _mm256_add_pd(fjz0,tz);
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             r10              = _mm256_mul_pd(rsq10,rinv10);
297
298             /* Compute parameters for interactions between i and j atoms */
299             qq10             = _mm256_mul_pd(iq1,jq0);
300
301             /* EWALD ELECTROSTATICS */
302
303             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
304             ewrt             = _mm256_mul_pd(r10,ewtabscale);
305             ewitab           = _mm256_cvttpd_epi32(ewrt);
306             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
307             ewitab           = _mm_slli_epi32(ewitab,2);
308             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
309             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
310             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
311             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
312             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
313             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
314             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
315             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
316             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velecsum         = _mm256_add_pd(velecsum,velec);
320
321             fscal            = felec;
322
323             /* Calculate temporary vectorial force */
324             tx               = _mm256_mul_pd(fscal,dx10);
325             ty               = _mm256_mul_pd(fscal,dy10);
326             tz               = _mm256_mul_pd(fscal,dz10);
327
328             /* Update vectorial force */
329             fix1             = _mm256_add_pd(fix1,tx);
330             fiy1             = _mm256_add_pd(fiy1,ty);
331             fiz1             = _mm256_add_pd(fiz1,tz);
332
333             fjx0             = _mm256_add_pd(fjx0,tx);
334             fjy0             = _mm256_add_pd(fjy0,ty);
335             fjz0             = _mm256_add_pd(fjz0,tz);
336
337             /**************************
338              * CALCULATE INTERACTIONS *
339              **************************/
340
341             r20              = _mm256_mul_pd(rsq20,rinv20);
342
343             /* Compute parameters for interactions between i and j atoms */
344             qq20             = _mm256_mul_pd(iq2,jq0);
345
346             /* EWALD ELECTROSTATICS */
347
348             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
349             ewrt             = _mm256_mul_pd(r20,ewtabscale);
350             ewitab           = _mm256_cvttpd_epi32(ewrt);
351             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
352             ewitab           = _mm_slli_epi32(ewitab,2);
353             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
354             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
355             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
356             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
357             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
358             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
359             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
360             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
361             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velecsum         = _mm256_add_pd(velecsum,velec);
365
366             fscal            = felec;
367
368             /* Calculate temporary vectorial force */
369             tx               = _mm256_mul_pd(fscal,dx20);
370             ty               = _mm256_mul_pd(fscal,dy20);
371             tz               = _mm256_mul_pd(fscal,dz20);
372
373             /* Update vectorial force */
374             fix2             = _mm256_add_pd(fix2,tx);
375             fiy2             = _mm256_add_pd(fiy2,ty);
376             fiz2             = _mm256_add_pd(fiz2,tz);
377
378             fjx0             = _mm256_add_pd(fjx0,tx);
379             fjy0             = _mm256_add_pd(fjy0,ty);
380             fjz0             = _mm256_add_pd(fjz0,tz);
381
382             fjptrA             = f+j_coord_offsetA;
383             fjptrB             = f+j_coord_offsetB;
384             fjptrC             = f+j_coord_offsetC;
385             fjptrD             = f+j_coord_offsetD;
386
387             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
388
389             /* Inner loop uses 138 flops */
390         }
391
392         if(jidx<j_index_end)
393         {
394
395             /* Get j neighbor index, and coordinate index */
396             jnrlistA         = jjnr[jidx];
397             jnrlistB         = jjnr[jidx+1];
398             jnrlistC         = jjnr[jidx+2];
399             jnrlistD         = jjnr[jidx+3];
400             /* Sign of each element will be negative for non-real atoms.
401              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
402              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
403              */
404             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
405
406             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
407             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
408             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
409
410             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
411             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
412             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
413             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
414             j_coord_offsetA  = DIM*jnrA;
415             j_coord_offsetB  = DIM*jnrB;
416             j_coord_offsetC  = DIM*jnrC;
417             j_coord_offsetD  = DIM*jnrD;
418
419             /* load j atom coordinates */
420             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
421                                                  x+j_coord_offsetC,x+j_coord_offsetD,
422                                                  &jx0,&jy0,&jz0);
423
424             /* Calculate displacement vector */
425             dx00             = _mm256_sub_pd(ix0,jx0);
426             dy00             = _mm256_sub_pd(iy0,jy0);
427             dz00             = _mm256_sub_pd(iz0,jz0);
428             dx10             = _mm256_sub_pd(ix1,jx0);
429             dy10             = _mm256_sub_pd(iy1,jy0);
430             dz10             = _mm256_sub_pd(iz1,jz0);
431             dx20             = _mm256_sub_pd(ix2,jx0);
432             dy20             = _mm256_sub_pd(iy2,jy0);
433             dz20             = _mm256_sub_pd(iz2,jz0);
434
435             /* Calculate squared distance and things based on it */
436             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
437             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
438             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
439
440             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
441             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
442             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
443
444             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
445             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
446             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
447
448             /* Load parameters for j particles */
449             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
450                                                                  charge+jnrC+0,charge+jnrD+0);
451             vdwjidx0A        = 2*vdwtype[jnrA+0];
452             vdwjidx0B        = 2*vdwtype[jnrB+0];
453             vdwjidx0C        = 2*vdwtype[jnrC+0];
454             vdwjidx0D        = 2*vdwtype[jnrD+0];
455
456             fjx0             = _mm256_setzero_pd();
457             fjy0             = _mm256_setzero_pd();
458             fjz0             = _mm256_setzero_pd();
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             r00              = _mm256_mul_pd(rsq00,rinv00);
465             r00              = _mm256_andnot_pd(dummy_mask,r00);
466
467             /* Compute parameters for interactions between i and j atoms */
468             qq00             = _mm256_mul_pd(iq0,jq0);
469             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
470                                             vdwioffsetptr0+vdwjidx0B,
471                                             vdwioffsetptr0+vdwjidx0C,
472                                             vdwioffsetptr0+vdwjidx0D,
473                                             &c6_00,&c12_00);
474
475             /* EWALD ELECTROSTATICS */
476
477             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
478             ewrt             = _mm256_mul_pd(r00,ewtabscale);
479             ewitab           = _mm256_cvttpd_epi32(ewrt);
480             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
481             ewitab           = _mm_slli_epi32(ewitab,2);
482             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
483             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
484             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
485             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
486             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
487             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
488             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
489             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
490             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
491
492             /* LENNARD-JONES DISPERSION/REPULSION */
493
494             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
495             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
496             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
497             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
498             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
499
500             /* Update potential sum for this i atom from the interaction with this j atom. */
501             velec            = _mm256_andnot_pd(dummy_mask,velec);
502             velecsum         = _mm256_add_pd(velecsum,velec);
503             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
504             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
505
506             fscal            = _mm256_add_pd(felec,fvdw);
507
508             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
509
510             /* Calculate temporary vectorial force */
511             tx               = _mm256_mul_pd(fscal,dx00);
512             ty               = _mm256_mul_pd(fscal,dy00);
513             tz               = _mm256_mul_pd(fscal,dz00);
514
515             /* Update vectorial force */
516             fix0             = _mm256_add_pd(fix0,tx);
517             fiy0             = _mm256_add_pd(fiy0,ty);
518             fiz0             = _mm256_add_pd(fiz0,tz);
519
520             fjx0             = _mm256_add_pd(fjx0,tx);
521             fjy0             = _mm256_add_pd(fjy0,ty);
522             fjz0             = _mm256_add_pd(fjz0,tz);
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             r10              = _mm256_mul_pd(rsq10,rinv10);
529             r10              = _mm256_andnot_pd(dummy_mask,r10);
530
531             /* Compute parameters for interactions between i and j atoms */
532             qq10             = _mm256_mul_pd(iq1,jq0);
533
534             /* EWALD ELECTROSTATICS */
535
536             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
537             ewrt             = _mm256_mul_pd(r10,ewtabscale);
538             ewitab           = _mm256_cvttpd_epi32(ewrt);
539             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
540             ewitab           = _mm_slli_epi32(ewitab,2);
541             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
542             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
543             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
544             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
545             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
546             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
547             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
548             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
549             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
550
551             /* Update potential sum for this i atom from the interaction with this j atom. */
552             velec            = _mm256_andnot_pd(dummy_mask,velec);
553             velecsum         = _mm256_add_pd(velecsum,velec);
554
555             fscal            = felec;
556
557             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
558
559             /* Calculate temporary vectorial force */
560             tx               = _mm256_mul_pd(fscal,dx10);
561             ty               = _mm256_mul_pd(fscal,dy10);
562             tz               = _mm256_mul_pd(fscal,dz10);
563
564             /* Update vectorial force */
565             fix1             = _mm256_add_pd(fix1,tx);
566             fiy1             = _mm256_add_pd(fiy1,ty);
567             fiz1             = _mm256_add_pd(fiz1,tz);
568
569             fjx0             = _mm256_add_pd(fjx0,tx);
570             fjy0             = _mm256_add_pd(fjy0,ty);
571             fjz0             = _mm256_add_pd(fjz0,tz);
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             r20              = _mm256_mul_pd(rsq20,rinv20);
578             r20              = _mm256_andnot_pd(dummy_mask,r20);
579
580             /* Compute parameters for interactions between i and j atoms */
581             qq20             = _mm256_mul_pd(iq2,jq0);
582
583             /* EWALD ELECTROSTATICS */
584
585             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
586             ewrt             = _mm256_mul_pd(r20,ewtabscale);
587             ewitab           = _mm256_cvttpd_epi32(ewrt);
588             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
589             ewitab           = _mm_slli_epi32(ewitab,2);
590             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
591             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
592             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
593             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
594             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
595             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
596             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
597             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
598             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
599
600             /* Update potential sum for this i atom from the interaction with this j atom. */
601             velec            = _mm256_andnot_pd(dummy_mask,velec);
602             velecsum         = _mm256_add_pd(velecsum,velec);
603
604             fscal            = felec;
605
606             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
607
608             /* Calculate temporary vectorial force */
609             tx               = _mm256_mul_pd(fscal,dx20);
610             ty               = _mm256_mul_pd(fscal,dy20);
611             tz               = _mm256_mul_pd(fscal,dz20);
612
613             /* Update vectorial force */
614             fix2             = _mm256_add_pd(fix2,tx);
615             fiy2             = _mm256_add_pd(fiy2,ty);
616             fiz2             = _mm256_add_pd(fiz2,tz);
617
618             fjx0             = _mm256_add_pd(fjx0,tx);
619             fjy0             = _mm256_add_pd(fjy0,ty);
620             fjz0             = _mm256_add_pd(fjz0,tz);
621
622             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
623             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
624             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
625             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
626
627             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
628
629             /* Inner loop uses 141 flops */
630         }
631
632         /* End of innermost loop */
633
634         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
635                                                  f+i_coord_offset,fshift+i_shift_offset);
636
637         ggid                        = gid[iidx];
638         /* Update potential energies */
639         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
640         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
641
642         /* Increment number of inner iterations */
643         inneriter                  += j_index_end - j_index_start;
644
645         /* Outer loop uses 20 flops */
646     }
647
648     /* Increment number of outer iterations */
649     outeriter        += nri;
650
651     /* Update outer/inner flops */
652
653     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*141);
654 }
655 /*
656  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_256_double
657  * Electrostatics interaction: Ewald
658  * VdW interaction:            LennardJones
659  * Geometry:                   Water3-Particle
660  * Calculate force/pot:        Force
661  */
662 void
663 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_256_double
664                     (t_nblist * gmx_restrict                nlist,
665                      rvec * gmx_restrict                    xx,
666                      rvec * gmx_restrict                    ff,
667                      t_forcerec * gmx_restrict              fr,
668                      t_mdatoms * gmx_restrict               mdatoms,
669                      nb_kernel_data_t * gmx_restrict        kernel_data,
670                      t_nrnb * gmx_restrict                  nrnb)
671 {
672     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
673      * just 0 for non-waters.
674      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
675      * jnr indices corresponding to data put in the four positions in the SIMD register.
676      */
677     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
678     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
679     int              jnrA,jnrB,jnrC,jnrD;
680     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
681     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
682     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
683     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
684     real             rcutoff_scalar;
685     real             *shiftvec,*fshift,*x,*f;
686     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
687     real             scratch[4*DIM];
688     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
689     real *           vdwioffsetptr0;
690     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
691     real *           vdwioffsetptr1;
692     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
693     real *           vdwioffsetptr2;
694     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
695     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
696     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
697     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
698     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
699     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
700     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
701     real             *charge;
702     int              nvdwtype;
703     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
704     int              *vdwtype;
705     real             *vdwparam;
706     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
707     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
708     __m128i          ewitab;
709     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
710     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
711     real             *ewtab;
712     __m256d          dummy_mask,cutoff_mask;
713     __m128           tmpmask0,tmpmask1;
714     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
715     __m256d          one     = _mm256_set1_pd(1.0);
716     __m256d          two     = _mm256_set1_pd(2.0);
717     x                = xx[0];
718     f                = ff[0];
719
720     nri              = nlist->nri;
721     iinr             = nlist->iinr;
722     jindex           = nlist->jindex;
723     jjnr             = nlist->jjnr;
724     shiftidx         = nlist->shift;
725     gid              = nlist->gid;
726     shiftvec         = fr->shift_vec[0];
727     fshift           = fr->fshift[0];
728     facel            = _mm256_set1_pd(fr->epsfac);
729     charge           = mdatoms->chargeA;
730     nvdwtype         = fr->ntype;
731     vdwparam         = fr->nbfp;
732     vdwtype          = mdatoms->typeA;
733
734     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
735     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
736     beta2            = _mm256_mul_pd(beta,beta);
737     beta3            = _mm256_mul_pd(beta,beta2);
738
739     ewtab            = fr->ic->tabq_coul_F;
740     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
741     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
742
743     /* Setup water-specific parameters */
744     inr              = nlist->iinr[0];
745     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
746     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
747     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
748     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
749
750     /* Avoid stupid compiler warnings */
751     jnrA = jnrB = jnrC = jnrD = 0;
752     j_coord_offsetA = 0;
753     j_coord_offsetB = 0;
754     j_coord_offsetC = 0;
755     j_coord_offsetD = 0;
756
757     outeriter        = 0;
758     inneriter        = 0;
759
760     for(iidx=0;iidx<4*DIM;iidx++)
761     {
762         scratch[iidx] = 0.0;
763     }
764
765     /* Start outer loop over neighborlists */
766     for(iidx=0; iidx<nri; iidx++)
767     {
768         /* Load shift vector for this list */
769         i_shift_offset   = DIM*shiftidx[iidx];
770
771         /* Load limits for loop over neighbors */
772         j_index_start    = jindex[iidx];
773         j_index_end      = jindex[iidx+1];
774
775         /* Get outer coordinate index */
776         inr              = iinr[iidx];
777         i_coord_offset   = DIM*inr;
778
779         /* Load i particle coords and add shift vector */
780         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
781                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
782
783         fix0             = _mm256_setzero_pd();
784         fiy0             = _mm256_setzero_pd();
785         fiz0             = _mm256_setzero_pd();
786         fix1             = _mm256_setzero_pd();
787         fiy1             = _mm256_setzero_pd();
788         fiz1             = _mm256_setzero_pd();
789         fix2             = _mm256_setzero_pd();
790         fiy2             = _mm256_setzero_pd();
791         fiz2             = _mm256_setzero_pd();
792
793         /* Start inner kernel loop */
794         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
795         {
796
797             /* Get j neighbor index, and coordinate index */
798             jnrA             = jjnr[jidx];
799             jnrB             = jjnr[jidx+1];
800             jnrC             = jjnr[jidx+2];
801             jnrD             = jjnr[jidx+3];
802             j_coord_offsetA  = DIM*jnrA;
803             j_coord_offsetB  = DIM*jnrB;
804             j_coord_offsetC  = DIM*jnrC;
805             j_coord_offsetD  = DIM*jnrD;
806
807             /* load j atom coordinates */
808             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
809                                                  x+j_coord_offsetC,x+j_coord_offsetD,
810                                                  &jx0,&jy0,&jz0);
811
812             /* Calculate displacement vector */
813             dx00             = _mm256_sub_pd(ix0,jx0);
814             dy00             = _mm256_sub_pd(iy0,jy0);
815             dz00             = _mm256_sub_pd(iz0,jz0);
816             dx10             = _mm256_sub_pd(ix1,jx0);
817             dy10             = _mm256_sub_pd(iy1,jy0);
818             dz10             = _mm256_sub_pd(iz1,jz0);
819             dx20             = _mm256_sub_pd(ix2,jx0);
820             dy20             = _mm256_sub_pd(iy2,jy0);
821             dz20             = _mm256_sub_pd(iz2,jz0);
822
823             /* Calculate squared distance and things based on it */
824             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
825             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
826             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
827
828             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
829             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
830             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
831
832             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
833             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
834             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
835
836             /* Load parameters for j particles */
837             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
838                                                                  charge+jnrC+0,charge+jnrD+0);
839             vdwjidx0A        = 2*vdwtype[jnrA+0];
840             vdwjidx0B        = 2*vdwtype[jnrB+0];
841             vdwjidx0C        = 2*vdwtype[jnrC+0];
842             vdwjidx0D        = 2*vdwtype[jnrD+0];
843
844             fjx0             = _mm256_setzero_pd();
845             fjy0             = _mm256_setzero_pd();
846             fjz0             = _mm256_setzero_pd();
847
848             /**************************
849              * CALCULATE INTERACTIONS *
850              **************************/
851
852             r00              = _mm256_mul_pd(rsq00,rinv00);
853
854             /* Compute parameters for interactions between i and j atoms */
855             qq00             = _mm256_mul_pd(iq0,jq0);
856             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
857                                             vdwioffsetptr0+vdwjidx0B,
858                                             vdwioffsetptr0+vdwjidx0C,
859                                             vdwioffsetptr0+vdwjidx0D,
860                                             &c6_00,&c12_00);
861
862             /* EWALD ELECTROSTATICS */
863
864             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
865             ewrt             = _mm256_mul_pd(r00,ewtabscale);
866             ewitab           = _mm256_cvttpd_epi32(ewrt);
867             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
868             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
869                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
870                                             &ewtabF,&ewtabFn);
871             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
872             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
873
874             /* LENNARD-JONES DISPERSION/REPULSION */
875
876             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
877             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
878
879             fscal            = _mm256_add_pd(felec,fvdw);
880
881             /* Calculate temporary vectorial force */
882             tx               = _mm256_mul_pd(fscal,dx00);
883             ty               = _mm256_mul_pd(fscal,dy00);
884             tz               = _mm256_mul_pd(fscal,dz00);
885
886             /* Update vectorial force */
887             fix0             = _mm256_add_pd(fix0,tx);
888             fiy0             = _mm256_add_pd(fiy0,ty);
889             fiz0             = _mm256_add_pd(fiz0,tz);
890
891             fjx0             = _mm256_add_pd(fjx0,tx);
892             fjy0             = _mm256_add_pd(fjy0,ty);
893             fjz0             = _mm256_add_pd(fjz0,tz);
894
895             /**************************
896              * CALCULATE INTERACTIONS *
897              **************************/
898
899             r10              = _mm256_mul_pd(rsq10,rinv10);
900
901             /* Compute parameters for interactions between i and j atoms */
902             qq10             = _mm256_mul_pd(iq1,jq0);
903
904             /* EWALD ELECTROSTATICS */
905
906             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
907             ewrt             = _mm256_mul_pd(r10,ewtabscale);
908             ewitab           = _mm256_cvttpd_epi32(ewrt);
909             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
910             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
911                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
912                                             &ewtabF,&ewtabFn);
913             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
914             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
915
916             fscal            = felec;
917
918             /* Calculate temporary vectorial force */
919             tx               = _mm256_mul_pd(fscal,dx10);
920             ty               = _mm256_mul_pd(fscal,dy10);
921             tz               = _mm256_mul_pd(fscal,dz10);
922
923             /* Update vectorial force */
924             fix1             = _mm256_add_pd(fix1,tx);
925             fiy1             = _mm256_add_pd(fiy1,ty);
926             fiz1             = _mm256_add_pd(fiz1,tz);
927
928             fjx0             = _mm256_add_pd(fjx0,tx);
929             fjy0             = _mm256_add_pd(fjy0,ty);
930             fjz0             = _mm256_add_pd(fjz0,tz);
931
932             /**************************
933              * CALCULATE INTERACTIONS *
934              **************************/
935
936             r20              = _mm256_mul_pd(rsq20,rinv20);
937
938             /* Compute parameters for interactions between i and j atoms */
939             qq20             = _mm256_mul_pd(iq2,jq0);
940
941             /* EWALD ELECTROSTATICS */
942
943             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
944             ewrt             = _mm256_mul_pd(r20,ewtabscale);
945             ewitab           = _mm256_cvttpd_epi32(ewrt);
946             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
947             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
948                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
949                                             &ewtabF,&ewtabFn);
950             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
951             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
952
953             fscal            = felec;
954
955             /* Calculate temporary vectorial force */
956             tx               = _mm256_mul_pd(fscal,dx20);
957             ty               = _mm256_mul_pd(fscal,dy20);
958             tz               = _mm256_mul_pd(fscal,dz20);
959
960             /* Update vectorial force */
961             fix2             = _mm256_add_pd(fix2,tx);
962             fiy2             = _mm256_add_pd(fiy2,ty);
963             fiz2             = _mm256_add_pd(fiz2,tz);
964
965             fjx0             = _mm256_add_pd(fjx0,tx);
966             fjy0             = _mm256_add_pd(fjy0,ty);
967             fjz0             = _mm256_add_pd(fjz0,tz);
968
969             fjptrA             = f+j_coord_offsetA;
970             fjptrB             = f+j_coord_offsetB;
971             fjptrC             = f+j_coord_offsetC;
972             fjptrD             = f+j_coord_offsetD;
973
974             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
975
976             /* Inner loop uses 118 flops */
977         }
978
979         if(jidx<j_index_end)
980         {
981
982             /* Get j neighbor index, and coordinate index */
983             jnrlistA         = jjnr[jidx];
984             jnrlistB         = jjnr[jidx+1];
985             jnrlistC         = jjnr[jidx+2];
986             jnrlistD         = jjnr[jidx+3];
987             /* Sign of each element will be negative for non-real atoms.
988              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
989              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
990              */
991             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
992
993             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
994             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
995             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
996
997             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
998             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
999             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1000             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1001             j_coord_offsetA  = DIM*jnrA;
1002             j_coord_offsetB  = DIM*jnrB;
1003             j_coord_offsetC  = DIM*jnrC;
1004             j_coord_offsetD  = DIM*jnrD;
1005
1006             /* load j atom coordinates */
1007             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1008                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1009                                                  &jx0,&jy0,&jz0);
1010
1011             /* Calculate displacement vector */
1012             dx00             = _mm256_sub_pd(ix0,jx0);
1013             dy00             = _mm256_sub_pd(iy0,jy0);
1014             dz00             = _mm256_sub_pd(iz0,jz0);
1015             dx10             = _mm256_sub_pd(ix1,jx0);
1016             dy10             = _mm256_sub_pd(iy1,jy0);
1017             dz10             = _mm256_sub_pd(iz1,jz0);
1018             dx20             = _mm256_sub_pd(ix2,jx0);
1019             dy20             = _mm256_sub_pd(iy2,jy0);
1020             dz20             = _mm256_sub_pd(iz2,jz0);
1021
1022             /* Calculate squared distance and things based on it */
1023             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1024             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1025             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1026
1027             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1028             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1029             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1030
1031             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1032             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1033             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1034
1035             /* Load parameters for j particles */
1036             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1037                                                                  charge+jnrC+0,charge+jnrD+0);
1038             vdwjidx0A        = 2*vdwtype[jnrA+0];
1039             vdwjidx0B        = 2*vdwtype[jnrB+0];
1040             vdwjidx0C        = 2*vdwtype[jnrC+0];
1041             vdwjidx0D        = 2*vdwtype[jnrD+0];
1042
1043             fjx0             = _mm256_setzero_pd();
1044             fjy0             = _mm256_setzero_pd();
1045             fjz0             = _mm256_setzero_pd();
1046
1047             /**************************
1048              * CALCULATE INTERACTIONS *
1049              **************************/
1050
1051             r00              = _mm256_mul_pd(rsq00,rinv00);
1052             r00              = _mm256_andnot_pd(dummy_mask,r00);
1053
1054             /* Compute parameters for interactions between i and j atoms */
1055             qq00             = _mm256_mul_pd(iq0,jq0);
1056             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1057                                             vdwioffsetptr0+vdwjidx0B,
1058                                             vdwioffsetptr0+vdwjidx0C,
1059                                             vdwioffsetptr0+vdwjidx0D,
1060                                             &c6_00,&c12_00);
1061
1062             /* EWALD ELECTROSTATICS */
1063
1064             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1065             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1066             ewitab           = _mm256_cvttpd_epi32(ewrt);
1067             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1068             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1069                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1070                                             &ewtabF,&ewtabFn);
1071             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1072             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1073
1074             /* LENNARD-JONES DISPERSION/REPULSION */
1075
1076             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1077             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1078
1079             fscal            = _mm256_add_pd(felec,fvdw);
1080
1081             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1082
1083             /* Calculate temporary vectorial force */
1084             tx               = _mm256_mul_pd(fscal,dx00);
1085             ty               = _mm256_mul_pd(fscal,dy00);
1086             tz               = _mm256_mul_pd(fscal,dz00);
1087
1088             /* Update vectorial force */
1089             fix0             = _mm256_add_pd(fix0,tx);
1090             fiy0             = _mm256_add_pd(fiy0,ty);
1091             fiz0             = _mm256_add_pd(fiz0,tz);
1092
1093             fjx0             = _mm256_add_pd(fjx0,tx);
1094             fjy0             = _mm256_add_pd(fjy0,ty);
1095             fjz0             = _mm256_add_pd(fjz0,tz);
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             r10              = _mm256_mul_pd(rsq10,rinv10);
1102             r10              = _mm256_andnot_pd(dummy_mask,r10);
1103
1104             /* Compute parameters for interactions between i and j atoms */
1105             qq10             = _mm256_mul_pd(iq1,jq0);
1106
1107             /* EWALD ELECTROSTATICS */
1108
1109             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1110             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1111             ewitab           = _mm256_cvttpd_epi32(ewrt);
1112             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1113             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1114                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1115                                             &ewtabF,&ewtabFn);
1116             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1117             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1118
1119             fscal            = felec;
1120
1121             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1122
1123             /* Calculate temporary vectorial force */
1124             tx               = _mm256_mul_pd(fscal,dx10);
1125             ty               = _mm256_mul_pd(fscal,dy10);
1126             tz               = _mm256_mul_pd(fscal,dz10);
1127
1128             /* Update vectorial force */
1129             fix1             = _mm256_add_pd(fix1,tx);
1130             fiy1             = _mm256_add_pd(fiy1,ty);
1131             fiz1             = _mm256_add_pd(fiz1,tz);
1132
1133             fjx0             = _mm256_add_pd(fjx0,tx);
1134             fjy0             = _mm256_add_pd(fjy0,ty);
1135             fjz0             = _mm256_add_pd(fjz0,tz);
1136
1137             /**************************
1138              * CALCULATE INTERACTIONS *
1139              **************************/
1140
1141             r20              = _mm256_mul_pd(rsq20,rinv20);
1142             r20              = _mm256_andnot_pd(dummy_mask,r20);
1143
1144             /* Compute parameters for interactions between i and j atoms */
1145             qq20             = _mm256_mul_pd(iq2,jq0);
1146
1147             /* EWALD ELECTROSTATICS */
1148
1149             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1150             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1151             ewitab           = _mm256_cvttpd_epi32(ewrt);
1152             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1153             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1154                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1155                                             &ewtabF,&ewtabFn);
1156             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1157             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1158
1159             fscal            = felec;
1160
1161             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1162
1163             /* Calculate temporary vectorial force */
1164             tx               = _mm256_mul_pd(fscal,dx20);
1165             ty               = _mm256_mul_pd(fscal,dy20);
1166             tz               = _mm256_mul_pd(fscal,dz20);
1167
1168             /* Update vectorial force */
1169             fix2             = _mm256_add_pd(fix2,tx);
1170             fiy2             = _mm256_add_pd(fiy2,ty);
1171             fiz2             = _mm256_add_pd(fiz2,tz);
1172
1173             fjx0             = _mm256_add_pd(fjx0,tx);
1174             fjy0             = _mm256_add_pd(fjy0,ty);
1175             fjz0             = _mm256_add_pd(fjz0,tz);
1176
1177             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1178             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1179             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1180             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1181
1182             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1183
1184             /* Inner loop uses 121 flops */
1185         }
1186
1187         /* End of innermost loop */
1188
1189         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1190                                                  f+i_coord_offset,fshift+i_shift_offset);
1191
1192         /* Increment number of inner iterations */
1193         inneriter                  += j_index_end - j_index_start;
1194
1195         /* Outer loop uses 18 flops */
1196     }
1197
1198     /* Increment number of outer iterations */
1199     outeriter        += nri;
1200
1201     /* Update outer/inner flops */
1202
1203     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*121);
1204 }