Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJ_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
102     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
103     __m128i          ewitab;
104     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
106     real             *ewtab;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
130     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
131     beta2            = _mm256_mul_pd(beta,beta);
132     beta3            = _mm256_mul_pd(beta,beta2);
133
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
141     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
142     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
143     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = jnrC = jnrD = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149     j_coord_offsetC = 0;
150     j_coord_offsetD = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
177
178         fix0             = _mm256_setzero_pd();
179         fiy0             = _mm256_setzero_pd();
180         fiz0             = _mm256_setzero_pd();
181         fix1             = _mm256_setzero_pd();
182         fiy1             = _mm256_setzero_pd();
183         fiz1             = _mm256_setzero_pd();
184         fix2             = _mm256_setzero_pd();
185         fiy2             = _mm256_setzero_pd();
186         fiz2             = _mm256_setzero_pd();
187
188         /* Reset potential sums */
189         velecsum         = _mm256_setzero_pd();
190         vvdwsum          = _mm256_setzero_pd();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
208                                                  x+j_coord_offsetC,x+j_coord_offsetD,
209                                                  &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm256_sub_pd(ix0,jx0);
213             dy00             = _mm256_sub_pd(iy0,jy0);
214             dz00             = _mm256_sub_pd(iz0,jz0);
215             dx10             = _mm256_sub_pd(ix1,jx0);
216             dy10             = _mm256_sub_pd(iy1,jy0);
217             dz10             = _mm256_sub_pd(iz1,jz0);
218             dx20             = _mm256_sub_pd(ix2,jx0);
219             dy20             = _mm256_sub_pd(iy2,jy0);
220             dz20             = _mm256_sub_pd(iz2,jz0);
221
222             /* Calculate squared distance and things based on it */
223             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
224             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
225             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
226
227             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
228             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
229             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
230
231             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
232             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
233             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
234
235             /* Load parameters for j particles */
236             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
237                                                                  charge+jnrC+0,charge+jnrD+0);
238             vdwjidx0A        = 2*vdwtype[jnrA+0];
239             vdwjidx0B        = 2*vdwtype[jnrB+0];
240             vdwjidx0C        = 2*vdwtype[jnrC+0];
241             vdwjidx0D        = 2*vdwtype[jnrD+0];
242
243             fjx0             = _mm256_setzero_pd();
244             fjy0             = _mm256_setzero_pd();
245             fjz0             = _mm256_setzero_pd();
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             r00              = _mm256_mul_pd(rsq00,rinv00);
252
253             /* Compute parameters for interactions between i and j atoms */
254             qq00             = _mm256_mul_pd(iq0,jq0);
255             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
256                                             vdwioffsetptr0+vdwjidx0B,
257                                             vdwioffsetptr0+vdwjidx0C,
258                                             vdwioffsetptr0+vdwjidx0D,
259                                             &c6_00,&c12_00);
260
261             /* EWALD ELECTROSTATICS */
262
263             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
264             ewrt             = _mm256_mul_pd(r00,ewtabscale);
265             ewitab           = _mm256_cvttpd_epi32(ewrt);
266             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
267             ewitab           = _mm_slli_epi32(ewitab,2);
268             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
269             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
270             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
271             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
272             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
273             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
274             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
275             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
276             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
277
278             /* LENNARD-JONES DISPERSION/REPULSION */
279
280             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
281             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
282             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
283             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
284             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             velecsum         = _mm256_add_pd(velecsum,velec);
288             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
289
290             fscal            = _mm256_add_pd(felec,fvdw);
291
292             /* Calculate temporary vectorial force */
293             tx               = _mm256_mul_pd(fscal,dx00);
294             ty               = _mm256_mul_pd(fscal,dy00);
295             tz               = _mm256_mul_pd(fscal,dz00);
296
297             /* Update vectorial force */
298             fix0             = _mm256_add_pd(fix0,tx);
299             fiy0             = _mm256_add_pd(fiy0,ty);
300             fiz0             = _mm256_add_pd(fiz0,tz);
301
302             fjx0             = _mm256_add_pd(fjx0,tx);
303             fjy0             = _mm256_add_pd(fjy0,ty);
304             fjz0             = _mm256_add_pd(fjz0,tz);
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             r10              = _mm256_mul_pd(rsq10,rinv10);
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq10             = _mm256_mul_pd(iq1,jq0);
314
315             /* EWALD ELECTROSTATICS */
316
317             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
318             ewrt             = _mm256_mul_pd(r10,ewtabscale);
319             ewitab           = _mm256_cvttpd_epi32(ewrt);
320             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
321             ewitab           = _mm_slli_epi32(ewitab,2);
322             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
323             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
324             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
325             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
326             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
327             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
328             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
329             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
330             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velecsum         = _mm256_add_pd(velecsum,velec);
334
335             fscal            = felec;
336
337             /* Calculate temporary vectorial force */
338             tx               = _mm256_mul_pd(fscal,dx10);
339             ty               = _mm256_mul_pd(fscal,dy10);
340             tz               = _mm256_mul_pd(fscal,dz10);
341
342             /* Update vectorial force */
343             fix1             = _mm256_add_pd(fix1,tx);
344             fiy1             = _mm256_add_pd(fiy1,ty);
345             fiz1             = _mm256_add_pd(fiz1,tz);
346
347             fjx0             = _mm256_add_pd(fjx0,tx);
348             fjy0             = _mm256_add_pd(fjy0,ty);
349             fjz0             = _mm256_add_pd(fjz0,tz);
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             r20              = _mm256_mul_pd(rsq20,rinv20);
356
357             /* Compute parameters for interactions between i and j atoms */
358             qq20             = _mm256_mul_pd(iq2,jq0);
359
360             /* EWALD ELECTROSTATICS */
361
362             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
363             ewrt             = _mm256_mul_pd(r20,ewtabscale);
364             ewitab           = _mm256_cvttpd_epi32(ewrt);
365             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
366             ewitab           = _mm_slli_epi32(ewitab,2);
367             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
368             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
369             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
370             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
371             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
372             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
373             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
374             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
375             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
376
377             /* Update potential sum for this i atom from the interaction with this j atom. */
378             velecsum         = _mm256_add_pd(velecsum,velec);
379
380             fscal            = felec;
381
382             /* Calculate temporary vectorial force */
383             tx               = _mm256_mul_pd(fscal,dx20);
384             ty               = _mm256_mul_pd(fscal,dy20);
385             tz               = _mm256_mul_pd(fscal,dz20);
386
387             /* Update vectorial force */
388             fix2             = _mm256_add_pd(fix2,tx);
389             fiy2             = _mm256_add_pd(fiy2,ty);
390             fiz2             = _mm256_add_pd(fiz2,tz);
391
392             fjx0             = _mm256_add_pd(fjx0,tx);
393             fjy0             = _mm256_add_pd(fjy0,ty);
394             fjz0             = _mm256_add_pd(fjz0,tz);
395
396             fjptrA             = f+j_coord_offsetA;
397             fjptrB             = f+j_coord_offsetB;
398             fjptrC             = f+j_coord_offsetC;
399             fjptrD             = f+j_coord_offsetD;
400
401             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
402
403             /* Inner loop uses 138 flops */
404         }
405
406         if(jidx<j_index_end)
407         {
408
409             /* Get j neighbor index, and coordinate index */
410             jnrlistA         = jjnr[jidx];
411             jnrlistB         = jjnr[jidx+1];
412             jnrlistC         = jjnr[jidx+2];
413             jnrlistD         = jjnr[jidx+3];
414             /* Sign of each element will be negative for non-real atoms.
415              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
416              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
417              */
418             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
419
420             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
421             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
422             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
423
424             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
425             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
426             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
427             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
428             j_coord_offsetA  = DIM*jnrA;
429             j_coord_offsetB  = DIM*jnrB;
430             j_coord_offsetC  = DIM*jnrC;
431             j_coord_offsetD  = DIM*jnrD;
432
433             /* load j atom coordinates */
434             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
435                                                  x+j_coord_offsetC,x+j_coord_offsetD,
436                                                  &jx0,&jy0,&jz0);
437
438             /* Calculate displacement vector */
439             dx00             = _mm256_sub_pd(ix0,jx0);
440             dy00             = _mm256_sub_pd(iy0,jy0);
441             dz00             = _mm256_sub_pd(iz0,jz0);
442             dx10             = _mm256_sub_pd(ix1,jx0);
443             dy10             = _mm256_sub_pd(iy1,jy0);
444             dz10             = _mm256_sub_pd(iz1,jz0);
445             dx20             = _mm256_sub_pd(ix2,jx0);
446             dy20             = _mm256_sub_pd(iy2,jy0);
447             dz20             = _mm256_sub_pd(iz2,jz0);
448
449             /* Calculate squared distance and things based on it */
450             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
451             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
452             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
453
454             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
455             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
456             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
457
458             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
459             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
460             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
461
462             /* Load parameters for j particles */
463             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
464                                                                  charge+jnrC+0,charge+jnrD+0);
465             vdwjidx0A        = 2*vdwtype[jnrA+0];
466             vdwjidx0B        = 2*vdwtype[jnrB+0];
467             vdwjidx0C        = 2*vdwtype[jnrC+0];
468             vdwjidx0D        = 2*vdwtype[jnrD+0];
469
470             fjx0             = _mm256_setzero_pd();
471             fjy0             = _mm256_setzero_pd();
472             fjz0             = _mm256_setzero_pd();
473
474             /**************************
475              * CALCULATE INTERACTIONS *
476              **************************/
477
478             r00              = _mm256_mul_pd(rsq00,rinv00);
479             r00              = _mm256_andnot_pd(dummy_mask,r00);
480
481             /* Compute parameters for interactions between i and j atoms */
482             qq00             = _mm256_mul_pd(iq0,jq0);
483             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
484                                             vdwioffsetptr0+vdwjidx0B,
485                                             vdwioffsetptr0+vdwjidx0C,
486                                             vdwioffsetptr0+vdwjidx0D,
487                                             &c6_00,&c12_00);
488
489             /* EWALD ELECTROSTATICS */
490
491             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
492             ewrt             = _mm256_mul_pd(r00,ewtabscale);
493             ewitab           = _mm256_cvttpd_epi32(ewrt);
494             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
495             ewitab           = _mm_slli_epi32(ewitab,2);
496             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
497             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
498             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
499             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
500             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
501             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
502             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
503             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
504             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
505
506             /* LENNARD-JONES DISPERSION/REPULSION */
507
508             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
509             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
510             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
511             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
512             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
513
514             /* Update potential sum for this i atom from the interaction with this j atom. */
515             velec            = _mm256_andnot_pd(dummy_mask,velec);
516             velecsum         = _mm256_add_pd(velecsum,velec);
517             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
518             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
519
520             fscal            = _mm256_add_pd(felec,fvdw);
521
522             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
523
524             /* Calculate temporary vectorial force */
525             tx               = _mm256_mul_pd(fscal,dx00);
526             ty               = _mm256_mul_pd(fscal,dy00);
527             tz               = _mm256_mul_pd(fscal,dz00);
528
529             /* Update vectorial force */
530             fix0             = _mm256_add_pd(fix0,tx);
531             fiy0             = _mm256_add_pd(fiy0,ty);
532             fiz0             = _mm256_add_pd(fiz0,tz);
533
534             fjx0             = _mm256_add_pd(fjx0,tx);
535             fjy0             = _mm256_add_pd(fjy0,ty);
536             fjz0             = _mm256_add_pd(fjz0,tz);
537
538             /**************************
539              * CALCULATE INTERACTIONS *
540              **************************/
541
542             r10              = _mm256_mul_pd(rsq10,rinv10);
543             r10              = _mm256_andnot_pd(dummy_mask,r10);
544
545             /* Compute parameters for interactions between i and j atoms */
546             qq10             = _mm256_mul_pd(iq1,jq0);
547
548             /* EWALD ELECTROSTATICS */
549
550             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
551             ewrt             = _mm256_mul_pd(r10,ewtabscale);
552             ewitab           = _mm256_cvttpd_epi32(ewrt);
553             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
554             ewitab           = _mm_slli_epi32(ewitab,2);
555             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
556             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
557             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
558             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
559             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
560             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
561             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
562             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
563             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
564
565             /* Update potential sum for this i atom from the interaction with this j atom. */
566             velec            = _mm256_andnot_pd(dummy_mask,velec);
567             velecsum         = _mm256_add_pd(velecsum,velec);
568
569             fscal            = felec;
570
571             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
572
573             /* Calculate temporary vectorial force */
574             tx               = _mm256_mul_pd(fscal,dx10);
575             ty               = _mm256_mul_pd(fscal,dy10);
576             tz               = _mm256_mul_pd(fscal,dz10);
577
578             /* Update vectorial force */
579             fix1             = _mm256_add_pd(fix1,tx);
580             fiy1             = _mm256_add_pd(fiy1,ty);
581             fiz1             = _mm256_add_pd(fiz1,tz);
582
583             fjx0             = _mm256_add_pd(fjx0,tx);
584             fjy0             = _mm256_add_pd(fjy0,ty);
585             fjz0             = _mm256_add_pd(fjz0,tz);
586
587             /**************************
588              * CALCULATE INTERACTIONS *
589              **************************/
590
591             r20              = _mm256_mul_pd(rsq20,rinv20);
592             r20              = _mm256_andnot_pd(dummy_mask,r20);
593
594             /* Compute parameters for interactions between i and j atoms */
595             qq20             = _mm256_mul_pd(iq2,jq0);
596
597             /* EWALD ELECTROSTATICS */
598
599             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
600             ewrt             = _mm256_mul_pd(r20,ewtabscale);
601             ewitab           = _mm256_cvttpd_epi32(ewrt);
602             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
603             ewitab           = _mm_slli_epi32(ewitab,2);
604             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
605             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
606             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
607             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
608             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
609             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
610             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
611             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
612             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
613
614             /* Update potential sum for this i atom from the interaction with this j atom. */
615             velec            = _mm256_andnot_pd(dummy_mask,velec);
616             velecsum         = _mm256_add_pd(velecsum,velec);
617
618             fscal            = felec;
619
620             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
621
622             /* Calculate temporary vectorial force */
623             tx               = _mm256_mul_pd(fscal,dx20);
624             ty               = _mm256_mul_pd(fscal,dy20);
625             tz               = _mm256_mul_pd(fscal,dz20);
626
627             /* Update vectorial force */
628             fix2             = _mm256_add_pd(fix2,tx);
629             fiy2             = _mm256_add_pd(fiy2,ty);
630             fiz2             = _mm256_add_pd(fiz2,tz);
631
632             fjx0             = _mm256_add_pd(fjx0,tx);
633             fjy0             = _mm256_add_pd(fjy0,ty);
634             fjz0             = _mm256_add_pd(fjz0,tz);
635
636             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
637             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
638             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
639             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
640
641             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
642
643             /* Inner loop uses 141 flops */
644         }
645
646         /* End of innermost loop */
647
648         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
649                                                  f+i_coord_offset,fshift+i_shift_offset);
650
651         ggid                        = gid[iidx];
652         /* Update potential energies */
653         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
654         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
655
656         /* Increment number of inner iterations */
657         inneriter                  += j_index_end - j_index_start;
658
659         /* Outer loop uses 20 flops */
660     }
661
662     /* Increment number of outer iterations */
663     outeriter        += nri;
664
665     /* Update outer/inner flops */
666
667     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*141);
668 }
669 /*
670  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_256_double
671  * Electrostatics interaction: Ewald
672  * VdW interaction:            LennardJones
673  * Geometry:                   Water3-Particle
674  * Calculate force/pot:        Force
675  */
676 void
677 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_256_double
678                     (t_nblist                    * gmx_restrict       nlist,
679                      rvec                        * gmx_restrict          xx,
680                      rvec                        * gmx_restrict          ff,
681                      t_forcerec                  * gmx_restrict          fr,
682                      t_mdatoms                   * gmx_restrict     mdatoms,
683                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
684                      t_nrnb                      * gmx_restrict        nrnb)
685 {
686     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
687      * just 0 for non-waters.
688      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
689      * jnr indices corresponding to data put in the four positions in the SIMD register.
690      */
691     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
692     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
693     int              jnrA,jnrB,jnrC,jnrD;
694     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
695     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
696     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
697     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
698     real             rcutoff_scalar;
699     real             *shiftvec,*fshift,*x,*f;
700     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
701     real             scratch[4*DIM];
702     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
703     real *           vdwioffsetptr0;
704     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
705     real *           vdwioffsetptr1;
706     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
707     real *           vdwioffsetptr2;
708     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
709     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
710     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
711     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
712     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
713     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
714     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
715     real             *charge;
716     int              nvdwtype;
717     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
718     int              *vdwtype;
719     real             *vdwparam;
720     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
721     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
722     __m128i          ewitab;
723     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
724     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
725     real             *ewtab;
726     __m256d          dummy_mask,cutoff_mask;
727     __m128           tmpmask0,tmpmask1;
728     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
729     __m256d          one     = _mm256_set1_pd(1.0);
730     __m256d          two     = _mm256_set1_pd(2.0);
731     x                = xx[0];
732     f                = ff[0];
733
734     nri              = nlist->nri;
735     iinr             = nlist->iinr;
736     jindex           = nlist->jindex;
737     jjnr             = nlist->jjnr;
738     shiftidx         = nlist->shift;
739     gid              = nlist->gid;
740     shiftvec         = fr->shift_vec[0];
741     fshift           = fr->fshift[0];
742     facel            = _mm256_set1_pd(fr->epsfac);
743     charge           = mdatoms->chargeA;
744     nvdwtype         = fr->ntype;
745     vdwparam         = fr->nbfp;
746     vdwtype          = mdatoms->typeA;
747
748     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
749     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
750     beta2            = _mm256_mul_pd(beta,beta);
751     beta3            = _mm256_mul_pd(beta,beta2);
752
753     ewtab            = fr->ic->tabq_coul_F;
754     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
755     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
756
757     /* Setup water-specific parameters */
758     inr              = nlist->iinr[0];
759     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
760     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
761     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
762     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
763
764     /* Avoid stupid compiler warnings */
765     jnrA = jnrB = jnrC = jnrD = 0;
766     j_coord_offsetA = 0;
767     j_coord_offsetB = 0;
768     j_coord_offsetC = 0;
769     j_coord_offsetD = 0;
770
771     outeriter        = 0;
772     inneriter        = 0;
773
774     for(iidx=0;iidx<4*DIM;iidx++)
775     {
776         scratch[iidx] = 0.0;
777     }
778
779     /* Start outer loop over neighborlists */
780     for(iidx=0; iidx<nri; iidx++)
781     {
782         /* Load shift vector for this list */
783         i_shift_offset   = DIM*shiftidx[iidx];
784
785         /* Load limits for loop over neighbors */
786         j_index_start    = jindex[iidx];
787         j_index_end      = jindex[iidx+1];
788
789         /* Get outer coordinate index */
790         inr              = iinr[iidx];
791         i_coord_offset   = DIM*inr;
792
793         /* Load i particle coords and add shift vector */
794         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
795                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
796
797         fix0             = _mm256_setzero_pd();
798         fiy0             = _mm256_setzero_pd();
799         fiz0             = _mm256_setzero_pd();
800         fix1             = _mm256_setzero_pd();
801         fiy1             = _mm256_setzero_pd();
802         fiz1             = _mm256_setzero_pd();
803         fix2             = _mm256_setzero_pd();
804         fiy2             = _mm256_setzero_pd();
805         fiz2             = _mm256_setzero_pd();
806
807         /* Start inner kernel loop */
808         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
809         {
810
811             /* Get j neighbor index, and coordinate index */
812             jnrA             = jjnr[jidx];
813             jnrB             = jjnr[jidx+1];
814             jnrC             = jjnr[jidx+2];
815             jnrD             = jjnr[jidx+3];
816             j_coord_offsetA  = DIM*jnrA;
817             j_coord_offsetB  = DIM*jnrB;
818             j_coord_offsetC  = DIM*jnrC;
819             j_coord_offsetD  = DIM*jnrD;
820
821             /* load j atom coordinates */
822             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
823                                                  x+j_coord_offsetC,x+j_coord_offsetD,
824                                                  &jx0,&jy0,&jz0);
825
826             /* Calculate displacement vector */
827             dx00             = _mm256_sub_pd(ix0,jx0);
828             dy00             = _mm256_sub_pd(iy0,jy0);
829             dz00             = _mm256_sub_pd(iz0,jz0);
830             dx10             = _mm256_sub_pd(ix1,jx0);
831             dy10             = _mm256_sub_pd(iy1,jy0);
832             dz10             = _mm256_sub_pd(iz1,jz0);
833             dx20             = _mm256_sub_pd(ix2,jx0);
834             dy20             = _mm256_sub_pd(iy2,jy0);
835             dz20             = _mm256_sub_pd(iz2,jz0);
836
837             /* Calculate squared distance and things based on it */
838             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
839             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
840             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
841
842             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
843             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
844             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
845
846             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
847             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
848             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
849
850             /* Load parameters for j particles */
851             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
852                                                                  charge+jnrC+0,charge+jnrD+0);
853             vdwjidx0A        = 2*vdwtype[jnrA+0];
854             vdwjidx0B        = 2*vdwtype[jnrB+0];
855             vdwjidx0C        = 2*vdwtype[jnrC+0];
856             vdwjidx0D        = 2*vdwtype[jnrD+0];
857
858             fjx0             = _mm256_setzero_pd();
859             fjy0             = _mm256_setzero_pd();
860             fjz0             = _mm256_setzero_pd();
861
862             /**************************
863              * CALCULATE INTERACTIONS *
864              **************************/
865
866             r00              = _mm256_mul_pd(rsq00,rinv00);
867
868             /* Compute parameters for interactions between i and j atoms */
869             qq00             = _mm256_mul_pd(iq0,jq0);
870             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
871                                             vdwioffsetptr0+vdwjidx0B,
872                                             vdwioffsetptr0+vdwjidx0C,
873                                             vdwioffsetptr0+vdwjidx0D,
874                                             &c6_00,&c12_00);
875
876             /* EWALD ELECTROSTATICS */
877
878             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
879             ewrt             = _mm256_mul_pd(r00,ewtabscale);
880             ewitab           = _mm256_cvttpd_epi32(ewrt);
881             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
882             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
883                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
884                                             &ewtabF,&ewtabFn);
885             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
886             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
887
888             /* LENNARD-JONES DISPERSION/REPULSION */
889
890             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
891             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
892
893             fscal            = _mm256_add_pd(felec,fvdw);
894
895             /* Calculate temporary vectorial force */
896             tx               = _mm256_mul_pd(fscal,dx00);
897             ty               = _mm256_mul_pd(fscal,dy00);
898             tz               = _mm256_mul_pd(fscal,dz00);
899
900             /* Update vectorial force */
901             fix0             = _mm256_add_pd(fix0,tx);
902             fiy0             = _mm256_add_pd(fiy0,ty);
903             fiz0             = _mm256_add_pd(fiz0,tz);
904
905             fjx0             = _mm256_add_pd(fjx0,tx);
906             fjy0             = _mm256_add_pd(fjy0,ty);
907             fjz0             = _mm256_add_pd(fjz0,tz);
908
909             /**************************
910              * CALCULATE INTERACTIONS *
911              **************************/
912
913             r10              = _mm256_mul_pd(rsq10,rinv10);
914
915             /* Compute parameters for interactions between i and j atoms */
916             qq10             = _mm256_mul_pd(iq1,jq0);
917
918             /* EWALD ELECTROSTATICS */
919
920             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
921             ewrt             = _mm256_mul_pd(r10,ewtabscale);
922             ewitab           = _mm256_cvttpd_epi32(ewrt);
923             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
924             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
925                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
926                                             &ewtabF,&ewtabFn);
927             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
928             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
929
930             fscal            = felec;
931
932             /* Calculate temporary vectorial force */
933             tx               = _mm256_mul_pd(fscal,dx10);
934             ty               = _mm256_mul_pd(fscal,dy10);
935             tz               = _mm256_mul_pd(fscal,dz10);
936
937             /* Update vectorial force */
938             fix1             = _mm256_add_pd(fix1,tx);
939             fiy1             = _mm256_add_pd(fiy1,ty);
940             fiz1             = _mm256_add_pd(fiz1,tz);
941
942             fjx0             = _mm256_add_pd(fjx0,tx);
943             fjy0             = _mm256_add_pd(fjy0,ty);
944             fjz0             = _mm256_add_pd(fjz0,tz);
945
946             /**************************
947              * CALCULATE INTERACTIONS *
948              **************************/
949
950             r20              = _mm256_mul_pd(rsq20,rinv20);
951
952             /* Compute parameters for interactions between i and j atoms */
953             qq20             = _mm256_mul_pd(iq2,jq0);
954
955             /* EWALD ELECTROSTATICS */
956
957             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
958             ewrt             = _mm256_mul_pd(r20,ewtabscale);
959             ewitab           = _mm256_cvttpd_epi32(ewrt);
960             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
961             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
962                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
963                                             &ewtabF,&ewtabFn);
964             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
965             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
966
967             fscal            = felec;
968
969             /* Calculate temporary vectorial force */
970             tx               = _mm256_mul_pd(fscal,dx20);
971             ty               = _mm256_mul_pd(fscal,dy20);
972             tz               = _mm256_mul_pd(fscal,dz20);
973
974             /* Update vectorial force */
975             fix2             = _mm256_add_pd(fix2,tx);
976             fiy2             = _mm256_add_pd(fiy2,ty);
977             fiz2             = _mm256_add_pd(fiz2,tz);
978
979             fjx0             = _mm256_add_pd(fjx0,tx);
980             fjy0             = _mm256_add_pd(fjy0,ty);
981             fjz0             = _mm256_add_pd(fjz0,tz);
982
983             fjptrA             = f+j_coord_offsetA;
984             fjptrB             = f+j_coord_offsetB;
985             fjptrC             = f+j_coord_offsetC;
986             fjptrD             = f+j_coord_offsetD;
987
988             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
989
990             /* Inner loop uses 118 flops */
991         }
992
993         if(jidx<j_index_end)
994         {
995
996             /* Get j neighbor index, and coordinate index */
997             jnrlistA         = jjnr[jidx];
998             jnrlistB         = jjnr[jidx+1];
999             jnrlistC         = jjnr[jidx+2];
1000             jnrlistD         = jjnr[jidx+3];
1001             /* Sign of each element will be negative for non-real atoms.
1002              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1003              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1004              */
1005             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1006
1007             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1008             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1009             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1010
1011             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1012             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1013             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1014             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1015             j_coord_offsetA  = DIM*jnrA;
1016             j_coord_offsetB  = DIM*jnrB;
1017             j_coord_offsetC  = DIM*jnrC;
1018             j_coord_offsetD  = DIM*jnrD;
1019
1020             /* load j atom coordinates */
1021             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1022                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1023                                                  &jx0,&jy0,&jz0);
1024
1025             /* Calculate displacement vector */
1026             dx00             = _mm256_sub_pd(ix0,jx0);
1027             dy00             = _mm256_sub_pd(iy0,jy0);
1028             dz00             = _mm256_sub_pd(iz0,jz0);
1029             dx10             = _mm256_sub_pd(ix1,jx0);
1030             dy10             = _mm256_sub_pd(iy1,jy0);
1031             dz10             = _mm256_sub_pd(iz1,jz0);
1032             dx20             = _mm256_sub_pd(ix2,jx0);
1033             dy20             = _mm256_sub_pd(iy2,jy0);
1034             dz20             = _mm256_sub_pd(iz2,jz0);
1035
1036             /* Calculate squared distance and things based on it */
1037             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1038             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1039             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1040
1041             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1042             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1043             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1044
1045             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1046             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1047             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1048
1049             /* Load parameters for j particles */
1050             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1051                                                                  charge+jnrC+0,charge+jnrD+0);
1052             vdwjidx0A        = 2*vdwtype[jnrA+0];
1053             vdwjidx0B        = 2*vdwtype[jnrB+0];
1054             vdwjidx0C        = 2*vdwtype[jnrC+0];
1055             vdwjidx0D        = 2*vdwtype[jnrD+0];
1056
1057             fjx0             = _mm256_setzero_pd();
1058             fjy0             = _mm256_setzero_pd();
1059             fjz0             = _mm256_setzero_pd();
1060
1061             /**************************
1062              * CALCULATE INTERACTIONS *
1063              **************************/
1064
1065             r00              = _mm256_mul_pd(rsq00,rinv00);
1066             r00              = _mm256_andnot_pd(dummy_mask,r00);
1067
1068             /* Compute parameters for interactions between i and j atoms */
1069             qq00             = _mm256_mul_pd(iq0,jq0);
1070             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1071                                             vdwioffsetptr0+vdwjidx0B,
1072                                             vdwioffsetptr0+vdwjidx0C,
1073                                             vdwioffsetptr0+vdwjidx0D,
1074                                             &c6_00,&c12_00);
1075
1076             /* EWALD ELECTROSTATICS */
1077
1078             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1079             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1080             ewitab           = _mm256_cvttpd_epi32(ewrt);
1081             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1082             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1083                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1084                                             &ewtabF,&ewtabFn);
1085             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1086             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1087
1088             /* LENNARD-JONES DISPERSION/REPULSION */
1089
1090             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1091             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1092
1093             fscal            = _mm256_add_pd(felec,fvdw);
1094
1095             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1096
1097             /* Calculate temporary vectorial force */
1098             tx               = _mm256_mul_pd(fscal,dx00);
1099             ty               = _mm256_mul_pd(fscal,dy00);
1100             tz               = _mm256_mul_pd(fscal,dz00);
1101
1102             /* Update vectorial force */
1103             fix0             = _mm256_add_pd(fix0,tx);
1104             fiy0             = _mm256_add_pd(fiy0,ty);
1105             fiz0             = _mm256_add_pd(fiz0,tz);
1106
1107             fjx0             = _mm256_add_pd(fjx0,tx);
1108             fjy0             = _mm256_add_pd(fjy0,ty);
1109             fjz0             = _mm256_add_pd(fjz0,tz);
1110
1111             /**************************
1112              * CALCULATE INTERACTIONS *
1113              **************************/
1114
1115             r10              = _mm256_mul_pd(rsq10,rinv10);
1116             r10              = _mm256_andnot_pd(dummy_mask,r10);
1117
1118             /* Compute parameters for interactions between i and j atoms */
1119             qq10             = _mm256_mul_pd(iq1,jq0);
1120
1121             /* EWALD ELECTROSTATICS */
1122
1123             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1124             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1125             ewitab           = _mm256_cvttpd_epi32(ewrt);
1126             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1127             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1128                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1129                                             &ewtabF,&ewtabFn);
1130             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1131             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1132
1133             fscal            = felec;
1134
1135             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1136
1137             /* Calculate temporary vectorial force */
1138             tx               = _mm256_mul_pd(fscal,dx10);
1139             ty               = _mm256_mul_pd(fscal,dy10);
1140             tz               = _mm256_mul_pd(fscal,dz10);
1141
1142             /* Update vectorial force */
1143             fix1             = _mm256_add_pd(fix1,tx);
1144             fiy1             = _mm256_add_pd(fiy1,ty);
1145             fiz1             = _mm256_add_pd(fiz1,tz);
1146
1147             fjx0             = _mm256_add_pd(fjx0,tx);
1148             fjy0             = _mm256_add_pd(fjy0,ty);
1149             fjz0             = _mm256_add_pd(fjz0,tz);
1150
1151             /**************************
1152              * CALCULATE INTERACTIONS *
1153              **************************/
1154
1155             r20              = _mm256_mul_pd(rsq20,rinv20);
1156             r20              = _mm256_andnot_pd(dummy_mask,r20);
1157
1158             /* Compute parameters for interactions between i and j atoms */
1159             qq20             = _mm256_mul_pd(iq2,jq0);
1160
1161             /* EWALD ELECTROSTATICS */
1162
1163             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1164             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1165             ewitab           = _mm256_cvttpd_epi32(ewrt);
1166             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1167             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1168                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1169                                             &ewtabF,&ewtabFn);
1170             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1171             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1172
1173             fscal            = felec;
1174
1175             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1176
1177             /* Calculate temporary vectorial force */
1178             tx               = _mm256_mul_pd(fscal,dx20);
1179             ty               = _mm256_mul_pd(fscal,dy20);
1180             tz               = _mm256_mul_pd(fscal,dz20);
1181
1182             /* Update vectorial force */
1183             fix2             = _mm256_add_pd(fix2,tx);
1184             fiy2             = _mm256_add_pd(fiy2,ty);
1185             fiz2             = _mm256_add_pd(fiz2,tz);
1186
1187             fjx0             = _mm256_add_pd(fjx0,tx);
1188             fjy0             = _mm256_add_pd(fjy0,ty);
1189             fjz0             = _mm256_add_pd(fjz0,tz);
1190
1191             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1192             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1193             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1194             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1195
1196             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1197
1198             /* Inner loop uses 121 flops */
1199         }
1200
1201         /* End of innermost loop */
1202
1203         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1204                                                  f+i_coord_offset,fshift+i_shift_offset);
1205
1206         /* Increment number of inner iterations */
1207         inneriter                  += j_index_end - j_index_start;
1208
1209         /* Outer loop uses 18 flops */
1210     }
1211
1212     /* Increment number of outer iterations */
1213     outeriter        += nri;
1214
1215     /* Update outer/inner flops */
1216
1217     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*121);
1218 }