Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
82     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
83     __m128i          ewitab;
84     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
85     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
86     real             *ewtab;
87     __m256d          dummy_mask,cutoff_mask;
88     __m128           tmpmask0,tmpmask1;
89     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
90     __m256d          one     = _mm256_set1_pd(1.0);
91     __m256d          two     = _mm256_set1_pd(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm256_set1_pd(fr->epsfac);
104     charge           = mdatoms->chargeA;
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
110     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
111     beta2            = _mm256_mul_pd(beta,beta);
112     beta3            = _mm256_mul_pd(beta,beta2);
113
114     ewtab            = fr->ic->tabq_coul_FDV0;
115     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
116     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = jnrC = jnrD = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122     j_coord_offsetC = 0;
123     j_coord_offsetD = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     for(iidx=0;iidx<4*DIM;iidx++)
129     {
130         scratch[iidx] = 0.0;
131     }
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138
139         /* Load limits for loop over neighbors */
140         j_index_start    = jindex[iidx];
141         j_index_end      = jindex[iidx+1];
142
143         /* Get outer coordinate index */
144         inr              = iinr[iidx];
145         i_coord_offset   = DIM*inr;
146
147         /* Load i particle coords and add shift vector */
148         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
149
150         fix0             = _mm256_setzero_pd();
151         fiy0             = _mm256_setzero_pd();
152         fiz0             = _mm256_setzero_pd();
153
154         /* Load parameters for i particles */
155         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
156         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
157
158         /* Reset potential sums */
159         velecsum         = _mm256_setzero_pd();
160         vvdwsum          = _mm256_setzero_pd();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173             j_coord_offsetC  = DIM*jnrC;
174             j_coord_offsetD  = DIM*jnrD;
175
176             /* load j atom coordinates */
177             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
178                                                  x+j_coord_offsetC,x+j_coord_offsetD,
179                                                  &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm256_sub_pd(ix0,jx0);
183             dy00             = _mm256_sub_pd(iy0,jy0);
184             dz00             = _mm256_sub_pd(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
188
189             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
190
191             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
195                                                                  charge+jnrC+0,charge+jnrD+0);
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198             vdwjidx0C        = 2*vdwtype[jnrC+0];
199             vdwjidx0D        = 2*vdwtype[jnrD+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = _mm256_mul_pd(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _mm256_mul_pd(iq0,jq0);
209             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
210                                             vdwioffsetptr0+vdwjidx0B,
211                                             vdwioffsetptr0+vdwjidx0C,
212                                             vdwioffsetptr0+vdwjidx0D,
213                                             &c6_00,&c12_00);
214
215             /* EWALD ELECTROSTATICS */
216
217             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
218             ewrt             = _mm256_mul_pd(r00,ewtabscale);
219             ewitab           = _mm256_cvttpd_epi32(ewrt);
220             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
221             ewitab           = _mm_slli_epi32(ewitab,2);
222             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
223             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
224             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
225             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
226             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
227             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
228             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
229             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
230             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
231
232             /* LENNARD-JONES DISPERSION/REPULSION */
233
234             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
235             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
236             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
237             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
238             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
239
240             /* Update potential sum for this i atom from the interaction with this j atom. */
241             velecsum         = _mm256_add_pd(velecsum,velec);
242             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
243
244             fscal            = _mm256_add_pd(felec,fvdw);
245
246             /* Calculate temporary vectorial force */
247             tx               = _mm256_mul_pd(fscal,dx00);
248             ty               = _mm256_mul_pd(fscal,dy00);
249             tz               = _mm256_mul_pd(fscal,dz00);
250
251             /* Update vectorial force */
252             fix0             = _mm256_add_pd(fix0,tx);
253             fiy0             = _mm256_add_pd(fiy0,ty);
254             fiz0             = _mm256_add_pd(fiz0,tz);
255
256             fjptrA             = f+j_coord_offsetA;
257             fjptrB             = f+j_coord_offsetB;
258             fjptrC             = f+j_coord_offsetC;
259             fjptrD             = f+j_coord_offsetD;
260             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
261
262             /* Inner loop uses 53 flops */
263         }
264
265         if(jidx<j_index_end)
266         {
267
268             /* Get j neighbor index, and coordinate index */
269             jnrlistA         = jjnr[jidx];
270             jnrlistB         = jjnr[jidx+1];
271             jnrlistC         = jjnr[jidx+2];
272             jnrlistD         = jjnr[jidx+3];
273             /* Sign of each element will be negative for non-real atoms.
274              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
275              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
276              */
277             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
278
279             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
280             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
281             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
282
283             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
284             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
285             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
286             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
287             j_coord_offsetA  = DIM*jnrA;
288             j_coord_offsetB  = DIM*jnrB;
289             j_coord_offsetC  = DIM*jnrC;
290             j_coord_offsetD  = DIM*jnrD;
291
292             /* load j atom coordinates */
293             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
294                                                  x+j_coord_offsetC,x+j_coord_offsetD,
295                                                  &jx0,&jy0,&jz0);
296
297             /* Calculate displacement vector */
298             dx00             = _mm256_sub_pd(ix0,jx0);
299             dy00             = _mm256_sub_pd(iy0,jy0);
300             dz00             = _mm256_sub_pd(iz0,jz0);
301
302             /* Calculate squared distance and things based on it */
303             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
304
305             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
306
307             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
308
309             /* Load parameters for j particles */
310             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
311                                                                  charge+jnrC+0,charge+jnrD+0);
312             vdwjidx0A        = 2*vdwtype[jnrA+0];
313             vdwjidx0B        = 2*vdwtype[jnrB+0];
314             vdwjidx0C        = 2*vdwtype[jnrC+0];
315             vdwjidx0D        = 2*vdwtype[jnrD+0];
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             r00              = _mm256_mul_pd(rsq00,rinv00);
322             r00              = _mm256_andnot_pd(dummy_mask,r00);
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq00             = _mm256_mul_pd(iq0,jq0);
326             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
327                                             vdwioffsetptr0+vdwjidx0B,
328                                             vdwioffsetptr0+vdwjidx0C,
329                                             vdwioffsetptr0+vdwjidx0D,
330                                             &c6_00,&c12_00);
331
332             /* EWALD ELECTROSTATICS */
333
334             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
335             ewrt             = _mm256_mul_pd(r00,ewtabscale);
336             ewitab           = _mm256_cvttpd_epi32(ewrt);
337             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
338             ewitab           = _mm_slli_epi32(ewitab,2);
339             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
340             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
341             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
342             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
343             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
344             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
345             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
346             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
347             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
348
349             /* LENNARD-JONES DISPERSION/REPULSION */
350
351             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
352             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
353             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
354             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
355             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velec            = _mm256_andnot_pd(dummy_mask,velec);
359             velecsum         = _mm256_add_pd(velecsum,velec);
360             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
361             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
362
363             fscal            = _mm256_add_pd(felec,fvdw);
364
365             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
366
367             /* Calculate temporary vectorial force */
368             tx               = _mm256_mul_pd(fscal,dx00);
369             ty               = _mm256_mul_pd(fscal,dy00);
370             tz               = _mm256_mul_pd(fscal,dz00);
371
372             /* Update vectorial force */
373             fix0             = _mm256_add_pd(fix0,tx);
374             fiy0             = _mm256_add_pd(fiy0,ty);
375             fiz0             = _mm256_add_pd(fiz0,tz);
376
377             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
378             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
379             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
380             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
381             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
382
383             /* Inner loop uses 54 flops */
384         }
385
386         /* End of innermost loop */
387
388         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
389                                                  f+i_coord_offset,fshift+i_shift_offset);
390
391         ggid                        = gid[iidx];
392         /* Update potential energies */
393         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
394         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
395
396         /* Increment number of inner iterations */
397         inneriter                  += j_index_end - j_index_start;
398
399         /* Outer loop uses 9 flops */
400     }
401
402     /* Increment number of outer iterations */
403     outeriter        += nri;
404
405     /* Update outer/inner flops */
406
407     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
408 }
409 /*
410  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_256_double
411  * Electrostatics interaction: Ewald
412  * VdW interaction:            LennardJones
413  * Geometry:                   Particle-Particle
414  * Calculate force/pot:        Force
415  */
416 void
417 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_256_double
418                     (t_nblist * gmx_restrict                nlist,
419                      rvec * gmx_restrict                    xx,
420                      rvec * gmx_restrict                    ff,
421                      t_forcerec * gmx_restrict              fr,
422                      t_mdatoms * gmx_restrict               mdatoms,
423                      nb_kernel_data_t * gmx_restrict        kernel_data,
424                      t_nrnb * gmx_restrict                  nrnb)
425 {
426     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
427      * just 0 for non-waters.
428      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
429      * jnr indices corresponding to data put in the four positions in the SIMD register.
430      */
431     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
432     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
433     int              jnrA,jnrB,jnrC,jnrD;
434     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
435     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
436     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
437     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
438     real             rcutoff_scalar;
439     real             *shiftvec,*fshift,*x,*f;
440     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
441     real             scratch[4*DIM];
442     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
443     real *           vdwioffsetptr0;
444     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
445     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
446     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
447     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
448     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
449     real             *charge;
450     int              nvdwtype;
451     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
452     int              *vdwtype;
453     real             *vdwparam;
454     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
455     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
456     __m128i          ewitab;
457     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
458     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
459     real             *ewtab;
460     __m256d          dummy_mask,cutoff_mask;
461     __m128           tmpmask0,tmpmask1;
462     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
463     __m256d          one     = _mm256_set1_pd(1.0);
464     __m256d          two     = _mm256_set1_pd(2.0);
465     x                = xx[0];
466     f                = ff[0];
467
468     nri              = nlist->nri;
469     iinr             = nlist->iinr;
470     jindex           = nlist->jindex;
471     jjnr             = nlist->jjnr;
472     shiftidx         = nlist->shift;
473     gid              = nlist->gid;
474     shiftvec         = fr->shift_vec[0];
475     fshift           = fr->fshift[0];
476     facel            = _mm256_set1_pd(fr->epsfac);
477     charge           = mdatoms->chargeA;
478     nvdwtype         = fr->ntype;
479     vdwparam         = fr->nbfp;
480     vdwtype          = mdatoms->typeA;
481
482     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
483     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
484     beta2            = _mm256_mul_pd(beta,beta);
485     beta3            = _mm256_mul_pd(beta,beta2);
486
487     ewtab            = fr->ic->tabq_coul_F;
488     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
489     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
490
491     /* Avoid stupid compiler warnings */
492     jnrA = jnrB = jnrC = jnrD = 0;
493     j_coord_offsetA = 0;
494     j_coord_offsetB = 0;
495     j_coord_offsetC = 0;
496     j_coord_offsetD = 0;
497
498     outeriter        = 0;
499     inneriter        = 0;
500
501     for(iidx=0;iidx<4*DIM;iidx++)
502     {
503         scratch[iidx] = 0.0;
504     }
505
506     /* Start outer loop over neighborlists */
507     for(iidx=0; iidx<nri; iidx++)
508     {
509         /* Load shift vector for this list */
510         i_shift_offset   = DIM*shiftidx[iidx];
511
512         /* Load limits for loop over neighbors */
513         j_index_start    = jindex[iidx];
514         j_index_end      = jindex[iidx+1];
515
516         /* Get outer coordinate index */
517         inr              = iinr[iidx];
518         i_coord_offset   = DIM*inr;
519
520         /* Load i particle coords and add shift vector */
521         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
522
523         fix0             = _mm256_setzero_pd();
524         fiy0             = _mm256_setzero_pd();
525         fiz0             = _mm256_setzero_pd();
526
527         /* Load parameters for i particles */
528         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
529         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
530
531         /* Start inner kernel loop */
532         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
533         {
534
535             /* Get j neighbor index, and coordinate index */
536             jnrA             = jjnr[jidx];
537             jnrB             = jjnr[jidx+1];
538             jnrC             = jjnr[jidx+2];
539             jnrD             = jjnr[jidx+3];
540             j_coord_offsetA  = DIM*jnrA;
541             j_coord_offsetB  = DIM*jnrB;
542             j_coord_offsetC  = DIM*jnrC;
543             j_coord_offsetD  = DIM*jnrD;
544
545             /* load j atom coordinates */
546             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
547                                                  x+j_coord_offsetC,x+j_coord_offsetD,
548                                                  &jx0,&jy0,&jz0);
549
550             /* Calculate displacement vector */
551             dx00             = _mm256_sub_pd(ix0,jx0);
552             dy00             = _mm256_sub_pd(iy0,jy0);
553             dz00             = _mm256_sub_pd(iz0,jz0);
554
555             /* Calculate squared distance and things based on it */
556             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
557
558             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
559
560             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
561
562             /* Load parameters for j particles */
563             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
564                                                                  charge+jnrC+0,charge+jnrD+0);
565             vdwjidx0A        = 2*vdwtype[jnrA+0];
566             vdwjidx0B        = 2*vdwtype[jnrB+0];
567             vdwjidx0C        = 2*vdwtype[jnrC+0];
568             vdwjidx0D        = 2*vdwtype[jnrD+0];
569
570             /**************************
571              * CALCULATE INTERACTIONS *
572              **************************/
573
574             r00              = _mm256_mul_pd(rsq00,rinv00);
575
576             /* Compute parameters for interactions between i and j atoms */
577             qq00             = _mm256_mul_pd(iq0,jq0);
578             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
579                                             vdwioffsetptr0+vdwjidx0B,
580                                             vdwioffsetptr0+vdwjidx0C,
581                                             vdwioffsetptr0+vdwjidx0D,
582                                             &c6_00,&c12_00);
583
584             /* EWALD ELECTROSTATICS */
585
586             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
587             ewrt             = _mm256_mul_pd(r00,ewtabscale);
588             ewitab           = _mm256_cvttpd_epi32(ewrt);
589             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
590             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
591                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
592                                             &ewtabF,&ewtabFn);
593             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
594             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
595
596             /* LENNARD-JONES DISPERSION/REPULSION */
597
598             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
599             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
600
601             fscal            = _mm256_add_pd(felec,fvdw);
602
603             /* Calculate temporary vectorial force */
604             tx               = _mm256_mul_pd(fscal,dx00);
605             ty               = _mm256_mul_pd(fscal,dy00);
606             tz               = _mm256_mul_pd(fscal,dz00);
607
608             /* Update vectorial force */
609             fix0             = _mm256_add_pd(fix0,tx);
610             fiy0             = _mm256_add_pd(fiy0,ty);
611             fiz0             = _mm256_add_pd(fiz0,tz);
612
613             fjptrA             = f+j_coord_offsetA;
614             fjptrB             = f+j_coord_offsetB;
615             fjptrC             = f+j_coord_offsetC;
616             fjptrD             = f+j_coord_offsetD;
617             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
618
619             /* Inner loop uses 43 flops */
620         }
621
622         if(jidx<j_index_end)
623         {
624
625             /* Get j neighbor index, and coordinate index */
626             jnrlistA         = jjnr[jidx];
627             jnrlistB         = jjnr[jidx+1];
628             jnrlistC         = jjnr[jidx+2];
629             jnrlistD         = jjnr[jidx+3];
630             /* Sign of each element will be negative for non-real atoms.
631              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
632              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
633              */
634             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
635
636             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
637             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
638             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
639
640             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
641             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
642             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
643             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
644             j_coord_offsetA  = DIM*jnrA;
645             j_coord_offsetB  = DIM*jnrB;
646             j_coord_offsetC  = DIM*jnrC;
647             j_coord_offsetD  = DIM*jnrD;
648
649             /* load j atom coordinates */
650             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
651                                                  x+j_coord_offsetC,x+j_coord_offsetD,
652                                                  &jx0,&jy0,&jz0);
653
654             /* Calculate displacement vector */
655             dx00             = _mm256_sub_pd(ix0,jx0);
656             dy00             = _mm256_sub_pd(iy0,jy0);
657             dz00             = _mm256_sub_pd(iz0,jz0);
658
659             /* Calculate squared distance and things based on it */
660             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
661
662             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
663
664             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
665
666             /* Load parameters for j particles */
667             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
668                                                                  charge+jnrC+0,charge+jnrD+0);
669             vdwjidx0A        = 2*vdwtype[jnrA+0];
670             vdwjidx0B        = 2*vdwtype[jnrB+0];
671             vdwjidx0C        = 2*vdwtype[jnrC+0];
672             vdwjidx0D        = 2*vdwtype[jnrD+0];
673
674             /**************************
675              * CALCULATE INTERACTIONS *
676              **************************/
677
678             r00              = _mm256_mul_pd(rsq00,rinv00);
679             r00              = _mm256_andnot_pd(dummy_mask,r00);
680
681             /* Compute parameters for interactions between i and j atoms */
682             qq00             = _mm256_mul_pd(iq0,jq0);
683             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
684                                             vdwioffsetptr0+vdwjidx0B,
685                                             vdwioffsetptr0+vdwjidx0C,
686                                             vdwioffsetptr0+vdwjidx0D,
687                                             &c6_00,&c12_00);
688
689             /* EWALD ELECTROSTATICS */
690
691             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
692             ewrt             = _mm256_mul_pd(r00,ewtabscale);
693             ewitab           = _mm256_cvttpd_epi32(ewrt);
694             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
695             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
696                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
697                                             &ewtabF,&ewtabFn);
698             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
699             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
700
701             /* LENNARD-JONES DISPERSION/REPULSION */
702
703             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
704             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
705
706             fscal            = _mm256_add_pd(felec,fvdw);
707
708             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
709
710             /* Calculate temporary vectorial force */
711             tx               = _mm256_mul_pd(fscal,dx00);
712             ty               = _mm256_mul_pd(fscal,dy00);
713             tz               = _mm256_mul_pd(fscal,dz00);
714
715             /* Update vectorial force */
716             fix0             = _mm256_add_pd(fix0,tx);
717             fiy0             = _mm256_add_pd(fiy0,ty);
718             fiz0             = _mm256_add_pd(fiz0,tz);
719
720             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
721             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
722             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
723             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
724             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
725
726             /* Inner loop uses 44 flops */
727         }
728
729         /* End of innermost loop */
730
731         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
732                                                  f+i_coord_offset,fshift+i_shift_offset);
733
734         /* Increment number of inner iterations */
735         inneriter                  += j_index_end - j_index_start;
736
737         /* Outer loop uses 7 flops */
738     }
739
740     /* Increment number of outer iterations */
741     outeriter        += nri;
742
743     /* Update outer/inner flops */
744
745     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*44);
746 }