Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     real *           vdwgridioffsetptr0;
88     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
89     real *           vdwioffsetptr1;
90     real *           vdwgridioffsetptr1;
91     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     real *           vdwgridioffsetptr2;
94     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
95     real *           vdwioffsetptr3;
96     real *           vdwgridioffsetptr3;
97     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
98     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
99     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
100     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
101     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
102     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
103     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
104     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
105     real             *charge;
106     int              nvdwtype;
107     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
108     int              *vdwtype;
109     real             *vdwparam;
110     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
111     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
112     __m256d           c6grid_00;
113     __m256d           c6grid_10;
114     __m256d           c6grid_20;
115     __m256d           c6grid_30;
116     real             *vdwgridparam;
117     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
118     __m256d           one_half  = _mm256_set1_pd(0.5);
119     __m256d           minus_one = _mm256_set1_pd(-1.0);
120     __m128i          ewitab;
121     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
122     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
123     real             *ewtab;
124     __m256d          dummy_mask,cutoff_mask;
125     __m128           tmpmask0,tmpmask1;
126     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
127     __m256d          one     = _mm256_set1_pd(1.0);
128     __m256d          two     = _mm256_set1_pd(2.0);
129     x                = xx[0];
130     f                = ff[0];
131
132     nri              = nlist->nri;
133     iinr             = nlist->iinr;
134     jindex           = nlist->jindex;
135     jjnr             = nlist->jjnr;
136     shiftidx         = nlist->shift;
137     gid              = nlist->gid;
138     shiftvec         = fr->shift_vec[0];
139     fshift           = fr->fshift[0];
140     facel            = _mm256_set1_pd(fr->epsfac);
141     charge           = mdatoms->chargeA;
142     nvdwtype         = fr->ntype;
143     vdwparam         = fr->nbfp;
144     vdwtype          = mdatoms->typeA;
145     vdwgridparam     = fr->ljpme_c6grid;
146     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
147     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
148     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
149
150     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
151     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
152     beta2            = _mm256_mul_pd(beta,beta);
153     beta3            = _mm256_mul_pd(beta,beta2);
154
155     ewtab            = fr->ic->tabq_coul_FDV0;
156     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
157     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
158
159     /* Setup water-specific parameters */
160     inr              = nlist->iinr[0];
161     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
162     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
163     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
164     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
165     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
166
167     /* Avoid stupid compiler warnings */
168     jnrA = jnrB = jnrC = jnrD = 0;
169     j_coord_offsetA = 0;
170     j_coord_offsetB = 0;
171     j_coord_offsetC = 0;
172     j_coord_offsetD = 0;
173
174     outeriter        = 0;
175     inneriter        = 0;
176
177     for(iidx=0;iidx<4*DIM;iidx++)
178     {
179         scratch[iidx] = 0.0;
180     }
181
182     /* Start outer loop over neighborlists */
183     for(iidx=0; iidx<nri; iidx++)
184     {
185         /* Load shift vector for this list */
186         i_shift_offset   = DIM*shiftidx[iidx];
187
188         /* Load limits for loop over neighbors */
189         j_index_start    = jindex[iidx];
190         j_index_end      = jindex[iidx+1];
191
192         /* Get outer coordinate index */
193         inr              = iinr[iidx];
194         i_coord_offset   = DIM*inr;
195
196         /* Load i particle coords and add shift vector */
197         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
198                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
199
200         fix0             = _mm256_setzero_pd();
201         fiy0             = _mm256_setzero_pd();
202         fiz0             = _mm256_setzero_pd();
203         fix1             = _mm256_setzero_pd();
204         fiy1             = _mm256_setzero_pd();
205         fiz1             = _mm256_setzero_pd();
206         fix2             = _mm256_setzero_pd();
207         fiy2             = _mm256_setzero_pd();
208         fiz2             = _mm256_setzero_pd();
209         fix3             = _mm256_setzero_pd();
210         fiy3             = _mm256_setzero_pd();
211         fiz3             = _mm256_setzero_pd();
212
213         /* Reset potential sums */
214         velecsum         = _mm256_setzero_pd();
215         vvdwsum          = _mm256_setzero_pd();
216
217         /* Start inner kernel loop */
218         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
219         {
220
221             /* Get j neighbor index, and coordinate index */
222             jnrA             = jjnr[jidx];
223             jnrB             = jjnr[jidx+1];
224             jnrC             = jjnr[jidx+2];
225             jnrD             = jjnr[jidx+3];
226             j_coord_offsetA  = DIM*jnrA;
227             j_coord_offsetB  = DIM*jnrB;
228             j_coord_offsetC  = DIM*jnrC;
229             j_coord_offsetD  = DIM*jnrD;
230
231             /* load j atom coordinates */
232             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
233                                                  x+j_coord_offsetC,x+j_coord_offsetD,
234                                                  &jx0,&jy0,&jz0);
235
236             /* Calculate displacement vector */
237             dx00             = _mm256_sub_pd(ix0,jx0);
238             dy00             = _mm256_sub_pd(iy0,jy0);
239             dz00             = _mm256_sub_pd(iz0,jz0);
240             dx10             = _mm256_sub_pd(ix1,jx0);
241             dy10             = _mm256_sub_pd(iy1,jy0);
242             dz10             = _mm256_sub_pd(iz1,jz0);
243             dx20             = _mm256_sub_pd(ix2,jx0);
244             dy20             = _mm256_sub_pd(iy2,jy0);
245             dz20             = _mm256_sub_pd(iz2,jz0);
246             dx30             = _mm256_sub_pd(ix3,jx0);
247             dy30             = _mm256_sub_pd(iy3,jy0);
248             dz30             = _mm256_sub_pd(iz3,jz0);
249
250             /* Calculate squared distance and things based on it */
251             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
252             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
253             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
254             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
255
256             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
257             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
258             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
259             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
260
261             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
262             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
263             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
264             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
265
266             /* Load parameters for j particles */
267             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
268                                                                  charge+jnrC+0,charge+jnrD+0);
269             vdwjidx0A        = 2*vdwtype[jnrA+0];
270             vdwjidx0B        = 2*vdwtype[jnrB+0];
271             vdwjidx0C        = 2*vdwtype[jnrC+0];
272             vdwjidx0D        = 2*vdwtype[jnrD+0];
273
274             fjx0             = _mm256_setzero_pd();
275             fjy0             = _mm256_setzero_pd();
276             fjz0             = _mm256_setzero_pd();
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             r00              = _mm256_mul_pd(rsq00,rinv00);
283
284             /* Compute parameters for interactions between i and j atoms */
285             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
286                                             vdwioffsetptr0+vdwjidx0B,
287                                             vdwioffsetptr0+vdwjidx0C,
288                                             vdwioffsetptr0+vdwjidx0D,
289                                             &c6_00,&c12_00);
290
291             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
292                                                                   vdwgridioffsetptr0+vdwjidx0B,
293                                                                   vdwgridioffsetptr0+vdwjidx0C,
294                                                                   vdwgridioffsetptr0+vdwjidx0D);
295
296             /* Analytical LJ-PME */
297             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
298             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
299             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
300             exponent         = gmx_simd_exp_d(ewcljrsq);
301             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
302             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
303             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
304             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
305             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
306             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
307             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
308             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
312
313             fscal            = fvdw;
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm256_mul_pd(fscal,dx00);
317             ty               = _mm256_mul_pd(fscal,dy00);
318             tz               = _mm256_mul_pd(fscal,dz00);
319
320             /* Update vectorial force */
321             fix0             = _mm256_add_pd(fix0,tx);
322             fiy0             = _mm256_add_pd(fiy0,ty);
323             fiz0             = _mm256_add_pd(fiz0,tz);
324
325             fjx0             = _mm256_add_pd(fjx0,tx);
326             fjy0             = _mm256_add_pd(fjy0,ty);
327             fjz0             = _mm256_add_pd(fjz0,tz);
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             r10              = _mm256_mul_pd(rsq10,rinv10);
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq10             = _mm256_mul_pd(iq1,jq0);
337
338             /* EWALD ELECTROSTATICS */
339
340             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
341             ewrt             = _mm256_mul_pd(r10,ewtabscale);
342             ewitab           = _mm256_cvttpd_epi32(ewrt);
343             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
344             ewitab           = _mm_slli_epi32(ewitab,2);
345             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
346             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
347             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
348             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
349             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
350             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
351             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
352             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
353             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velecsum         = _mm256_add_pd(velecsum,velec);
357
358             fscal            = felec;
359
360             /* Calculate temporary vectorial force */
361             tx               = _mm256_mul_pd(fscal,dx10);
362             ty               = _mm256_mul_pd(fscal,dy10);
363             tz               = _mm256_mul_pd(fscal,dz10);
364
365             /* Update vectorial force */
366             fix1             = _mm256_add_pd(fix1,tx);
367             fiy1             = _mm256_add_pd(fiy1,ty);
368             fiz1             = _mm256_add_pd(fiz1,tz);
369
370             fjx0             = _mm256_add_pd(fjx0,tx);
371             fjy0             = _mm256_add_pd(fjy0,ty);
372             fjz0             = _mm256_add_pd(fjz0,tz);
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             r20              = _mm256_mul_pd(rsq20,rinv20);
379
380             /* Compute parameters for interactions between i and j atoms */
381             qq20             = _mm256_mul_pd(iq2,jq0);
382
383             /* EWALD ELECTROSTATICS */
384
385             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
386             ewrt             = _mm256_mul_pd(r20,ewtabscale);
387             ewitab           = _mm256_cvttpd_epi32(ewrt);
388             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
389             ewitab           = _mm_slli_epi32(ewitab,2);
390             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
391             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
392             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
393             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
394             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
395             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
396             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
397             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
398             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
399
400             /* Update potential sum for this i atom from the interaction with this j atom. */
401             velecsum         = _mm256_add_pd(velecsum,velec);
402
403             fscal            = felec;
404
405             /* Calculate temporary vectorial force */
406             tx               = _mm256_mul_pd(fscal,dx20);
407             ty               = _mm256_mul_pd(fscal,dy20);
408             tz               = _mm256_mul_pd(fscal,dz20);
409
410             /* Update vectorial force */
411             fix2             = _mm256_add_pd(fix2,tx);
412             fiy2             = _mm256_add_pd(fiy2,ty);
413             fiz2             = _mm256_add_pd(fiz2,tz);
414
415             fjx0             = _mm256_add_pd(fjx0,tx);
416             fjy0             = _mm256_add_pd(fjy0,ty);
417             fjz0             = _mm256_add_pd(fjz0,tz);
418
419             /**************************
420              * CALCULATE INTERACTIONS *
421              **************************/
422
423             r30              = _mm256_mul_pd(rsq30,rinv30);
424
425             /* Compute parameters for interactions between i and j atoms */
426             qq30             = _mm256_mul_pd(iq3,jq0);
427
428             /* EWALD ELECTROSTATICS */
429
430             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
431             ewrt             = _mm256_mul_pd(r30,ewtabscale);
432             ewitab           = _mm256_cvttpd_epi32(ewrt);
433             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
434             ewitab           = _mm_slli_epi32(ewitab,2);
435             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
436             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
437             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
438             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
439             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
440             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
441             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
442             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
443             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
444
445             /* Update potential sum for this i atom from the interaction with this j atom. */
446             velecsum         = _mm256_add_pd(velecsum,velec);
447
448             fscal            = felec;
449
450             /* Calculate temporary vectorial force */
451             tx               = _mm256_mul_pd(fscal,dx30);
452             ty               = _mm256_mul_pd(fscal,dy30);
453             tz               = _mm256_mul_pd(fscal,dz30);
454
455             /* Update vectorial force */
456             fix3             = _mm256_add_pd(fix3,tx);
457             fiy3             = _mm256_add_pd(fiy3,ty);
458             fiz3             = _mm256_add_pd(fiz3,tz);
459
460             fjx0             = _mm256_add_pd(fjx0,tx);
461             fjy0             = _mm256_add_pd(fjy0,ty);
462             fjz0             = _mm256_add_pd(fjz0,tz);
463
464             fjptrA             = f+j_coord_offsetA;
465             fjptrB             = f+j_coord_offsetB;
466             fjptrC             = f+j_coord_offsetC;
467             fjptrD             = f+j_coord_offsetD;
468
469             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
470
471             /* Inner loop uses 180 flops */
472         }
473
474         if(jidx<j_index_end)
475         {
476
477             /* Get j neighbor index, and coordinate index */
478             jnrlistA         = jjnr[jidx];
479             jnrlistB         = jjnr[jidx+1];
480             jnrlistC         = jjnr[jidx+2];
481             jnrlistD         = jjnr[jidx+3];
482             /* Sign of each element will be negative for non-real atoms.
483              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
484              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
485              */
486             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
487
488             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
489             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
490             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
491
492             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
493             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
494             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
495             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
496             j_coord_offsetA  = DIM*jnrA;
497             j_coord_offsetB  = DIM*jnrB;
498             j_coord_offsetC  = DIM*jnrC;
499             j_coord_offsetD  = DIM*jnrD;
500
501             /* load j atom coordinates */
502             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
503                                                  x+j_coord_offsetC,x+j_coord_offsetD,
504                                                  &jx0,&jy0,&jz0);
505
506             /* Calculate displacement vector */
507             dx00             = _mm256_sub_pd(ix0,jx0);
508             dy00             = _mm256_sub_pd(iy0,jy0);
509             dz00             = _mm256_sub_pd(iz0,jz0);
510             dx10             = _mm256_sub_pd(ix1,jx0);
511             dy10             = _mm256_sub_pd(iy1,jy0);
512             dz10             = _mm256_sub_pd(iz1,jz0);
513             dx20             = _mm256_sub_pd(ix2,jx0);
514             dy20             = _mm256_sub_pd(iy2,jy0);
515             dz20             = _mm256_sub_pd(iz2,jz0);
516             dx30             = _mm256_sub_pd(ix3,jx0);
517             dy30             = _mm256_sub_pd(iy3,jy0);
518             dz30             = _mm256_sub_pd(iz3,jz0);
519
520             /* Calculate squared distance and things based on it */
521             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
522             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
523             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
524             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
525
526             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
527             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
528             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
529             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
530
531             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
532             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
533             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
534             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
535
536             /* Load parameters for j particles */
537             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
538                                                                  charge+jnrC+0,charge+jnrD+0);
539             vdwjidx0A        = 2*vdwtype[jnrA+0];
540             vdwjidx0B        = 2*vdwtype[jnrB+0];
541             vdwjidx0C        = 2*vdwtype[jnrC+0];
542             vdwjidx0D        = 2*vdwtype[jnrD+0];
543
544             fjx0             = _mm256_setzero_pd();
545             fjy0             = _mm256_setzero_pd();
546             fjz0             = _mm256_setzero_pd();
547
548             /**************************
549              * CALCULATE INTERACTIONS *
550              **************************/
551
552             r00              = _mm256_mul_pd(rsq00,rinv00);
553             r00              = _mm256_andnot_pd(dummy_mask,r00);
554
555             /* Compute parameters for interactions between i and j atoms */
556             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
557                                             vdwioffsetptr0+vdwjidx0B,
558                                             vdwioffsetptr0+vdwjidx0C,
559                                             vdwioffsetptr0+vdwjidx0D,
560                                             &c6_00,&c12_00);
561
562             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
563                                                                   vdwgridioffsetptr0+vdwjidx0B,
564                                                                   vdwgridioffsetptr0+vdwjidx0C,
565                                                                   vdwgridioffsetptr0+vdwjidx0D);
566
567             /* Analytical LJ-PME */
568             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
569             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
570             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
571             exponent         = gmx_simd_exp_d(ewcljrsq);
572             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
573             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
574             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
575             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
576             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
577             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
578             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
579             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
583             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
584
585             fscal            = fvdw;
586
587             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
588
589             /* Calculate temporary vectorial force */
590             tx               = _mm256_mul_pd(fscal,dx00);
591             ty               = _mm256_mul_pd(fscal,dy00);
592             tz               = _mm256_mul_pd(fscal,dz00);
593
594             /* Update vectorial force */
595             fix0             = _mm256_add_pd(fix0,tx);
596             fiy0             = _mm256_add_pd(fiy0,ty);
597             fiz0             = _mm256_add_pd(fiz0,tz);
598
599             fjx0             = _mm256_add_pd(fjx0,tx);
600             fjy0             = _mm256_add_pd(fjy0,ty);
601             fjz0             = _mm256_add_pd(fjz0,tz);
602
603             /**************************
604              * CALCULATE INTERACTIONS *
605              **************************/
606
607             r10              = _mm256_mul_pd(rsq10,rinv10);
608             r10              = _mm256_andnot_pd(dummy_mask,r10);
609
610             /* Compute parameters for interactions between i and j atoms */
611             qq10             = _mm256_mul_pd(iq1,jq0);
612
613             /* EWALD ELECTROSTATICS */
614
615             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
616             ewrt             = _mm256_mul_pd(r10,ewtabscale);
617             ewitab           = _mm256_cvttpd_epi32(ewrt);
618             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
619             ewitab           = _mm_slli_epi32(ewitab,2);
620             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
621             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
622             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
623             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
624             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
625             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
626             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
627             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
628             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
629
630             /* Update potential sum for this i atom from the interaction with this j atom. */
631             velec            = _mm256_andnot_pd(dummy_mask,velec);
632             velecsum         = _mm256_add_pd(velecsum,velec);
633
634             fscal            = felec;
635
636             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
637
638             /* Calculate temporary vectorial force */
639             tx               = _mm256_mul_pd(fscal,dx10);
640             ty               = _mm256_mul_pd(fscal,dy10);
641             tz               = _mm256_mul_pd(fscal,dz10);
642
643             /* Update vectorial force */
644             fix1             = _mm256_add_pd(fix1,tx);
645             fiy1             = _mm256_add_pd(fiy1,ty);
646             fiz1             = _mm256_add_pd(fiz1,tz);
647
648             fjx0             = _mm256_add_pd(fjx0,tx);
649             fjy0             = _mm256_add_pd(fjy0,ty);
650             fjz0             = _mm256_add_pd(fjz0,tz);
651
652             /**************************
653              * CALCULATE INTERACTIONS *
654              **************************/
655
656             r20              = _mm256_mul_pd(rsq20,rinv20);
657             r20              = _mm256_andnot_pd(dummy_mask,r20);
658
659             /* Compute parameters for interactions between i and j atoms */
660             qq20             = _mm256_mul_pd(iq2,jq0);
661
662             /* EWALD ELECTROSTATICS */
663
664             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
665             ewrt             = _mm256_mul_pd(r20,ewtabscale);
666             ewitab           = _mm256_cvttpd_epi32(ewrt);
667             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
668             ewitab           = _mm_slli_epi32(ewitab,2);
669             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
670             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
671             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
672             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
673             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
674             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
675             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
676             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
677             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
678
679             /* Update potential sum for this i atom from the interaction with this j atom. */
680             velec            = _mm256_andnot_pd(dummy_mask,velec);
681             velecsum         = _mm256_add_pd(velecsum,velec);
682
683             fscal            = felec;
684
685             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
686
687             /* Calculate temporary vectorial force */
688             tx               = _mm256_mul_pd(fscal,dx20);
689             ty               = _mm256_mul_pd(fscal,dy20);
690             tz               = _mm256_mul_pd(fscal,dz20);
691
692             /* Update vectorial force */
693             fix2             = _mm256_add_pd(fix2,tx);
694             fiy2             = _mm256_add_pd(fiy2,ty);
695             fiz2             = _mm256_add_pd(fiz2,tz);
696
697             fjx0             = _mm256_add_pd(fjx0,tx);
698             fjy0             = _mm256_add_pd(fjy0,ty);
699             fjz0             = _mm256_add_pd(fjz0,tz);
700
701             /**************************
702              * CALCULATE INTERACTIONS *
703              **************************/
704
705             r30              = _mm256_mul_pd(rsq30,rinv30);
706             r30              = _mm256_andnot_pd(dummy_mask,r30);
707
708             /* Compute parameters for interactions between i and j atoms */
709             qq30             = _mm256_mul_pd(iq3,jq0);
710
711             /* EWALD ELECTROSTATICS */
712
713             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
714             ewrt             = _mm256_mul_pd(r30,ewtabscale);
715             ewitab           = _mm256_cvttpd_epi32(ewrt);
716             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
717             ewitab           = _mm_slli_epi32(ewitab,2);
718             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
719             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
720             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
721             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
722             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
723             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
724             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
725             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
726             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
727
728             /* Update potential sum for this i atom from the interaction with this j atom. */
729             velec            = _mm256_andnot_pd(dummy_mask,velec);
730             velecsum         = _mm256_add_pd(velecsum,velec);
731
732             fscal            = felec;
733
734             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
735
736             /* Calculate temporary vectorial force */
737             tx               = _mm256_mul_pd(fscal,dx30);
738             ty               = _mm256_mul_pd(fscal,dy30);
739             tz               = _mm256_mul_pd(fscal,dz30);
740
741             /* Update vectorial force */
742             fix3             = _mm256_add_pd(fix3,tx);
743             fiy3             = _mm256_add_pd(fiy3,ty);
744             fiz3             = _mm256_add_pd(fiz3,tz);
745
746             fjx0             = _mm256_add_pd(fjx0,tx);
747             fjy0             = _mm256_add_pd(fjy0,ty);
748             fjz0             = _mm256_add_pd(fjz0,tz);
749
750             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
751             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
752             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
753             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
754
755             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
756
757             /* Inner loop uses 184 flops */
758         }
759
760         /* End of innermost loop */
761
762         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
763                                                  f+i_coord_offset,fshift+i_shift_offset);
764
765         ggid                        = gid[iidx];
766         /* Update potential energies */
767         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
768         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
769
770         /* Increment number of inner iterations */
771         inneriter                  += j_index_end - j_index_start;
772
773         /* Outer loop uses 26 flops */
774     }
775
776     /* Increment number of outer iterations */
777     outeriter        += nri;
778
779     /* Update outer/inner flops */
780
781     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*184);
782 }
783 /*
784  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_256_double
785  * Electrostatics interaction: Ewald
786  * VdW interaction:            LJEwald
787  * Geometry:                   Water4-Particle
788  * Calculate force/pot:        Force
789  */
790 void
791 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_256_double
792                     (t_nblist                    * gmx_restrict       nlist,
793                      rvec                        * gmx_restrict          xx,
794                      rvec                        * gmx_restrict          ff,
795                      t_forcerec                  * gmx_restrict          fr,
796                      t_mdatoms                   * gmx_restrict     mdatoms,
797                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
798                      t_nrnb                      * gmx_restrict        nrnb)
799 {
800     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
801      * just 0 for non-waters.
802      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
803      * jnr indices corresponding to data put in the four positions in the SIMD register.
804      */
805     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
806     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
807     int              jnrA,jnrB,jnrC,jnrD;
808     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
809     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
810     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
811     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
812     real             rcutoff_scalar;
813     real             *shiftvec,*fshift,*x,*f;
814     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
815     real             scratch[4*DIM];
816     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
817     real *           vdwioffsetptr0;
818     real *           vdwgridioffsetptr0;
819     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
820     real *           vdwioffsetptr1;
821     real *           vdwgridioffsetptr1;
822     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
823     real *           vdwioffsetptr2;
824     real *           vdwgridioffsetptr2;
825     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
826     real *           vdwioffsetptr3;
827     real *           vdwgridioffsetptr3;
828     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
829     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
830     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
831     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
832     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
833     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
834     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
835     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
836     real             *charge;
837     int              nvdwtype;
838     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
839     int              *vdwtype;
840     real             *vdwparam;
841     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
842     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
843     __m256d           c6grid_00;
844     __m256d           c6grid_10;
845     __m256d           c6grid_20;
846     __m256d           c6grid_30;
847     real             *vdwgridparam;
848     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
849     __m256d           one_half  = _mm256_set1_pd(0.5);
850     __m256d           minus_one = _mm256_set1_pd(-1.0);
851     __m128i          ewitab;
852     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
853     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
854     real             *ewtab;
855     __m256d          dummy_mask,cutoff_mask;
856     __m128           tmpmask0,tmpmask1;
857     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
858     __m256d          one     = _mm256_set1_pd(1.0);
859     __m256d          two     = _mm256_set1_pd(2.0);
860     x                = xx[0];
861     f                = ff[0];
862
863     nri              = nlist->nri;
864     iinr             = nlist->iinr;
865     jindex           = nlist->jindex;
866     jjnr             = nlist->jjnr;
867     shiftidx         = nlist->shift;
868     gid              = nlist->gid;
869     shiftvec         = fr->shift_vec[0];
870     fshift           = fr->fshift[0];
871     facel            = _mm256_set1_pd(fr->epsfac);
872     charge           = mdatoms->chargeA;
873     nvdwtype         = fr->ntype;
874     vdwparam         = fr->nbfp;
875     vdwtype          = mdatoms->typeA;
876     vdwgridparam     = fr->ljpme_c6grid;
877     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
878     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
879     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
880
881     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
882     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
883     beta2            = _mm256_mul_pd(beta,beta);
884     beta3            = _mm256_mul_pd(beta,beta2);
885
886     ewtab            = fr->ic->tabq_coul_F;
887     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
888     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
889
890     /* Setup water-specific parameters */
891     inr              = nlist->iinr[0];
892     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
893     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
894     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
895     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
896     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
897
898     /* Avoid stupid compiler warnings */
899     jnrA = jnrB = jnrC = jnrD = 0;
900     j_coord_offsetA = 0;
901     j_coord_offsetB = 0;
902     j_coord_offsetC = 0;
903     j_coord_offsetD = 0;
904
905     outeriter        = 0;
906     inneriter        = 0;
907
908     for(iidx=0;iidx<4*DIM;iidx++)
909     {
910         scratch[iidx] = 0.0;
911     }
912
913     /* Start outer loop over neighborlists */
914     for(iidx=0; iidx<nri; iidx++)
915     {
916         /* Load shift vector for this list */
917         i_shift_offset   = DIM*shiftidx[iidx];
918
919         /* Load limits for loop over neighbors */
920         j_index_start    = jindex[iidx];
921         j_index_end      = jindex[iidx+1];
922
923         /* Get outer coordinate index */
924         inr              = iinr[iidx];
925         i_coord_offset   = DIM*inr;
926
927         /* Load i particle coords and add shift vector */
928         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
929                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
930
931         fix0             = _mm256_setzero_pd();
932         fiy0             = _mm256_setzero_pd();
933         fiz0             = _mm256_setzero_pd();
934         fix1             = _mm256_setzero_pd();
935         fiy1             = _mm256_setzero_pd();
936         fiz1             = _mm256_setzero_pd();
937         fix2             = _mm256_setzero_pd();
938         fiy2             = _mm256_setzero_pd();
939         fiz2             = _mm256_setzero_pd();
940         fix3             = _mm256_setzero_pd();
941         fiy3             = _mm256_setzero_pd();
942         fiz3             = _mm256_setzero_pd();
943
944         /* Start inner kernel loop */
945         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
946         {
947
948             /* Get j neighbor index, and coordinate index */
949             jnrA             = jjnr[jidx];
950             jnrB             = jjnr[jidx+1];
951             jnrC             = jjnr[jidx+2];
952             jnrD             = jjnr[jidx+3];
953             j_coord_offsetA  = DIM*jnrA;
954             j_coord_offsetB  = DIM*jnrB;
955             j_coord_offsetC  = DIM*jnrC;
956             j_coord_offsetD  = DIM*jnrD;
957
958             /* load j atom coordinates */
959             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
960                                                  x+j_coord_offsetC,x+j_coord_offsetD,
961                                                  &jx0,&jy0,&jz0);
962
963             /* Calculate displacement vector */
964             dx00             = _mm256_sub_pd(ix0,jx0);
965             dy00             = _mm256_sub_pd(iy0,jy0);
966             dz00             = _mm256_sub_pd(iz0,jz0);
967             dx10             = _mm256_sub_pd(ix1,jx0);
968             dy10             = _mm256_sub_pd(iy1,jy0);
969             dz10             = _mm256_sub_pd(iz1,jz0);
970             dx20             = _mm256_sub_pd(ix2,jx0);
971             dy20             = _mm256_sub_pd(iy2,jy0);
972             dz20             = _mm256_sub_pd(iz2,jz0);
973             dx30             = _mm256_sub_pd(ix3,jx0);
974             dy30             = _mm256_sub_pd(iy3,jy0);
975             dz30             = _mm256_sub_pd(iz3,jz0);
976
977             /* Calculate squared distance and things based on it */
978             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
979             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
980             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
981             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
982
983             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
984             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
985             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
986             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
987
988             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
989             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
990             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
991             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
992
993             /* Load parameters for j particles */
994             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
995                                                                  charge+jnrC+0,charge+jnrD+0);
996             vdwjidx0A        = 2*vdwtype[jnrA+0];
997             vdwjidx0B        = 2*vdwtype[jnrB+0];
998             vdwjidx0C        = 2*vdwtype[jnrC+0];
999             vdwjidx0D        = 2*vdwtype[jnrD+0];
1000
1001             fjx0             = _mm256_setzero_pd();
1002             fjy0             = _mm256_setzero_pd();
1003             fjz0             = _mm256_setzero_pd();
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             r00              = _mm256_mul_pd(rsq00,rinv00);
1010
1011             /* Compute parameters for interactions between i and j atoms */
1012             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1013                                             vdwioffsetptr0+vdwjidx0B,
1014                                             vdwioffsetptr0+vdwjidx0C,
1015                                             vdwioffsetptr0+vdwjidx0D,
1016                                             &c6_00,&c12_00);
1017
1018             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
1019                                                                   vdwgridioffsetptr0+vdwjidx0B,
1020                                                                   vdwgridioffsetptr0+vdwjidx0C,
1021                                                                   vdwgridioffsetptr0+vdwjidx0D);
1022
1023             /* Analytical LJ-PME */
1024             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1025             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
1026             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
1027             exponent         = gmx_simd_exp_d(ewcljrsq);
1028             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1029             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1030             /* f6A = 6 * C6grid * (1 - poly) */
1031             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
1032             /* f6B = C6grid * exponent * beta^6 */
1033             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
1034             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1035             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1036
1037             fscal            = fvdw;
1038
1039             /* Calculate temporary vectorial force */
1040             tx               = _mm256_mul_pd(fscal,dx00);
1041             ty               = _mm256_mul_pd(fscal,dy00);
1042             tz               = _mm256_mul_pd(fscal,dz00);
1043
1044             /* Update vectorial force */
1045             fix0             = _mm256_add_pd(fix0,tx);
1046             fiy0             = _mm256_add_pd(fiy0,ty);
1047             fiz0             = _mm256_add_pd(fiz0,tz);
1048
1049             fjx0             = _mm256_add_pd(fjx0,tx);
1050             fjy0             = _mm256_add_pd(fjy0,ty);
1051             fjz0             = _mm256_add_pd(fjz0,tz);
1052
1053             /**************************
1054              * CALCULATE INTERACTIONS *
1055              **************************/
1056
1057             r10              = _mm256_mul_pd(rsq10,rinv10);
1058
1059             /* Compute parameters for interactions between i and j atoms */
1060             qq10             = _mm256_mul_pd(iq1,jq0);
1061
1062             /* EWALD ELECTROSTATICS */
1063
1064             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1065             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1066             ewitab           = _mm256_cvttpd_epi32(ewrt);
1067             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1068             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1069                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1070                                             &ewtabF,&ewtabFn);
1071             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1072             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1073
1074             fscal            = felec;
1075
1076             /* Calculate temporary vectorial force */
1077             tx               = _mm256_mul_pd(fscal,dx10);
1078             ty               = _mm256_mul_pd(fscal,dy10);
1079             tz               = _mm256_mul_pd(fscal,dz10);
1080
1081             /* Update vectorial force */
1082             fix1             = _mm256_add_pd(fix1,tx);
1083             fiy1             = _mm256_add_pd(fiy1,ty);
1084             fiz1             = _mm256_add_pd(fiz1,tz);
1085
1086             fjx0             = _mm256_add_pd(fjx0,tx);
1087             fjy0             = _mm256_add_pd(fjy0,ty);
1088             fjz0             = _mm256_add_pd(fjz0,tz);
1089
1090             /**************************
1091              * CALCULATE INTERACTIONS *
1092              **************************/
1093
1094             r20              = _mm256_mul_pd(rsq20,rinv20);
1095
1096             /* Compute parameters for interactions between i and j atoms */
1097             qq20             = _mm256_mul_pd(iq2,jq0);
1098
1099             /* EWALD ELECTROSTATICS */
1100
1101             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1102             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1103             ewitab           = _mm256_cvttpd_epi32(ewrt);
1104             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1105             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1106                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1107                                             &ewtabF,&ewtabFn);
1108             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1109             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1110
1111             fscal            = felec;
1112
1113             /* Calculate temporary vectorial force */
1114             tx               = _mm256_mul_pd(fscal,dx20);
1115             ty               = _mm256_mul_pd(fscal,dy20);
1116             tz               = _mm256_mul_pd(fscal,dz20);
1117
1118             /* Update vectorial force */
1119             fix2             = _mm256_add_pd(fix2,tx);
1120             fiy2             = _mm256_add_pd(fiy2,ty);
1121             fiz2             = _mm256_add_pd(fiz2,tz);
1122
1123             fjx0             = _mm256_add_pd(fjx0,tx);
1124             fjy0             = _mm256_add_pd(fjy0,ty);
1125             fjz0             = _mm256_add_pd(fjz0,tz);
1126
1127             /**************************
1128              * CALCULATE INTERACTIONS *
1129              **************************/
1130
1131             r30              = _mm256_mul_pd(rsq30,rinv30);
1132
1133             /* Compute parameters for interactions between i and j atoms */
1134             qq30             = _mm256_mul_pd(iq3,jq0);
1135
1136             /* EWALD ELECTROSTATICS */
1137
1138             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1139             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1140             ewitab           = _mm256_cvttpd_epi32(ewrt);
1141             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1142             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1143                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1144                                             &ewtabF,&ewtabFn);
1145             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1146             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1147
1148             fscal            = felec;
1149
1150             /* Calculate temporary vectorial force */
1151             tx               = _mm256_mul_pd(fscal,dx30);
1152             ty               = _mm256_mul_pd(fscal,dy30);
1153             tz               = _mm256_mul_pd(fscal,dz30);
1154
1155             /* Update vectorial force */
1156             fix3             = _mm256_add_pd(fix3,tx);
1157             fiy3             = _mm256_add_pd(fiy3,ty);
1158             fiz3             = _mm256_add_pd(fiz3,tz);
1159
1160             fjx0             = _mm256_add_pd(fjx0,tx);
1161             fjy0             = _mm256_add_pd(fjy0,ty);
1162             fjz0             = _mm256_add_pd(fjz0,tz);
1163
1164             fjptrA             = f+j_coord_offsetA;
1165             fjptrB             = f+j_coord_offsetB;
1166             fjptrC             = f+j_coord_offsetC;
1167             fjptrD             = f+j_coord_offsetD;
1168
1169             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1170
1171             /* Inner loop uses 157 flops */
1172         }
1173
1174         if(jidx<j_index_end)
1175         {
1176
1177             /* Get j neighbor index, and coordinate index */
1178             jnrlistA         = jjnr[jidx];
1179             jnrlistB         = jjnr[jidx+1];
1180             jnrlistC         = jjnr[jidx+2];
1181             jnrlistD         = jjnr[jidx+3];
1182             /* Sign of each element will be negative for non-real atoms.
1183              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1184              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1185              */
1186             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1187
1188             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1189             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1190             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1191
1192             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1193             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1194             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1195             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1196             j_coord_offsetA  = DIM*jnrA;
1197             j_coord_offsetB  = DIM*jnrB;
1198             j_coord_offsetC  = DIM*jnrC;
1199             j_coord_offsetD  = DIM*jnrD;
1200
1201             /* load j atom coordinates */
1202             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1203                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1204                                                  &jx0,&jy0,&jz0);
1205
1206             /* Calculate displacement vector */
1207             dx00             = _mm256_sub_pd(ix0,jx0);
1208             dy00             = _mm256_sub_pd(iy0,jy0);
1209             dz00             = _mm256_sub_pd(iz0,jz0);
1210             dx10             = _mm256_sub_pd(ix1,jx0);
1211             dy10             = _mm256_sub_pd(iy1,jy0);
1212             dz10             = _mm256_sub_pd(iz1,jz0);
1213             dx20             = _mm256_sub_pd(ix2,jx0);
1214             dy20             = _mm256_sub_pd(iy2,jy0);
1215             dz20             = _mm256_sub_pd(iz2,jz0);
1216             dx30             = _mm256_sub_pd(ix3,jx0);
1217             dy30             = _mm256_sub_pd(iy3,jy0);
1218             dz30             = _mm256_sub_pd(iz3,jz0);
1219
1220             /* Calculate squared distance and things based on it */
1221             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1222             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1223             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1224             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1225
1226             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1227             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1228             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1229             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1230
1231             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1232             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1233             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1234             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1235
1236             /* Load parameters for j particles */
1237             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1238                                                                  charge+jnrC+0,charge+jnrD+0);
1239             vdwjidx0A        = 2*vdwtype[jnrA+0];
1240             vdwjidx0B        = 2*vdwtype[jnrB+0];
1241             vdwjidx0C        = 2*vdwtype[jnrC+0];
1242             vdwjidx0D        = 2*vdwtype[jnrD+0];
1243
1244             fjx0             = _mm256_setzero_pd();
1245             fjy0             = _mm256_setzero_pd();
1246             fjz0             = _mm256_setzero_pd();
1247
1248             /**************************
1249              * CALCULATE INTERACTIONS *
1250              **************************/
1251
1252             r00              = _mm256_mul_pd(rsq00,rinv00);
1253             r00              = _mm256_andnot_pd(dummy_mask,r00);
1254
1255             /* Compute parameters for interactions between i and j atoms */
1256             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1257                                             vdwioffsetptr0+vdwjidx0B,
1258                                             vdwioffsetptr0+vdwjidx0C,
1259                                             vdwioffsetptr0+vdwjidx0D,
1260                                             &c6_00,&c12_00);
1261
1262             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
1263                                                                   vdwgridioffsetptr0+vdwjidx0B,
1264                                                                   vdwgridioffsetptr0+vdwjidx0C,
1265                                                                   vdwgridioffsetptr0+vdwjidx0D);
1266
1267             /* Analytical LJ-PME */
1268             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1269             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
1270             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
1271             exponent         = gmx_simd_exp_d(ewcljrsq);
1272             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1273             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1274             /* f6A = 6 * C6grid * (1 - poly) */
1275             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
1276             /* f6B = C6grid * exponent * beta^6 */
1277             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
1278             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1279             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1280
1281             fscal            = fvdw;
1282
1283             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1284
1285             /* Calculate temporary vectorial force */
1286             tx               = _mm256_mul_pd(fscal,dx00);
1287             ty               = _mm256_mul_pd(fscal,dy00);
1288             tz               = _mm256_mul_pd(fscal,dz00);
1289
1290             /* Update vectorial force */
1291             fix0             = _mm256_add_pd(fix0,tx);
1292             fiy0             = _mm256_add_pd(fiy0,ty);
1293             fiz0             = _mm256_add_pd(fiz0,tz);
1294
1295             fjx0             = _mm256_add_pd(fjx0,tx);
1296             fjy0             = _mm256_add_pd(fjy0,ty);
1297             fjz0             = _mm256_add_pd(fjz0,tz);
1298
1299             /**************************
1300              * CALCULATE INTERACTIONS *
1301              **************************/
1302
1303             r10              = _mm256_mul_pd(rsq10,rinv10);
1304             r10              = _mm256_andnot_pd(dummy_mask,r10);
1305
1306             /* Compute parameters for interactions between i and j atoms */
1307             qq10             = _mm256_mul_pd(iq1,jq0);
1308
1309             /* EWALD ELECTROSTATICS */
1310
1311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1312             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1313             ewitab           = _mm256_cvttpd_epi32(ewrt);
1314             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1315             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1316                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1317                                             &ewtabF,&ewtabFn);
1318             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1319             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1320
1321             fscal            = felec;
1322
1323             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1324
1325             /* Calculate temporary vectorial force */
1326             tx               = _mm256_mul_pd(fscal,dx10);
1327             ty               = _mm256_mul_pd(fscal,dy10);
1328             tz               = _mm256_mul_pd(fscal,dz10);
1329
1330             /* Update vectorial force */
1331             fix1             = _mm256_add_pd(fix1,tx);
1332             fiy1             = _mm256_add_pd(fiy1,ty);
1333             fiz1             = _mm256_add_pd(fiz1,tz);
1334
1335             fjx0             = _mm256_add_pd(fjx0,tx);
1336             fjy0             = _mm256_add_pd(fjy0,ty);
1337             fjz0             = _mm256_add_pd(fjz0,tz);
1338
1339             /**************************
1340              * CALCULATE INTERACTIONS *
1341              **************************/
1342
1343             r20              = _mm256_mul_pd(rsq20,rinv20);
1344             r20              = _mm256_andnot_pd(dummy_mask,r20);
1345
1346             /* Compute parameters for interactions between i and j atoms */
1347             qq20             = _mm256_mul_pd(iq2,jq0);
1348
1349             /* EWALD ELECTROSTATICS */
1350
1351             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1352             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1353             ewitab           = _mm256_cvttpd_epi32(ewrt);
1354             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1355             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1356                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1357                                             &ewtabF,&ewtabFn);
1358             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1359             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1360
1361             fscal            = felec;
1362
1363             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1364
1365             /* Calculate temporary vectorial force */
1366             tx               = _mm256_mul_pd(fscal,dx20);
1367             ty               = _mm256_mul_pd(fscal,dy20);
1368             tz               = _mm256_mul_pd(fscal,dz20);
1369
1370             /* Update vectorial force */
1371             fix2             = _mm256_add_pd(fix2,tx);
1372             fiy2             = _mm256_add_pd(fiy2,ty);
1373             fiz2             = _mm256_add_pd(fiz2,tz);
1374
1375             fjx0             = _mm256_add_pd(fjx0,tx);
1376             fjy0             = _mm256_add_pd(fjy0,ty);
1377             fjz0             = _mm256_add_pd(fjz0,tz);
1378
1379             /**************************
1380              * CALCULATE INTERACTIONS *
1381              **************************/
1382
1383             r30              = _mm256_mul_pd(rsq30,rinv30);
1384             r30              = _mm256_andnot_pd(dummy_mask,r30);
1385
1386             /* Compute parameters for interactions between i and j atoms */
1387             qq30             = _mm256_mul_pd(iq3,jq0);
1388
1389             /* EWALD ELECTROSTATICS */
1390
1391             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1392             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1393             ewitab           = _mm256_cvttpd_epi32(ewrt);
1394             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1395             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1396                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1397                                             &ewtabF,&ewtabFn);
1398             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1399             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1400
1401             fscal            = felec;
1402
1403             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1404
1405             /* Calculate temporary vectorial force */
1406             tx               = _mm256_mul_pd(fscal,dx30);
1407             ty               = _mm256_mul_pd(fscal,dy30);
1408             tz               = _mm256_mul_pd(fscal,dz30);
1409
1410             /* Update vectorial force */
1411             fix3             = _mm256_add_pd(fix3,tx);
1412             fiy3             = _mm256_add_pd(fiy3,ty);
1413             fiz3             = _mm256_add_pd(fiz3,tz);
1414
1415             fjx0             = _mm256_add_pd(fjx0,tx);
1416             fjy0             = _mm256_add_pd(fjy0,ty);
1417             fjz0             = _mm256_add_pd(fjz0,tz);
1418
1419             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1420             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1421             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1422             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1423
1424             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1425
1426             /* Inner loop uses 161 flops */
1427         }
1428
1429         /* End of innermost loop */
1430
1431         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1432                                                  f+i_coord_offset,fshift+i_shift_offset);
1433
1434         /* Increment number of inner iterations */
1435         inneriter                  += j_index_end - j_index_start;
1436
1437         /* Outer loop uses 24 flops */
1438     }
1439
1440     /* Increment number of outer iterations */
1441     outeriter        += nri;
1442
1443     /* Update outer/inner flops */
1444
1445     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*161);
1446 }