Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     real *           vdwgridioffsetptr0;
86     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     real *           vdwgridioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     real *           vdwgridioffsetptr2;
92     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
93     real *           vdwioffsetptr3;
94     real *           vdwgridioffsetptr3;
95     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
96     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
97     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
98     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
99     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
100     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
102     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
103     real             *charge;
104     int              nvdwtype;
105     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
106     int              *vdwtype;
107     real             *vdwparam;
108     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
109     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
110     __m256d           c6grid_00;
111     __m256d           c6grid_10;
112     __m256d           c6grid_20;
113     __m256d           c6grid_30;
114     real             *vdwgridparam;
115     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
116     __m256d           one_half  = _mm256_set1_pd(0.5);
117     __m256d           minus_one = _mm256_set1_pd(-1.0);
118     __m128i          ewitab;
119     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
120     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
121     real             *ewtab;
122     __m256d          dummy_mask,cutoff_mask;
123     __m128           tmpmask0,tmpmask1;
124     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
125     __m256d          one     = _mm256_set1_pd(1.0);
126     __m256d          two     = _mm256_set1_pd(2.0);
127     x                = xx[0];
128     f                = ff[0];
129
130     nri              = nlist->nri;
131     iinr             = nlist->iinr;
132     jindex           = nlist->jindex;
133     jjnr             = nlist->jjnr;
134     shiftidx         = nlist->shift;
135     gid              = nlist->gid;
136     shiftvec         = fr->shift_vec[0];
137     fshift           = fr->fshift[0];
138     facel            = _mm256_set1_pd(fr->epsfac);
139     charge           = mdatoms->chargeA;
140     nvdwtype         = fr->ntype;
141     vdwparam         = fr->nbfp;
142     vdwtype          = mdatoms->typeA;
143     vdwgridparam     = fr->ljpme_c6grid;
144     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
145     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
146     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
147
148     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
149     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
150     beta2            = _mm256_mul_pd(beta,beta);
151     beta3            = _mm256_mul_pd(beta,beta2);
152
153     ewtab            = fr->ic->tabq_coul_FDV0;
154     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
155     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
156
157     /* Setup water-specific parameters */
158     inr              = nlist->iinr[0];
159     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
160     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
161     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
162     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
163     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
164
165     /* Avoid stupid compiler warnings */
166     jnrA = jnrB = jnrC = jnrD = 0;
167     j_coord_offsetA = 0;
168     j_coord_offsetB = 0;
169     j_coord_offsetC = 0;
170     j_coord_offsetD = 0;
171
172     outeriter        = 0;
173     inneriter        = 0;
174
175     for(iidx=0;iidx<4*DIM;iidx++)
176     {
177         scratch[iidx] = 0.0;
178     }
179
180     /* Start outer loop over neighborlists */
181     for(iidx=0; iidx<nri; iidx++)
182     {
183         /* Load shift vector for this list */
184         i_shift_offset   = DIM*shiftidx[iidx];
185
186         /* Load limits for loop over neighbors */
187         j_index_start    = jindex[iidx];
188         j_index_end      = jindex[iidx+1];
189
190         /* Get outer coordinate index */
191         inr              = iinr[iidx];
192         i_coord_offset   = DIM*inr;
193
194         /* Load i particle coords and add shift vector */
195         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
196                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
197
198         fix0             = _mm256_setzero_pd();
199         fiy0             = _mm256_setzero_pd();
200         fiz0             = _mm256_setzero_pd();
201         fix1             = _mm256_setzero_pd();
202         fiy1             = _mm256_setzero_pd();
203         fiz1             = _mm256_setzero_pd();
204         fix2             = _mm256_setzero_pd();
205         fiy2             = _mm256_setzero_pd();
206         fiz2             = _mm256_setzero_pd();
207         fix3             = _mm256_setzero_pd();
208         fiy3             = _mm256_setzero_pd();
209         fiz3             = _mm256_setzero_pd();
210
211         /* Reset potential sums */
212         velecsum         = _mm256_setzero_pd();
213         vvdwsum          = _mm256_setzero_pd();
214
215         /* Start inner kernel loop */
216         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
217         {
218
219             /* Get j neighbor index, and coordinate index */
220             jnrA             = jjnr[jidx];
221             jnrB             = jjnr[jidx+1];
222             jnrC             = jjnr[jidx+2];
223             jnrD             = jjnr[jidx+3];
224             j_coord_offsetA  = DIM*jnrA;
225             j_coord_offsetB  = DIM*jnrB;
226             j_coord_offsetC  = DIM*jnrC;
227             j_coord_offsetD  = DIM*jnrD;
228
229             /* load j atom coordinates */
230             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
231                                                  x+j_coord_offsetC,x+j_coord_offsetD,
232                                                  &jx0,&jy0,&jz0);
233
234             /* Calculate displacement vector */
235             dx00             = _mm256_sub_pd(ix0,jx0);
236             dy00             = _mm256_sub_pd(iy0,jy0);
237             dz00             = _mm256_sub_pd(iz0,jz0);
238             dx10             = _mm256_sub_pd(ix1,jx0);
239             dy10             = _mm256_sub_pd(iy1,jy0);
240             dz10             = _mm256_sub_pd(iz1,jz0);
241             dx20             = _mm256_sub_pd(ix2,jx0);
242             dy20             = _mm256_sub_pd(iy2,jy0);
243             dz20             = _mm256_sub_pd(iz2,jz0);
244             dx30             = _mm256_sub_pd(ix3,jx0);
245             dy30             = _mm256_sub_pd(iy3,jy0);
246             dz30             = _mm256_sub_pd(iz3,jz0);
247
248             /* Calculate squared distance and things based on it */
249             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
250             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
251             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
252             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
253
254             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
255             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
256             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
257             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
258
259             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
260             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
261             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
262             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
263
264             /* Load parameters for j particles */
265             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
266                                                                  charge+jnrC+0,charge+jnrD+0);
267             vdwjidx0A        = 2*vdwtype[jnrA+0];
268             vdwjidx0B        = 2*vdwtype[jnrB+0];
269             vdwjidx0C        = 2*vdwtype[jnrC+0];
270             vdwjidx0D        = 2*vdwtype[jnrD+0];
271
272             fjx0             = _mm256_setzero_pd();
273             fjy0             = _mm256_setzero_pd();
274             fjz0             = _mm256_setzero_pd();
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             r00              = _mm256_mul_pd(rsq00,rinv00);
281
282             /* Compute parameters for interactions between i and j atoms */
283             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
284                                             vdwioffsetptr0+vdwjidx0B,
285                                             vdwioffsetptr0+vdwjidx0C,
286                                             vdwioffsetptr0+vdwjidx0D,
287                                             &c6_00,&c12_00);
288
289             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
290                                                                   vdwgridioffsetptr0+vdwjidx0B,
291                                                                   vdwgridioffsetptr0+vdwjidx0C,
292                                                                   vdwgridioffsetptr0+vdwjidx0D);
293
294             /* Analytical LJ-PME */
295             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
296             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
297             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
298             exponent         = gmx_simd_exp_d(ewcljrsq);
299             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
300             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
301             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
302             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
303             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
304             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
305             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
306             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
310
311             fscal            = fvdw;
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm256_mul_pd(fscal,dx00);
315             ty               = _mm256_mul_pd(fscal,dy00);
316             tz               = _mm256_mul_pd(fscal,dz00);
317
318             /* Update vectorial force */
319             fix0             = _mm256_add_pd(fix0,tx);
320             fiy0             = _mm256_add_pd(fiy0,ty);
321             fiz0             = _mm256_add_pd(fiz0,tz);
322
323             fjx0             = _mm256_add_pd(fjx0,tx);
324             fjy0             = _mm256_add_pd(fjy0,ty);
325             fjz0             = _mm256_add_pd(fjz0,tz);
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             r10              = _mm256_mul_pd(rsq10,rinv10);
332
333             /* Compute parameters for interactions between i and j atoms */
334             qq10             = _mm256_mul_pd(iq1,jq0);
335
336             /* EWALD ELECTROSTATICS */
337
338             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
339             ewrt             = _mm256_mul_pd(r10,ewtabscale);
340             ewitab           = _mm256_cvttpd_epi32(ewrt);
341             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
342             ewitab           = _mm_slli_epi32(ewitab,2);
343             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
344             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
345             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
346             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
347             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
348             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
349             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
350             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
351             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velecsum         = _mm256_add_pd(velecsum,velec);
355
356             fscal            = felec;
357
358             /* Calculate temporary vectorial force */
359             tx               = _mm256_mul_pd(fscal,dx10);
360             ty               = _mm256_mul_pd(fscal,dy10);
361             tz               = _mm256_mul_pd(fscal,dz10);
362
363             /* Update vectorial force */
364             fix1             = _mm256_add_pd(fix1,tx);
365             fiy1             = _mm256_add_pd(fiy1,ty);
366             fiz1             = _mm256_add_pd(fiz1,tz);
367
368             fjx0             = _mm256_add_pd(fjx0,tx);
369             fjy0             = _mm256_add_pd(fjy0,ty);
370             fjz0             = _mm256_add_pd(fjz0,tz);
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             r20              = _mm256_mul_pd(rsq20,rinv20);
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq20             = _mm256_mul_pd(iq2,jq0);
380
381             /* EWALD ELECTROSTATICS */
382
383             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
384             ewrt             = _mm256_mul_pd(r20,ewtabscale);
385             ewitab           = _mm256_cvttpd_epi32(ewrt);
386             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
387             ewitab           = _mm_slli_epi32(ewitab,2);
388             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
389             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
390             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
391             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
392             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
393             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
394             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
395             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
396             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
397
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             velecsum         = _mm256_add_pd(velecsum,velec);
400
401             fscal            = felec;
402
403             /* Calculate temporary vectorial force */
404             tx               = _mm256_mul_pd(fscal,dx20);
405             ty               = _mm256_mul_pd(fscal,dy20);
406             tz               = _mm256_mul_pd(fscal,dz20);
407
408             /* Update vectorial force */
409             fix2             = _mm256_add_pd(fix2,tx);
410             fiy2             = _mm256_add_pd(fiy2,ty);
411             fiz2             = _mm256_add_pd(fiz2,tz);
412
413             fjx0             = _mm256_add_pd(fjx0,tx);
414             fjy0             = _mm256_add_pd(fjy0,ty);
415             fjz0             = _mm256_add_pd(fjz0,tz);
416
417             /**************************
418              * CALCULATE INTERACTIONS *
419              **************************/
420
421             r30              = _mm256_mul_pd(rsq30,rinv30);
422
423             /* Compute parameters for interactions between i and j atoms */
424             qq30             = _mm256_mul_pd(iq3,jq0);
425
426             /* EWALD ELECTROSTATICS */
427
428             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
429             ewrt             = _mm256_mul_pd(r30,ewtabscale);
430             ewitab           = _mm256_cvttpd_epi32(ewrt);
431             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
432             ewitab           = _mm_slli_epi32(ewitab,2);
433             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
434             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
435             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
436             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
437             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
438             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
439             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
440             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
441             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
442
443             /* Update potential sum for this i atom from the interaction with this j atom. */
444             velecsum         = _mm256_add_pd(velecsum,velec);
445
446             fscal            = felec;
447
448             /* Calculate temporary vectorial force */
449             tx               = _mm256_mul_pd(fscal,dx30);
450             ty               = _mm256_mul_pd(fscal,dy30);
451             tz               = _mm256_mul_pd(fscal,dz30);
452
453             /* Update vectorial force */
454             fix3             = _mm256_add_pd(fix3,tx);
455             fiy3             = _mm256_add_pd(fiy3,ty);
456             fiz3             = _mm256_add_pd(fiz3,tz);
457
458             fjx0             = _mm256_add_pd(fjx0,tx);
459             fjy0             = _mm256_add_pd(fjy0,ty);
460             fjz0             = _mm256_add_pd(fjz0,tz);
461
462             fjptrA             = f+j_coord_offsetA;
463             fjptrB             = f+j_coord_offsetB;
464             fjptrC             = f+j_coord_offsetC;
465             fjptrD             = f+j_coord_offsetD;
466
467             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
468
469             /* Inner loop uses 180 flops */
470         }
471
472         if(jidx<j_index_end)
473         {
474
475             /* Get j neighbor index, and coordinate index */
476             jnrlistA         = jjnr[jidx];
477             jnrlistB         = jjnr[jidx+1];
478             jnrlistC         = jjnr[jidx+2];
479             jnrlistD         = jjnr[jidx+3];
480             /* Sign of each element will be negative for non-real atoms.
481              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
482              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
483              */
484             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
485
486             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
487             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
488             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
489
490             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
491             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
492             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
493             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
494             j_coord_offsetA  = DIM*jnrA;
495             j_coord_offsetB  = DIM*jnrB;
496             j_coord_offsetC  = DIM*jnrC;
497             j_coord_offsetD  = DIM*jnrD;
498
499             /* load j atom coordinates */
500             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
501                                                  x+j_coord_offsetC,x+j_coord_offsetD,
502                                                  &jx0,&jy0,&jz0);
503
504             /* Calculate displacement vector */
505             dx00             = _mm256_sub_pd(ix0,jx0);
506             dy00             = _mm256_sub_pd(iy0,jy0);
507             dz00             = _mm256_sub_pd(iz0,jz0);
508             dx10             = _mm256_sub_pd(ix1,jx0);
509             dy10             = _mm256_sub_pd(iy1,jy0);
510             dz10             = _mm256_sub_pd(iz1,jz0);
511             dx20             = _mm256_sub_pd(ix2,jx0);
512             dy20             = _mm256_sub_pd(iy2,jy0);
513             dz20             = _mm256_sub_pd(iz2,jz0);
514             dx30             = _mm256_sub_pd(ix3,jx0);
515             dy30             = _mm256_sub_pd(iy3,jy0);
516             dz30             = _mm256_sub_pd(iz3,jz0);
517
518             /* Calculate squared distance and things based on it */
519             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
520             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
521             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
522             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
523
524             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
525             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
526             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
527             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
528
529             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
530             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
531             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
532             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
533
534             /* Load parameters for j particles */
535             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
536                                                                  charge+jnrC+0,charge+jnrD+0);
537             vdwjidx0A        = 2*vdwtype[jnrA+0];
538             vdwjidx0B        = 2*vdwtype[jnrB+0];
539             vdwjidx0C        = 2*vdwtype[jnrC+0];
540             vdwjidx0D        = 2*vdwtype[jnrD+0];
541
542             fjx0             = _mm256_setzero_pd();
543             fjy0             = _mm256_setzero_pd();
544             fjz0             = _mm256_setzero_pd();
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             r00              = _mm256_mul_pd(rsq00,rinv00);
551             r00              = _mm256_andnot_pd(dummy_mask,r00);
552
553             /* Compute parameters for interactions between i and j atoms */
554             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
555                                             vdwioffsetptr0+vdwjidx0B,
556                                             vdwioffsetptr0+vdwjidx0C,
557                                             vdwioffsetptr0+vdwjidx0D,
558                                             &c6_00,&c12_00);
559
560             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
561                                                                   vdwgridioffsetptr0+vdwjidx0B,
562                                                                   vdwgridioffsetptr0+vdwjidx0C,
563                                                                   vdwgridioffsetptr0+vdwjidx0D);
564
565             /* Analytical LJ-PME */
566             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
567             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
568             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
569             exponent         = gmx_simd_exp_d(ewcljrsq);
570             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
571             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
572             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
573             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
574             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
575             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
576             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
577             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
578
579             /* Update potential sum for this i atom from the interaction with this j atom. */
580             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
581             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
582
583             fscal            = fvdw;
584
585             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
586
587             /* Calculate temporary vectorial force */
588             tx               = _mm256_mul_pd(fscal,dx00);
589             ty               = _mm256_mul_pd(fscal,dy00);
590             tz               = _mm256_mul_pd(fscal,dz00);
591
592             /* Update vectorial force */
593             fix0             = _mm256_add_pd(fix0,tx);
594             fiy0             = _mm256_add_pd(fiy0,ty);
595             fiz0             = _mm256_add_pd(fiz0,tz);
596
597             fjx0             = _mm256_add_pd(fjx0,tx);
598             fjy0             = _mm256_add_pd(fjy0,ty);
599             fjz0             = _mm256_add_pd(fjz0,tz);
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             r10              = _mm256_mul_pd(rsq10,rinv10);
606             r10              = _mm256_andnot_pd(dummy_mask,r10);
607
608             /* Compute parameters for interactions between i and j atoms */
609             qq10             = _mm256_mul_pd(iq1,jq0);
610
611             /* EWALD ELECTROSTATICS */
612
613             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
614             ewrt             = _mm256_mul_pd(r10,ewtabscale);
615             ewitab           = _mm256_cvttpd_epi32(ewrt);
616             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
617             ewitab           = _mm_slli_epi32(ewitab,2);
618             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
619             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
620             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
621             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
622             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
623             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
624             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
625             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
626             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
627
628             /* Update potential sum for this i atom from the interaction with this j atom. */
629             velec            = _mm256_andnot_pd(dummy_mask,velec);
630             velecsum         = _mm256_add_pd(velecsum,velec);
631
632             fscal            = felec;
633
634             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
635
636             /* Calculate temporary vectorial force */
637             tx               = _mm256_mul_pd(fscal,dx10);
638             ty               = _mm256_mul_pd(fscal,dy10);
639             tz               = _mm256_mul_pd(fscal,dz10);
640
641             /* Update vectorial force */
642             fix1             = _mm256_add_pd(fix1,tx);
643             fiy1             = _mm256_add_pd(fiy1,ty);
644             fiz1             = _mm256_add_pd(fiz1,tz);
645
646             fjx0             = _mm256_add_pd(fjx0,tx);
647             fjy0             = _mm256_add_pd(fjy0,ty);
648             fjz0             = _mm256_add_pd(fjz0,tz);
649
650             /**************************
651              * CALCULATE INTERACTIONS *
652              **************************/
653
654             r20              = _mm256_mul_pd(rsq20,rinv20);
655             r20              = _mm256_andnot_pd(dummy_mask,r20);
656
657             /* Compute parameters for interactions between i and j atoms */
658             qq20             = _mm256_mul_pd(iq2,jq0);
659
660             /* EWALD ELECTROSTATICS */
661
662             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
663             ewrt             = _mm256_mul_pd(r20,ewtabscale);
664             ewitab           = _mm256_cvttpd_epi32(ewrt);
665             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
666             ewitab           = _mm_slli_epi32(ewitab,2);
667             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
668             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
669             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
670             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
671             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
672             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
673             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
674             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
675             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
676
677             /* Update potential sum for this i atom from the interaction with this j atom. */
678             velec            = _mm256_andnot_pd(dummy_mask,velec);
679             velecsum         = _mm256_add_pd(velecsum,velec);
680
681             fscal            = felec;
682
683             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
684
685             /* Calculate temporary vectorial force */
686             tx               = _mm256_mul_pd(fscal,dx20);
687             ty               = _mm256_mul_pd(fscal,dy20);
688             tz               = _mm256_mul_pd(fscal,dz20);
689
690             /* Update vectorial force */
691             fix2             = _mm256_add_pd(fix2,tx);
692             fiy2             = _mm256_add_pd(fiy2,ty);
693             fiz2             = _mm256_add_pd(fiz2,tz);
694
695             fjx0             = _mm256_add_pd(fjx0,tx);
696             fjy0             = _mm256_add_pd(fjy0,ty);
697             fjz0             = _mm256_add_pd(fjz0,tz);
698
699             /**************************
700              * CALCULATE INTERACTIONS *
701              **************************/
702
703             r30              = _mm256_mul_pd(rsq30,rinv30);
704             r30              = _mm256_andnot_pd(dummy_mask,r30);
705
706             /* Compute parameters for interactions between i and j atoms */
707             qq30             = _mm256_mul_pd(iq3,jq0);
708
709             /* EWALD ELECTROSTATICS */
710
711             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
712             ewrt             = _mm256_mul_pd(r30,ewtabscale);
713             ewitab           = _mm256_cvttpd_epi32(ewrt);
714             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
715             ewitab           = _mm_slli_epi32(ewitab,2);
716             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
717             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
718             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
719             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
720             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
721             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
722             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
723             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
724             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
725
726             /* Update potential sum for this i atom from the interaction with this j atom. */
727             velec            = _mm256_andnot_pd(dummy_mask,velec);
728             velecsum         = _mm256_add_pd(velecsum,velec);
729
730             fscal            = felec;
731
732             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
733
734             /* Calculate temporary vectorial force */
735             tx               = _mm256_mul_pd(fscal,dx30);
736             ty               = _mm256_mul_pd(fscal,dy30);
737             tz               = _mm256_mul_pd(fscal,dz30);
738
739             /* Update vectorial force */
740             fix3             = _mm256_add_pd(fix3,tx);
741             fiy3             = _mm256_add_pd(fiy3,ty);
742             fiz3             = _mm256_add_pd(fiz3,tz);
743
744             fjx0             = _mm256_add_pd(fjx0,tx);
745             fjy0             = _mm256_add_pd(fjy0,ty);
746             fjz0             = _mm256_add_pd(fjz0,tz);
747
748             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
749             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
750             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
751             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
752
753             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
754
755             /* Inner loop uses 184 flops */
756         }
757
758         /* End of innermost loop */
759
760         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
761                                                  f+i_coord_offset,fshift+i_shift_offset);
762
763         ggid                        = gid[iidx];
764         /* Update potential energies */
765         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
766         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
767
768         /* Increment number of inner iterations */
769         inneriter                  += j_index_end - j_index_start;
770
771         /* Outer loop uses 26 flops */
772     }
773
774     /* Increment number of outer iterations */
775     outeriter        += nri;
776
777     /* Update outer/inner flops */
778
779     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*184);
780 }
781 /*
782  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_256_double
783  * Electrostatics interaction: Ewald
784  * VdW interaction:            LJEwald
785  * Geometry:                   Water4-Particle
786  * Calculate force/pot:        Force
787  */
788 void
789 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_256_double
790                     (t_nblist                    * gmx_restrict       nlist,
791                      rvec                        * gmx_restrict          xx,
792                      rvec                        * gmx_restrict          ff,
793                      t_forcerec                  * gmx_restrict          fr,
794                      t_mdatoms                   * gmx_restrict     mdatoms,
795                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
796                      t_nrnb                      * gmx_restrict        nrnb)
797 {
798     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
799      * just 0 for non-waters.
800      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
801      * jnr indices corresponding to data put in the four positions in the SIMD register.
802      */
803     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
804     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
805     int              jnrA,jnrB,jnrC,jnrD;
806     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
807     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
808     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
809     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
810     real             rcutoff_scalar;
811     real             *shiftvec,*fshift,*x,*f;
812     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
813     real             scratch[4*DIM];
814     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
815     real *           vdwioffsetptr0;
816     real *           vdwgridioffsetptr0;
817     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
818     real *           vdwioffsetptr1;
819     real *           vdwgridioffsetptr1;
820     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
821     real *           vdwioffsetptr2;
822     real *           vdwgridioffsetptr2;
823     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
824     real *           vdwioffsetptr3;
825     real *           vdwgridioffsetptr3;
826     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
827     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
828     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
829     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
830     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
831     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
832     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
833     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
834     real             *charge;
835     int              nvdwtype;
836     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
837     int              *vdwtype;
838     real             *vdwparam;
839     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
840     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
841     __m256d           c6grid_00;
842     __m256d           c6grid_10;
843     __m256d           c6grid_20;
844     __m256d           c6grid_30;
845     real             *vdwgridparam;
846     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
847     __m256d           one_half  = _mm256_set1_pd(0.5);
848     __m256d           minus_one = _mm256_set1_pd(-1.0);
849     __m128i          ewitab;
850     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
851     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
852     real             *ewtab;
853     __m256d          dummy_mask,cutoff_mask;
854     __m128           tmpmask0,tmpmask1;
855     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
856     __m256d          one     = _mm256_set1_pd(1.0);
857     __m256d          two     = _mm256_set1_pd(2.0);
858     x                = xx[0];
859     f                = ff[0];
860
861     nri              = nlist->nri;
862     iinr             = nlist->iinr;
863     jindex           = nlist->jindex;
864     jjnr             = nlist->jjnr;
865     shiftidx         = nlist->shift;
866     gid              = nlist->gid;
867     shiftvec         = fr->shift_vec[0];
868     fshift           = fr->fshift[0];
869     facel            = _mm256_set1_pd(fr->epsfac);
870     charge           = mdatoms->chargeA;
871     nvdwtype         = fr->ntype;
872     vdwparam         = fr->nbfp;
873     vdwtype          = mdatoms->typeA;
874     vdwgridparam     = fr->ljpme_c6grid;
875     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
876     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
877     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
878
879     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
880     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
881     beta2            = _mm256_mul_pd(beta,beta);
882     beta3            = _mm256_mul_pd(beta,beta2);
883
884     ewtab            = fr->ic->tabq_coul_F;
885     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
886     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
887
888     /* Setup water-specific parameters */
889     inr              = nlist->iinr[0];
890     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
891     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
892     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
893     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
894     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
895
896     /* Avoid stupid compiler warnings */
897     jnrA = jnrB = jnrC = jnrD = 0;
898     j_coord_offsetA = 0;
899     j_coord_offsetB = 0;
900     j_coord_offsetC = 0;
901     j_coord_offsetD = 0;
902
903     outeriter        = 0;
904     inneriter        = 0;
905
906     for(iidx=0;iidx<4*DIM;iidx++)
907     {
908         scratch[iidx] = 0.0;
909     }
910
911     /* Start outer loop over neighborlists */
912     for(iidx=0; iidx<nri; iidx++)
913     {
914         /* Load shift vector for this list */
915         i_shift_offset   = DIM*shiftidx[iidx];
916
917         /* Load limits for loop over neighbors */
918         j_index_start    = jindex[iidx];
919         j_index_end      = jindex[iidx+1];
920
921         /* Get outer coordinate index */
922         inr              = iinr[iidx];
923         i_coord_offset   = DIM*inr;
924
925         /* Load i particle coords and add shift vector */
926         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
927                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
928
929         fix0             = _mm256_setzero_pd();
930         fiy0             = _mm256_setzero_pd();
931         fiz0             = _mm256_setzero_pd();
932         fix1             = _mm256_setzero_pd();
933         fiy1             = _mm256_setzero_pd();
934         fiz1             = _mm256_setzero_pd();
935         fix2             = _mm256_setzero_pd();
936         fiy2             = _mm256_setzero_pd();
937         fiz2             = _mm256_setzero_pd();
938         fix3             = _mm256_setzero_pd();
939         fiy3             = _mm256_setzero_pd();
940         fiz3             = _mm256_setzero_pd();
941
942         /* Start inner kernel loop */
943         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
944         {
945
946             /* Get j neighbor index, and coordinate index */
947             jnrA             = jjnr[jidx];
948             jnrB             = jjnr[jidx+1];
949             jnrC             = jjnr[jidx+2];
950             jnrD             = jjnr[jidx+3];
951             j_coord_offsetA  = DIM*jnrA;
952             j_coord_offsetB  = DIM*jnrB;
953             j_coord_offsetC  = DIM*jnrC;
954             j_coord_offsetD  = DIM*jnrD;
955
956             /* load j atom coordinates */
957             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
958                                                  x+j_coord_offsetC,x+j_coord_offsetD,
959                                                  &jx0,&jy0,&jz0);
960
961             /* Calculate displacement vector */
962             dx00             = _mm256_sub_pd(ix0,jx0);
963             dy00             = _mm256_sub_pd(iy0,jy0);
964             dz00             = _mm256_sub_pd(iz0,jz0);
965             dx10             = _mm256_sub_pd(ix1,jx0);
966             dy10             = _mm256_sub_pd(iy1,jy0);
967             dz10             = _mm256_sub_pd(iz1,jz0);
968             dx20             = _mm256_sub_pd(ix2,jx0);
969             dy20             = _mm256_sub_pd(iy2,jy0);
970             dz20             = _mm256_sub_pd(iz2,jz0);
971             dx30             = _mm256_sub_pd(ix3,jx0);
972             dy30             = _mm256_sub_pd(iy3,jy0);
973             dz30             = _mm256_sub_pd(iz3,jz0);
974
975             /* Calculate squared distance and things based on it */
976             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
977             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
978             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
979             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
980
981             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
982             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
983             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
984             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
985
986             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
987             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
988             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
989             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
990
991             /* Load parameters for j particles */
992             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
993                                                                  charge+jnrC+0,charge+jnrD+0);
994             vdwjidx0A        = 2*vdwtype[jnrA+0];
995             vdwjidx0B        = 2*vdwtype[jnrB+0];
996             vdwjidx0C        = 2*vdwtype[jnrC+0];
997             vdwjidx0D        = 2*vdwtype[jnrD+0];
998
999             fjx0             = _mm256_setzero_pd();
1000             fjy0             = _mm256_setzero_pd();
1001             fjz0             = _mm256_setzero_pd();
1002
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             r00              = _mm256_mul_pd(rsq00,rinv00);
1008
1009             /* Compute parameters for interactions between i and j atoms */
1010             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1011                                             vdwioffsetptr0+vdwjidx0B,
1012                                             vdwioffsetptr0+vdwjidx0C,
1013                                             vdwioffsetptr0+vdwjidx0D,
1014                                             &c6_00,&c12_00);
1015
1016             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
1017                                                                   vdwgridioffsetptr0+vdwjidx0B,
1018                                                                   vdwgridioffsetptr0+vdwjidx0C,
1019                                                                   vdwgridioffsetptr0+vdwjidx0D);
1020
1021             /* Analytical LJ-PME */
1022             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1023             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
1024             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
1025             exponent         = gmx_simd_exp_d(ewcljrsq);
1026             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1027             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1028             /* f6A = 6 * C6grid * (1 - poly) */
1029             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
1030             /* f6B = C6grid * exponent * beta^6 */
1031             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
1032             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1033             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1034
1035             fscal            = fvdw;
1036
1037             /* Calculate temporary vectorial force */
1038             tx               = _mm256_mul_pd(fscal,dx00);
1039             ty               = _mm256_mul_pd(fscal,dy00);
1040             tz               = _mm256_mul_pd(fscal,dz00);
1041
1042             /* Update vectorial force */
1043             fix0             = _mm256_add_pd(fix0,tx);
1044             fiy0             = _mm256_add_pd(fiy0,ty);
1045             fiz0             = _mm256_add_pd(fiz0,tz);
1046
1047             fjx0             = _mm256_add_pd(fjx0,tx);
1048             fjy0             = _mm256_add_pd(fjy0,ty);
1049             fjz0             = _mm256_add_pd(fjz0,tz);
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             r10              = _mm256_mul_pd(rsq10,rinv10);
1056
1057             /* Compute parameters for interactions between i and j atoms */
1058             qq10             = _mm256_mul_pd(iq1,jq0);
1059
1060             /* EWALD ELECTROSTATICS */
1061
1062             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1063             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1064             ewitab           = _mm256_cvttpd_epi32(ewrt);
1065             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1066             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1067                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1068                                             &ewtabF,&ewtabFn);
1069             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1070             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1071
1072             fscal            = felec;
1073
1074             /* Calculate temporary vectorial force */
1075             tx               = _mm256_mul_pd(fscal,dx10);
1076             ty               = _mm256_mul_pd(fscal,dy10);
1077             tz               = _mm256_mul_pd(fscal,dz10);
1078
1079             /* Update vectorial force */
1080             fix1             = _mm256_add_pd(fix1,tx);
1081             fiy1             = _mm256_add_pd(fiy1,ty);
1082             fiz1             = _mm256_add_pd(fiz1,tz);
1083
1084             fjx0             = _mm256_add_pd(fjx0,tx);
1085             fjy0             = _mm256_add_pd(fjy0,ty);
1086             fjz0             = _mm256_add_pd(fjz0,tz);
1087
1088             /**************************
1089              * CALCULATE INTERACTIONS *
1090              **************************/
1091
1092             r20              = _mm256_mul_pd(rsq20,rinv20);
1093
1094             /* Compute parameters for interactions between i and j atoms */
1095             qq20             = _mm256_mul_pd(iq2,jq0);
1096
1097             /* EWALD ELECTROSTATICS */
1098
1099             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1100             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1101             ewitab           = _mm256_cvttpd_epi32(ewrt);
1102             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1103             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1104                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1105                                             &ewtabF,&ewtabFn);
1106             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1107             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1108
1109             fscal            = felec;
1110
1111             /* Calculate temporary vectorial force */
1112             tx               = _mm256_mul_pd(fscal,dx20);
1113             ty               = _mm256_mul_pd(fscal,dy20);
1114             tz               = _mm256_mul_pd(fscal,dz20);
1115
1116             /* Update vectorial force */
1117             fix2             = _mm256_add_pd(fix2,tx);
1118             fiy2             = _mm256_add_pd(fiy2,ty);
1119             fiz2             = _mm256_add_pd(fiz2,tz);
1120
1121             fjx0             = _mm256_add_pd(fjx0,tx);
1122             fjy0             = _mm256_add_pd(fjy0,ty);
1123             fjz0             = _mm256_add_pd(fjz0,tz);
1124
1125             /**************************
1126              * CALCULATE INTERACTIONS *
1127              **************************/
1128
1129             r30              = _mm256_mul_pd(rsq30,rinv30);
1130
1131             /* Compute parameters for interactions between i and j atoms */
1132             qq30             = _mm256_mul_pd(iq3,jq0);
1133
1134             /* EWALD ELECTROSTATICS */
1135
1136             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1137             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1138             ewitab           = _mm256_cvttpd_epi32(ewrt);
1139             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1140             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1141                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1142                                             &ewtabF,&ewtabFn);
1143             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1144             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1145
1146             fscal            = felec;
1147
1148             /* Calculate temporary vectorial force */
1149             tx               = _mm256_mul_pd(fscal,dx30);
1150             ty               = _mm256_mul_pd(fscal,dy30);
1151             tz               = _mm256_mul_pd(fscal,dz30);
1152
1153             /* Update vectorial force */
1154             fix3             = _mm256_add_pd(fix3,tx);
1155             fiy3             = _mm256_add_pd(fiy3,ty);
1156             fiz3             = _mm256_add_pd(fiz3,tz);
1157
1158             fjx0             = _mm256_add_pd(fjx0,tx);
1159             fjy0             = _mm256_add_pd(fjy0,ty);
1160             fjz0             = _mm256_add_pd(fjz0,tz);
1161
1162             fjptrA             = f+j_coord_offsetA;
1163             fjptrB             = f+j_coord_offsetB;
1164             fjptrC             = f+j_coord_offsetC;
1165             fjptrD             = f+j_coord_offsetD;
1166
1167             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1168
1169             /* Inner loop uses 157 flops */
1170         }
1171
1172         if(jidx<j_index_end)
1173         {
1174
1175             /* Get j neighbor index, and coordinate index */
1176             jnrlistA         = jjnr[jidx];
1177             jnrlistB         = jjnr[jidx+1];
1178             jnrlistC         = jjnr[jidx+2];
1179             jnrlistD         = jjnr[jidx+3];
1180             /* Sign of each element will be negative for non-real atoms.
1181              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1182              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1183              */
1184             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1185
1186             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1187             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1188             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1189
1190             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1191             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1192             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1193             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1194             j_coord_offsetA  = DIM*jnrA;
1195             j_coord_offsetB  = DIM*jnrB;
1196             j_coord_offsetC  = DIM*jnrC;
1197             j_coord_offsetD  = DIM*jnrD;
1198
1199             /* load j atom coordinates */
1200             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1201                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1202                                                  &jx0,&jy0,&jz0);
1203
1204             /* Calculate displacement vector */
1205             dx00             = _mm256_sub_pd(ix0,jx0);
1206             dy00             = _mm256_sub_pd(iy0,jy0);
1207             dz00             = _mm256_sub_pd(iz0,jz0);
1208             dx10             = _mm256_sub_pd(ix1,jx0);
1209             dy10             = _mm256_sub_pd(iy1,jy0);
1210             dz10             = _mm256_sub_pd(iz1,jz0);
1211             dx20             = _mm256_sub_pd(ix2,jx0);
1212             dy20             = _mm256_sub_pd(iy2,jy0);
1213             dz20             = _mm256_sub_pd(iz2,jz0);
1214             dx30             = _mm256_sub_pd(ix3,jx0);
1215             dy30             = _mm256_sub_pd(iy3,jy0);
1216             dz30             = _mm256_sub_pd(iz3,jz0);
1217
1218             /* Calculate squared distance and things based on it */
1219             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1220             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1221             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1222             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1223
1224             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1225             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1226             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1227             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1228
1229             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1230             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1231             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1232             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1233
1234             /* Load parameters for j particles */
1235             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1236                                                                  charge+jnrC+0,charge+jnrD+0);
1237             vdwjidx0A        = 2*vdwtype[jnrA+0];
1238             vdwjidx0B        = 2*vdwtype[jnrB+0];
1239             vdwjidx0C        = 2*vdwtype[jnrC+0];
1240             vdwjidx0D        = 2*vdwtype[jnrD+0];
1241
1242             fjx0             = _mm256_setzero_pd();
1243             fjy0             = _mm256_setzero_pd();
1244             fjz0             = _mm256_setzero_pd();
1245
1246             /**************************
1247              * CALCULATE INTERACTIONS *
1248              **************************/
1249
1250             r00              = _mm256_mul_pd(rsq00,rinv00);
1251             r00              = _mm256_andnot_pd(dummy_mask,r00);
1252
1253             /* Compute parameters for interactions between i and j atoms */
1254             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1255                                             vdwioffsetptr0+vdwjidx0B,
1256                                             vdwioffsetptr0+vdwjidx0C,
1257                                             vdwioffsetptr0+vdwjidx0D,
1258                                             &c6_00,&c12_00);
1259
1260             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
1261                                                                   vdwgridioffsetptr0+vdwjidx0B,
1262                                                                   vdwgridioffsetptr0+vdwjidx0C,
1263                                                                   vdwgridioffsetptr0+vdwjidx0D);
1264
1265             /* Analytical LJ-PME */
1266             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1267             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
1268             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
1269             exponent         = gmx_simd_exp_d(ewcljrsq);
1270             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1271             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1272             /* f6A = 6 * C6grid * (1 - poly) */
1273             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
1274             /* f6B = C6grid * exponent * beta^6 */
1275             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
1276             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1277             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1278
1279             fscal            = fvdw;
1280
1281             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1282
1283             /* Calculate temporary vectorial force */
1284             tx               = _mm256_mul_pd(fscal,dx00);
1285             ty               = _mm256_mul_pd(fscal,dy00);
1286             tz               = _mm256_mul_pd(fscal,dz00);
1287
1288             /* Update vectorial force */
1289             fix0             = _mm256_add_pd(fix0,tx);
1290             fiy0             = _mm256_add_pd(fiy0,ty);
1291             fiz0             = _mm256_add_pd(fiz0,tz);
1292
1293             fjx0             = _mm256_add_pd(fjx0,tx);
1294             fjy0             = _mm256_add_pd(fjy0,ty);
1295             fjz0             = _mm256_add_pd(fjz0,tz);
1296
1297             /**************************
1298              * CALCULATE INTERACTIONS *
1299              **************************/
1300
1301             r10              = _mm256_mul_pd(rsq10,rinv10);
1302             r10              = _mm256_andnot_pd(dummy_mask,r10);
1303
1304             /* Compute parameters for interactions between i and j atoms */
1305             qq10             = _mm256_mul_pd(iq1,jq0);
1306
1307             /* EWALD ELECTROSTATICS */
1308
1309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1310             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1311             ewitab           = _mm256_cvttpd_epi32(ewrt);
1312             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1313             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1314                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1315                                             &ewtabF,&ewtabFn);
1316             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1317             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1318
1319             fscal            = felec;
1320
1321             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1322
1323             /* Calculate temporary vectorial force */
1324             tx               = _mm256_mul_pd(fscal,dx10);
1325             ty               = _mm256_mul_pd(fscal,dy10);
1326             tz               = _mm256_mul_pd(fscal,dz10);
1327
1328             /* Update vectorial force */
1329             fix1             = _mm256_add_pd(fix1,tx);
1330             fiy1             = _mm256_add_pd(fiy1,ty);
1331             fiz1             = _mm256_add_pd(fiz1,tz);
1332
1333             fjx0             = _mm256_add_pd(fjx0,tx);
1334             fjy0             = _mm256_add_pd(fjy0,ty);
1335             fjz0             = _mm256_add_pd(fjz0,tz);
1336
1337             /**************************
1338              * CALCULATE INTERACTIONS *
1339              **************************/
1340
1341             r20              = _mm256_mul_pd(rsq20,rinv20);
1342             r20              = _mm256_andnot_pd(dummy_mask,r20);
1343
1344             /* Compute parameters for interactions between i and j atoms */
1345             qq20             = _mm256_mul_pd(iq2,jq0);
1346
1347             /* EWALD ELECTROSTATICS */
1348
1349             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1350             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1351             ewitab           = _mm256_cvttpd_epi32(ewrt);
1352             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1353             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1354                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1355                                             &ewtabF,&ewtabFn);
1356             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1357             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1358
1359             fscal            = felec;
1360
1361             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1362
1363             /* Calculate temporary vectorial force */
1364             tx               = _mm256_mul_pd(fscal,dx20);
1365             ty               = _mm256_mul_pd(fscal,dy20);
1366             tz               = _mm256_mul_pd(fscal,dz20);
1367
1368             /* Update vectorial force */
1369             fix2             = _mm256_add_pd(fix2,tx);
1370             fiy2             = _mm256_add_pd(fiy2,ty);
1371             fiz2             = _mm256_add_pd(fiz2,tz);
1372
1373             fjx0             = _mm256_add_pd(fjx0,tx);
1374             fjy0             = _mm256_add_pd(fjy0,ty);
1375             fjz0             = _mm256_add_pd(fjz0,tz);
1376
1377             /**************************
1378              * CALCULATE INTERACTIONS *
1379              **************************/
1380
1381             r30              = _mm256_mul_pd(rsq30,rinv30);
1382             r30              = _mm256_andnot_pd(dummy_mask,r30);
1383
1384             /* Compute parameters for interactions between i and j atoms */
1385             qq30             = _mm256_mul_pd(iq3,jq0);
1386
1387             /* EWALD ELECTROSTATICS */
1388
1389             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1390             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1391             ewitab           = _mm256_cvttpd_epi32(ewrt);
1392             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1393             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1394                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1395                                             &ewtabF,&ewtabFn);
1396             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1397             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1398
1399             fscal            = felec;
1400
1401             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1402
1403             /* Calculate temporary vectorial force */
1404             tx               = _mm256_mul_pd(fscal,dx30);
1405             ty               = _mm256_mul_pd(fscal,dy30);
1406             tz               = _mm256_mul_pd(fscal,dz30);
1407
1408             /* Update vectorial force */
1409             fix3             = _mm256_add_pd(fix3,tx);
1410             fiy3             = _mm256_add_pd(fiy3,ty);
1411             fiz3             = _mm256_add_pd(fiz3,tz);
1412
1413             fjx0             = _mm256_add_pd(fjx0,tx);
1414             fjy0             = _mm256_add_pd(fjy0,ty);
1415             fjz0             = _mm256_add_pd(fjz0,tz);
1416
1417             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1418             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1419             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1420             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1421
1422             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1423
1424             /* Inner loop uses 161 flops */
1425         }
1426
1427         /* End of innermost loop */
1428
1429         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1430                                                  f+i_coord_offset,fshift+i_shift_offset);
1431
1432         /* Increment number of inner iterations */
1433         inneriter                  += j_index_end - j_index_start;
1434
1435         /* Outer loop uses 24 flops */
1436     }
1437
1438     /* Increment number of outer iterations */
1439     outeriter        += nri;
1440
1441     /* Update outer/inner flops */
1442
1443     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*161);
1444 }