b891cf96c602153ebe10dd8d6280e676df60a103
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     real *           vdwgridioffsetptr0;
86     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     real *           vdwgridioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     real *           vdwgridioffsetptr2;
92     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
105     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
106     __m256d           c6grid_00;
107     __m256d           c6grid_10;
108     __m256d           c6grid_20;
109     real             *vdwgridparam;
110     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
111     __m256d           one_half  = _mm256_set1_pd(0.5);
112     __m256d           minus_one = _mm256_set1_pd(-1.0);
113     __m128i          ewitab;
114     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
115     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
116     real             *ewtab;
117     __m256d          dummy_mask,cutoff_mask;
118     __m128           tmpmask0,tmpmask1;
119     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
120     __m256d          one     = _mm256_set1_pd(1.0);
121     __m256d          two     = _mm256_set1_pd(2.0);
122     x                = xx[0];
123     f                = ff[0];
124
125     nri              = nlist->nri;
126     iinr             = nlist->iinr;
127     jindex           = nlist->jindex;
128     jjnr             = nlist->jjnr;
129     shiftidx         = nlist->shift;
130     gid              = nlist->gid;
131     shiftvec         = fr->shift_vec[0];
132     fshift           = fr->fshift[0];
133     facel            = _mm256_set1_pd(fr->epsfac);
134     charge           = mdatoms->chargeA;
135     nvdwtype         = fr->ntype;
136     vdwparam         = fr->nbfp;
137     vdwtype          = mdatoms->typeA;
138     vdwgridparam     = fr->ljpme_c6grid;
139     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
140     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
141     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
142
143     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
144     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
145     beta2            = _mm256_mul_pd(beta,beta);
146     beta3            = _mm256_mul_pd(beta,beta2);
147
148     ewtab            = fr->ic->tabq_coul_FDV0;
149     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
150     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
151
152     /* Setup water-specific parameters */
153     inr              = nlist->iinr[0];
154     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
155     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
156     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
157     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
158     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
159
160     /* Avoid stupid compiler warnings */
161     jnrA = jnrB = jnrC = jnrD = 0;
162     j_coord_offsetA = 0;
163     j_coord_offsetB = 0;
164     j_coord_offsetC = 0;
165     j_coord_offsetD = 0;
166
167     outeriter        = 0;
168     inneriter        = 0;
169
170     for(iidx=0;iidx<4*DIM;iidx++)
171     {
172         scratch[iidx] = 0.0;
173     }
174
175     /* Start outer loop over neighborlists */
176     for(iidx=0; iidx<nri; iidx++)
177     {
178         /* Load shift vector for this list */
179         i_shift_offset   = DIM*shiftidx[iidx];
180
181         /* Load limits for loop over neighbors */
182         j_index_start    = jindex[iidx];
183         j_index_end      = jindex[iidx+1];
184
185         /* Get outer coordinate index */
186         inr              = iinr[iidx];
187         i_coord_offset   = DIM*inr;
188
189         /* Load i particle coords and add shift vector */
190         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
191                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
192
193         fix0             = _mm256_setzero_pd();
194         fiy0             = _mm256_setzero_pd();
195         fiz0             = _mm256_setzero_pd();
196         fix1             = _mm256_setzero_pd();
197         fiy1             = _mm256_setzero_pd();
198         fiz1             = _mm256_setzero_pd();
199         fix2             = _mm256_setzero_pd();
200         fiy2             = _mm256_setzero_pd();
201         fiz2             = _mm256_setzero_pd();
202
203         /* Reset potential sums */
204         velecsum         = _mm256_setzero_pd();
205         vvdwsum          = _mm256_setzero_pd();
206
207         /* Start inner kernel loop */
208         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
209         {
210
211             /* Get j neighbor index, and coordinate index */
212             jnrA             = jjnr[jidx];
213             jnrB             = jjnr[jidx+1];
214             jnrC             = jjnr[jidx+2];
215             jnrD             = jjnr[jidx+3];
216             j_coord_offsetA  = DIM*jnrA;
217             j_coord_offsetB  = DIM*jnrB;
218             j_coord_offsetC  = DIM*jnrC;
219             j_coord_offsetD  = DIM*jnrD;
220
221             /* load j atom coordinates */
222             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
223                                                  x+j_coord_offsetC,x+j_coord_offsetD,
224                                                  &jx0,&jy0,&jz0);
225
226             /* Calculate displacement vector */
227             dx00             = _mm256_sub_pd(ix0,jx0);
228             dy00             = _mm256_sub_pd(iy0,jy0);
229             dz00             = _mm256_sub_pd(iz0,jz0);
230             dx10             = _mm256_sub_pd(ix1,jx0);
231             dy10             = _mm256_sub_pd(iy1,jy0);
232             dz10             = _mm256_sub_pd(iz1,jz0);
233             dx20             = _mm256_sub_pd(ix2,jx0);
234             dy20             = _mm256_sub_pd(iy2,jy0);
235             dz20             = _mm256_sub_pd(iz2,jz0);
236
237             /* Calculate squared distance and things based on it */
238             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
239             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
240             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
241
242             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
243             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
244             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
245
246             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
247             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
248             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
249
250             /* Load parameters for j particles */
251             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
252                                                                  charge+jnrC+0,charge+jnrD+0);
253             vdwjidx0A        = 2*vdwtype[jnrA+0];
254             vdwjidx0B        = 2*vdwtype[jnrB+0];
255             vdwjidx0C        = 2*vdwtype[jnrC+0];
256             vdwjidx0D        = 2*vdwtype[jnrD+0];
257
258             fjx0             = _mm256_setzero_pd();
259             fjy0             = _mm256_setzero_pd();
260             fjz0             = _mm256_setzero_pd();
261
262             /**************************
263              * CALCULATE INTERACTIONS *
264              **************************/
265
266             r00              = _mm256_mul_pd(rsq00,rinv00);
267
268             /* Compute parameters for interactions between i and j atoms */
269             qq00             = _mm256_mul_pd(iq0,jq0);
270             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
271                                             vdwioffsetptr0+vdwjidx0B,
272                                             vdwioffsetptr0+vdwjidx0C,
273                                             vdwioffsetptr0+vdwjidx0D,
274                                             &c6_00,&c12_00);
275
276             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
277                                                                   vdwgridioffsetptr0+vdwjidx0B,
278                                                                   vdwgridioffsetptr0+vdwjidx0C,
279                                                                   vdwgridioffsetptr0+vdwjidx0D);
280
281             /* EWALD ELECTROSTATICS */
282
283             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
284             ewrt             = _mm256_mul_pd(r00,ewtabscale);
285             ewitab           = _mm256_cvttpd_epi32(ewrt);
286             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
287             ewitab           = _mm_slli_epi32(ewitab,2);
288             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
289             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
290             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
291             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
292             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
293             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
294             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
295             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
296             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
297
298             /* Analytical LJ-PME */
299             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
300             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
301             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
302             exponent         = gmx_simd_exp_d(ewcljrsq);
303             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
304             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
305             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
306             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
307             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
308             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
309             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
310             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velecsum         = _mm256_add_pd(velecsum,velec);
314             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
315
316             fscal            = _mm256_add_pd(felec,fvdw);
317
318             /* Calculate temporary vectorial force */
319             tx               = _mm256_mul_pd(fscal,dx00);
320             ty               = _mm256_mul_pd(fscal,dy00);
321             tz               = _mm256_mul_pd(fscal,dz00);
322
323             /* Update vectorial force */
324             fix0             = _mm256_add_pd(fix0,tx);
325             fiy0             = _mm256_add_pd(fiy0,ty);
326             fiz0             = _mm256_add_pd(fiz0,tz);
327
328             fjx0             = _mm256_add_pd(fjx0,tx);
329             fjy0             = _mm256_add_pd(fjy0,ty);
330             fjz0             = _mm256_add_pd(fjz0,tz);
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             r10              = _mm256_mul_pd(rsq10,rinv10);
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq10             = _mm256_mul_pd(iq1,jq0);
340
341             /* EWALD ELECTROSTATICS */
342
343             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
344             ewrt             = _mm256_mul_pd(r10,ewtabscale);
345             ewitab           = _mm256_cvttpd_epi32(ewrt);
346             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
347             ewitab           = _mm_slli_epi32(ewitab,2);
348             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
349             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
350             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
351             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
352             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
353             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
354             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
355             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
356             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
357
358             /* Update potential sum for this i atom from the interaction with this j atom. */
359             velecsum         = _mm256_add_pd(velecsum,velec);
360
361             fscal            = felec;
362
363             /* Calculate temporary vectorial force */
364             tx               = _mm256_mul_pd(fscal,dx10);
365             ty               = _mm256_mul_pd(fscal,dy10);
366             tz               = _mm256_mul_pd(fscal,dz10);
367
368             /* Update vectorial force */
369             fix1             = _mm256_add_pd(fix1,tx);
370             fiy1             = _mm256_add_pd(fiy1,ty);
371             fiz1             = _mm256_add_pd(fiz1,tz);
372
373             fjx0             = _mm256_add_pd(fjx0,tx);
374             fjy0             = _mm256_add_pd(fjy0,ty);
375             fjz0             = _mm256_add_pd(fjz0,tz);
376
377             /**************************
378              * CALCULATE INTERACTIONS *
379              **************************/
380
381             r20              = _mm256_mul_pd(rsq20,rinv20);
382
383             /* Compute parameters for interactions between i and j atoms */
384             qq20             = _mm256_mul_pd(iq2,jq0);
385
386             /* EWALD ELECTROSTATICS */
387
388             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
389             ewrt             = _mm256_mul_pd(r20,ewtabscale);
390             ewitab           = _mm256_cvttpd_epi32(ewrt);
391             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
392             ewitab           = _mm_slli_epi32(ewitab,2);
393             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
394             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
395             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
396             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
397             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
398             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
399             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
400             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
401             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
402
403             /* Update potential sum for this i atom from the interaction with this j atom. */
404             velecsum         = _mm256_add_pd(velecsum,velec);
405
406             fscal            = felec;
407
408             /* Calculate temporary vectorial force */
409             tx               = _mm256_mul_pd(fscal,dx20);
410             ty               = _mm256_mul_pd(fscal,dy20);
411             tz               = _mm256_mul_pd(fscal,dz20);
412
413             /* Update vectorial force */
414             fix2             = _mm256_add_pd(fix2,tx);
415             fiy2             = _mm256_add_pd(fiy2,ty);
416             fiz2             = _mm256_add_pd(fiz2,tz);
417
418             fjx0             = _mm256_add_pd(fjx0,tx);
419             fjy0             = _mm256_add_pd(fjy0,ty);
420             fjz0             = _mm256_add_pd(fjz0,tz);
421
422             fjptrA             = f+j_coord_offsetA;
423             fjptrB             = f+j_coord_offsetB;
424             fjptrC             = f+j_coord_offsetC;
425             fjptrD             = f+j_coord_offsetD;
426
427             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
428
429             /* Inner loop uses 157 flops */
430         }
431
432         if(jidx<j_index_end)
433         {
434
435             /* Get j neighbor index, and coordinate index */
436             jnrlistA         = jjnr[jidx];
437             jnrlistB         = jjnr[jidx+1];
438             jnrlistC         = jjnr[jidx+2];
439             jnrlistD         = jjnr[jidx+3];
440             /* Sign of each element will be negative for non-real atoms.
441              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
442              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
443              */
444             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
445
446             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
447             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
448             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
449
450             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
451             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
452             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
453             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
454             j_coord_offsetA  = DIM*jnrA;
455             j_coord_offsetB  = DIM*jnrB;
456             j_coord_offsetC  = DIM*jnrC;
457             j_coord_offsetD  = DIM*jnrD;
458
459             /* load j atom coordinates */
460             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
461                                                  x+j_coord_offsetC,x+j_coord_offsetD,
462                                                  &jx0,&jy0,&jz0);
463
464             /* Calculate displacement vector */
465             dx00             = _mm256_sub_pd(ix0,jx0);
466             dy00             = _mm256_sub_pd(iy0,jy0);
467             dz00             = _mm256_sub_pd(iz0,jz0);
468             dx10             = _mm256_sub_pd(ix1,jx0);
469             dy10             = _mm256_sub_pd(iy1,jy0);
470             dz10             = _mm256_sub_pd(iz1,jz0);
471             dx20             = _mm256_sub_pd(ix2,jx0);
472             dy20             = _mm256_sub_pd(iy2,jy0);
473             dz20             = _mm256_sub_pd(iz2,jz0);
474
475             /* Calculate squared distance and things based on it */
476             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
477             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
478             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
479
480             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
481             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
482             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
483
484             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
485             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
486             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
487
488             /* Load parameters for j particles */
489             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
490                                                                  charge+jnrC+0,charge+jnrD+0);
491             vdwjidx0A        = 2*vdwtype[jnrA+0];
492             vdwjidx0B        = 2*vdwtype[jnrB+0];
493             vdwjidx0C        = 2*vdwtype[jnrC+0];
494             vdwjidx0D        = 2*vdwtype[jnrD+0];
495
496             fjx0             = _mm256_setzero_pd();
497             fjy0             = _mm256_setzero_pd();
498             fjz0             = _mm256_setzero_pd();
499
500             /**************************
501              * CALCULATE INTERACTIONS *
502              **************************/
503
504             r00              = _mm256_mul_pd(rsq00,rinv00);
505             r00              = _mm256_andnot_pd(dummy_mask,r00);
506
507             /* Compute parameters for interactions between i and j atoms */
508             qq00             = _mm256_mul_pd(iq0,jq0);
509             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
510                                             vdwioffsetptr0+vdwjidx0B,
511                                             vdwioffsetptr0+vdwjidx0C,
512                                             vdwioffsetptr0+vdwjidx0D,
513                                             &c6_00,&c12_00);
514
515             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
516                                                                   vdwgridioffsetptr0+vdwjidx0B,
517                                                                   vdwgridioffsetptr0+vdwjidx0C,
518                                                                   vdwgridioffsetptr0+vdwjidx0D);
519
520             /* EWALD ELECTROSTATICS */
521
522             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
523             ewrt             = _mm256_mul_pd(r00,ewtabscale);
524             ewitab           = _mm256_cvttpd_epi32(ewrt);
525             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
526             ewitab           = _mm_slli_epi32(ewitab,2);
527             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
528             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
529             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
530             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
531             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
532             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
533             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
534             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
535             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
536
537             /* Analytical LJ-PME */
538             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
539             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
540             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
541             exponent         = gmx_simd_exp_d(ewcljrsq);
542             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
543             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
544             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
545             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
546             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
547             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
548             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
549             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
550
551             /* Update potential sum for this i atom from the interaction with this j atom. */
552             velec            = _mm256_andnot_pd(dummy_mask,velec);
553             velecsum         = _mm256_add_pd(velecsum,velec);
554             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
555             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
556
557             fscal            = _mm256_add_pd(felec,fvdw);
558
559             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
560
561             /* Calculate temporary vectorial force */
562             tx               = _mm256_mul_pd(fscal,dx00);
563             ty               = _mm256_mul_pd(fscal,dy00);
564             tz               = _mm256_mul_pd(fscal,dz00);
565
566             /* Update vectorial force */
567             fix0             = _mm256_add_pd(fix0,tx);
568             fiy0             = _mm256_add_pd(fiy0,ty);
569             fiz0             = _mm256_add_pd(fiz0,tz);
570
571             fjx0             = _mm256_add_pd(fjx0,tx);
572             fjy0             = _mm256_add_pd(fjy0,ty);
573             fjz0             = _mm256_add_pd(fjz0,tz);
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             r10              = _mm256_mul_pd(rsq10,rinv10);
580             r10              = _mm256_andnot_pd(dummy_mask,r10);
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq10             = _mm256_mul_pd(iq1,jq0);
584
585             /* EWALD ELECTROSTATICS */
586
587             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
588             ewrt             = _mm256_mul_pd(r10,ewtabscale);
589             ewitab           = _mm256_cvttpd_epi32(ewrt);
590             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
591             ewitab           = _mm_slli_epi32(ewitab,2);
592             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
593             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
594             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
595             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
596             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
597             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
598             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
599             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
600             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
601
602             /* Update potential sum for this i atom from the interaction with this j atom. */
603             velec            = _mm256_andnot_pd(dummy_mask,velec);
604             velecsum         = _mm256_add_pd(velecsum,velec);
605
606             fscal            = felec;
607
608             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
609
610             /* Calculate temporary vectorial force */
611             tx               = _mm256_mul_pd(fscal,dx10);
612             ty               = _mm256_mul_pd(fscal,dy10);
613             tz               = _mm256_mul_pd(fscal,dz10);
614
615             /* Update vectorial force */
616             fix1             = _mm256_add_pd(fix1,tx);
617             fiy1             = _mm256_add_pd(fiy1,ty);
618             fiz1             = _mm256_add_pd(fiz1,tz);
619
620             fjx0             = _mm256_add_pd(fjx0,tx);
621             fjy0             = _mm256_add_pd(fjy0,ty);
622             fjz0             = _mm256_add_pd(fjz0,tz);
623
624             /**************************
625              * CALCULATE INTERACTIONS *
626              **************************/
627
628             r20              = _mm256_mul_pd(rsq20,rinv20);
629             r20              = _mm256_andnot_pd(dummy_mask,r20);
630
631             /* Compute parameters for interactions between i and j atoms */
632             qq20             = _mm256_mul_pd(iq2,jq0);
633
634             /* EWALD ELECTROSTATICS */
635
636             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
637             ewrt             = _mm256_mul_pd(r20,ewtabscale);
638             ewitab           = _mm256_cvttpd_epi32(ewrt);
639             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
640             ewitab           = _mm_slli_epi32(ewitab,2);
641             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
642             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
643             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
644             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
645             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
646             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
647             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
648             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
649             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
650
651             /* Update potential sum for this i atom from the interaction with this j atom. */
652             velec            = _mm256_andnot_pd(dummy_mask,velec);
653             velecsum         = _mm256_add_pd(velecsum,velec);
654
655             fscal            = felec;
656
657             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
658
659             /* Calculate temporary vectorial force */
660             tx               = _mm256_mul_pd(fscal,dx20);
661             ty               = _mm256_mul_pd(fscal,dy20);
662             tz               = _mm256_mul_pd(fscal,dz20);
663
664             /* Update vectorial force */
665             fix2             = _mm256_add_pd(fix2,tx);
666             fiy2             = _mm256_add_pd(fiy2,ty);
667             fiz2             = _mm256_add_pd(fiz2,tz);
668
669             fjx0             = _mm256_add_pd(fjx0,tx);
670             fjy0             = _mm256_add_pd(fjy0,ty);
671             fjz0             = _mm256_add_pd(fjz0,tz);
672
673             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
674             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
675             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
676             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
677
678             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
679
680             /* Inner loop uses 160 flops */
681         }
682
683         /* End of innermost loop */
684
685         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
686                                                  f+i_coord_offset,fshift+i_shift_offset);
687
688         ggid                        = gid[iidx];
689         /* Update potential energies */
690         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
691         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
692
693         /* Increment number of inner iterations */
694         inneriter                  += j_index_end - j_index_start;
695
696         /* Outer loop uses 20 flops */
697     }
698
699     /* Increment number of outer iterations */
700     outeriter        += nri;
701
702     /* Update outer/inner flops */
703
704     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*160);
705 }
706 /*
707  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_256_double
708  * Electrostatics interaction: Ewald
709  * VdW interaction:            LJEwald
710  * Geometry:                   Water3-Particle
711  * Calculate force/pot:        Force
712  */
713 void
714 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_256_double
715                     (t_nblist                    * gmx_restrict       nlist,
716                      rvec                        * gmx_restrict          xx,
717                      rvec                        * gmx_restrict          ff,
718                      t_forcerec                  * gmx_restrict          fr,
719                      t_mdatoms                   * gmx_restrict     mdatoms,
720                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
721                      t_nrnb                      * gmx_restrict        nrnb)
722 {
723     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
724      * just 0 for non-waters.
725      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
726      * jnr indices corresponding to data put in the four positions in the SIMD register.
727      */
728     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
729     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
730     int              jnrA,jnrB,jnrC,jnrD;
731     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
732     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
733     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
734     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
735     real             rcutoff_scalar;
736     real             *shiftvec,*fshift,*x,*f;
737     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
738     real             scratch[4*DIM];
739     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
740     real *           vdwioffsetptr0;
741     real *           vdwgridioffsetptr0;
742     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
743     real *           vdwioffsetptr1;
744     real *           vdwgridioffsetptr1;
745     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
746     real *           vdwioffsetptr2;
747     real *           vdwgridioffsetptr2;
748     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
749     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
750     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
751     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
752     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
753     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
754     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
755     real             *charge;
756     int              nvdwtype;
757     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
758     int              *vdwtype;
759     real             *vdwparam;
760     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
761     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
762     __m256d           c6grid_00;
763     __m256d           c6grid_10;
764     __m256d           c6grid_20;
765     real             *vdwgridparam;
766     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
767     __m256d           one_half  = _mm256_set1_pd(0.5);
768     __m256d           minus_one = _mm256_set1_pd(-1.0);
769     __m128i          ewitab;
770     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
771     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
772     real             *ewtab;
773     __m256d          dummy_mask,cutoff_mask;
774     __m128           tmpmask0,tmpmask1;
775     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
776     __m256d          one     = _mm256_set1_pd(1.0);
777     __m256d          two     = _mm256_set1_pd(2.0);
778     x                = xx[0];
779     f                = ff[0];
780
781     nri              = nlist->nri;
782     iinr             = nlist->iinr;
783     jindex           = nlist->jindex;
784     jjnr             = nlist->jjnr;
785     shiftidx         = nlist->shift;
786     gid              = nlist->gid;
787     shiftvec         = fr->shift_vec[0];
788     fshift           = fr->fshift[0];
789     facel            = _mm256_set1_pd(fr->epsfac);
790     charge           = mdatoms->chargeA;
791     nvdwtype         = fr->ntype;
792     vdwparam         = fr->nbfp;
793     vdwtype          = mdatoms->typeA;
794     vdwgridparam     = fr->ljpme_c6grid;
795     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
796     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
797     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
798
799     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
800     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
801     beta2            = _mm256_mul_pd(beta,beta);
802     beta3            = _mm256_mul_pd(beta,beta2);
803
804     ewtab            = fr->ic->tabq_coul_F;
805     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
806     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
807
808     /* Setup water-specific parameters */
809     inr              = nlist->iinr[0];
810     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
811     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
812     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
813     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
814     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
815
816     /* Avoid stupid compiler warnings */
817     jnrA = jnrB = jnrC = jnrD = 0;
818     j_coord_offsetA = 0;
819     j_coord_offsetB = 0;
820     j_coord_offsetC = 0;
821     j_coord_offsetD = 0;
822
823     outeriter        = 0;
824     inneriter        = 0;
825
826     for(iidx=0;iidx<4*DIM;iidx++)
827     {
828         scratch[iidx] = 0.0;
829     }
830
831     /* Start outer loop over neighborlists */
832     for(iidx=0; iidx<nri; iidx++)
833     {
834         /* Load shift vector for this list */
835         i_shift_offset   = DIM*shiftidx[iidx];
836
837         /* Load limits for loop over neighbors */
838         j_index_start    = jindex[iidx];
839         j_index_end      = jindex[iidx+1];
840
841         /* Get outer coordinate index */
842         inr              = iinr[iidx];
843         i_coord_offset   = DIM*inr;
844
845         /* Load i particle coords and add shift vector */
846         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
847                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
848
849         fix0             = _mm256_setzero_pd();
850         fiy0             = _mm256_setzero_pd();
851         fiz0             = _mm256_setzero_pd();
852         fix1             = _mm256_setzero_pd();
853         fiy1             = _mm256_setzero_pd();
854         fiz1             = _mm256_setzero_pd();
855         fix2             = _mm256_setzero_pd();
856         fiy2             = _mm256_setzero_pd();
857         fiz2             = _mm256_setzero_pd();
858
859         /* Start inner kernel loop */
860         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
861         {
862
863             /* Get j neighbor index, and coordinate index */
864             jnrA             = jjnr[jidx];
865             jnrB             = jjnr[jidx+1];
866             jnrC             = jjnr[jidx+2];
867             jnrD             = jjnr[jidx+3];
868             j_coord_offsetA  = DIM*jnrA;
869             j_coord_offsetB  = DIM*jnrB;
870             j_coord_offsetC  = DIM*jnrC;
871             j_coord_offsetD  = DIM*jnrD;
872
873             /* load j atom coordinates */
874             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
875                                                  x+j_coord_offsetC,x+j_coord_offsetD,
876                                                  &jx0,&jy0,&jz0);
877
878             /* Calculate displacement vector */
879             dx00             = _mm256_sub_pd(ix0,jx0);
880             dy00             = _mm256_sub_pd(iy0,jy0);
881             dz00             = _mm256_sub_pd(iz0,jz0);
882             dx10             = _mm256_sub_pd(ix1,jx0);
883             dy10             = _mm256_sub_pd(iy1,jy0);
884             dz10             = _mm256_sub_pd(iz1,jz0);
885             dx20             = _mm256_sub_pd(ix2,jx0);
886             dy20             = _mm256_sub_pd(iy2,jy0);
887             dz20             = _mm256_sub_pd(iz2,jz0);
888
889             /* Calculate squared distance and things based on it */
890             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
891             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
892             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
893
894             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
895             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
896             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
897
898             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
899             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
900             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
901
902             /* Load parameters for j particles */
903             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
904                                                                  charge+jnrC+0,charge+jnrD+0);
905             vdwjidx0A        = 2*vdwtype[jnrA+0];
906             vdwjidx0B        = 2*vdwtype[jnrB+0];
907             vdwjidx0C        = 2*vdwtype[jnrC+0];
908             vdwjidx0D        = 2*vdwtype[jnrD+0];
909
910             fjx0             = _mm256_setzero_pd();
911             fjy0             = _mm256_setzero_pd();
912             fjz0             = _mm256_setzero_pd();
913
914             /**************************
915              * CALCULATE INTERACTIONS *
916              **************************/
917
918             r00              = _mm256_mul_pd(rsq00,rinv00);
919
920             /* Compute parameters for interactions between i and j atoms */
921             qq00             = _mm256_mul_pd(iq0,jq0);
922             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
923                                             vdwioffsetptr0+vdwjidx0B,
924                                             vdwioffsetptr0+vdwjidx0C,
925                                             vdwioffsetptr0+vdwjidx0D,
926                                             &c6_00,&c12_00);
927
928             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
929                                                                   vdwgridioffsetptr0+vdwjidx0B,
930                                                                   vdwgridioffsetptr0+vdwjidx0C,
931                                                                   vdwgridioffsetptr0+vdwjidx0D);
932
933             /* EWALD ELECTROSTATICS */
934
935             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
936             ewrt             = _mm256_mul_pd(r00,ewtabscale);
937             ewitab           = _mm256_cvttpd_epi32(ewrt);
938             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
939             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
940                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
941                                             &ewtabF,&ewtabFn);
942             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
943             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
944
945             /* Analytical LJ-PME */
946             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
947             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
948             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
949             exponent         = gmx_simd_exp_d(ewcljrsq);
950             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
951             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
952             /* f6A = 6 * C6grid * (1 - poly) */
953             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
954             /* f6B = C6grid * exponent * beta^6 */
955             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
956             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
957             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
958
959             fscal            = _mm256_add_pd(felec,fvdw);
960
961             /* Calculate temporary vectorial force */
962             tx               = _mm256_mul_pd(fscal,dx00);
963             ty               = _mm256_mul_pd(fscal,dy00);
964             tz               = _mm256_mul_pd(fscal,dz00);
965
966             /* Update vectorial force */
967             fix0             = _mm256_add_pd(fix0,tx);
968             fiy0             = _mm256_add_pd(fiy0,ty);
969             fiz0             = _mm256_add_pd(fiz0,tz);
970
971             fjx0             = _mm256_add_pd(fjx0,tx);
972             fjy0             = _mm256_add_pd(fjy0,ty);
973             fjz0             = _mm256_add_pd(fjz0,tz);
974
975             /**************************
976              * CALCULATE INTERACTIONS *
977              **************************/
978
979             r10              = _mm256_mul_pd(rsq10,rinv10);
980
981             /* Compute parameters for interactions between i and j atoms */
982             qq10             = _mm256_mul_pd(iq1,jq0);
983
984             /* EWALD ELECTROSTATICS */
985
986             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
987             ewrt             = _mm256_mul_pd(r10,ewtabscale);
988             ewitab           = _mm256_cvttpd_epi32(ewrt);
989             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
990             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
991                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
992                                             &ewtabF,&ewtabFn);
993             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
994             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
995
996             fscal            = felec;
997
998             /* Calculate temporary vectorial force */
999             tx               = _mm256_mul_pd(fscal,dx10);
1000             ty               = _mm256_mul_pd(fscal,dy10);
1001             tz               = _mm256_mul_pd(fscal,dz10);
1002
1003             /* Update vectorial force */
1004             fix1             = _mm256_add_pd(fix1,tx);
1005             fiy1             = _mm256_add_pd(fiy1,ty);
1006             fiz1             = _mm256_add_pd(fiz1,tz);
1007
1008             fjx0             = _mm256_add_pd(fjx0,tx);
1009             fjy0             = _mm256_add_pd(fjy0,ty);
1010             fjz0             = _mm256_add_pd(fjz0,tz);
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             r20              = _mm256_mul_pd(rsq20,rinv20);
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq20             = _mm256_mul_pd(iq2,jq0);
1020
1021             /* EWALD ELECTROSTATICS */
1022
1023             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1024             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1025             ewitab           = _mm256_cvttpd_epi32(ewrt);
1026             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1027             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1028                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1029                                             &ewtabF,&ewtabFn);
1030             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1031             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1032
1033             fscal            = felec;
1034
1035             /* Calculate temporary vectorial force */
1036             tx               = _mm256_mul_pd(fscal,dx20);
1037             ty               = _mm256_mul_pd(fscal,dy20);
1038             tz               = _mm256_mul_pd(fscal,dz20);
1039
1040             /* Update vectorial force */
1041             fix2             = _mm256_add_pd(fix2,tx);
1042             fiy2             = _mm256_add_pd(fiy2,ty);
1043             fiz2             = _mm256_add_pd(fiz2,tz);
1044
1045             fjx0             = _mm256_add_pd(fjx0,tx);
1046             fjy0             = _mm256_add_pd(fjy0,ty);
1047             fjz0             = _mm256_add_pd(fjz0,tz);
1048
1049             fjptrA             = f+j_coord_offsetA;
1050             fjptrB             = f+j_coord_offsetB;
1051             fjptrC             = f+j_coord_offsetC;
1052             fjptrD             = f+j_coord_offsetD;
1053
1054             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1055
1056             /* Inner loop uses 134 flops */
1057         }
1058
1059         if(jidx<j_index_end)
1060         {
1061
1062             /* Get j neighbor index, and coordinate index */
1063             jnrlistA         = jjnr[jidx];
1064             jnrlistB         = jjnr[jidx+1];
1065             jnrlistC         = jjnr[jidx+2];
1066             jnrlistD         = jjnr[jidx+3];
1067             /* Sign of each element will be negative for non-real atoms.
1068              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1069              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1070              */
1071             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1072
1073             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1074             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1075             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1076
1077             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1078             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1079             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1080             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1081             j_coord_offsetA  = DIM*jnrA;
1082             j_coord_offsetB  = DIM*jnrB;
1083             j_coord_offsetC  = DIM*jnrC;
1084             j_coord_offsetD  = DIM*jnrD;
1085
1086             /* load j atom coordinates */
1087             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1088                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1089                                                  &jx0,&jy0,&jz0);
1090
1091             /* Calculate displacement vector */
1092             dx00             = _mm256_sub_pd(ix0,jx0);
1093             dy00             = _mm256_sub_pd(iy0,jy0);
1094             dz00             = _mm256_sub_pd(iz0,jz0);
1095             dx10             = _mm256_sub_pd(ix1,jx0);
1096             dy10             = _mm256_sub_pd(iy1,jy0);
1097             dz10             = _mm256_sub_pd(iz1,jz0);
1098             dx20             = _mm256_sub_pd(ix2,jx0);
1099             dy20             = _mm256_sub_pd(iy2,jy0);
1100             dz20             = _mm256_sub_pd(iz2,jz0);
1101
1102             /* Calculate squared distance and things based on it */
1103             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1104             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1105             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1106
1107             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1108             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1109             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1110
1111             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1112             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1113             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1114
1115             /* Load parameters for j particles */
1116             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1117                                                                  charge+jnrC+0,charge+jnrD+0);
1118             vdwjidx0A        = 2*vdwtype[jnrA+0];
1119             vdwjidx0B        = 2*vdwtype[jnrB+0];
1120             vdwjidx0C        = 2*vdwtype[jnrC+0];
1121             vdwjidx0D        = 2*vdwtype[jnrD+0];
1122
1123             fjx0             = _mm256_setzero_pd();
1124             fjy0             = _mm256_setzero_pd();
1125             fjz0             = _mm256_setzero_pd();
1126
1127             /**************************
1128              * CALCULATE INTERACTIONS *
1129              **************************/
1130
1131             r00              = _mm256_mul_pd(rsq00,rinv00);
1132             r00              = _mm256_andnot_pd(dummy_mask,r00);
1133
1134             /* Compute parameters for interactions between i and j atoms */
1135             qq00             = _mm256_mul_pd(iq0,jq0);
1136             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1137                                             vdwioffsetptr0+vdwjidx0B,
1138                                             vdwioffsetptr0+vdwjidx0C,
1139                                             vdwioffsetptr0+vdwjidx0D,
1140                                             &c6_00,&c12_00);
1141
1142             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
1143                                                                   vdwgridioffsetptr0+vdwjidx0B,
1144                                                                   vdwgridioffsetptr0+vdwjidx0C,
1145                                                                   vdwgridioffsetptr0+vdwjidx0D);
1146
1147             /* EWALD ELECTROSTATICS */
1148
1149             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1150             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1151             ewitab           = _mm256_cvttpd_epi32(ewrt);
1152             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1153             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1154                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1155                                             &ewtabF,&ewtabFn);
1156             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1157             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1158
1159             /* Analytical LJ-PME */
1160             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1161             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
1162             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
1163             exponent         = gmx_simd_exp_d(ewcljrsq);
1164             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1165             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1166             /* f6A = 6 * C6grid * (1 - poly) */
1167             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
1168             /* f6B = C6grid * exponent * beta^6 */
1169             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
1170             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1171             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1172
1173             fscal            = _mm256_add_pd(felec,fvdw);
1174
1175             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1176
1177             /* Calculate temporary vectorial force */
1178             tx               = _mm256_mul_pd(fscal,dx00);
1179             ty               = _mm256_mul_pd(fscal,dy00);
1180             tz               = _mm256_mul_pd(fscal,dz00);
1181
1182             /* Update vectorial force */
1183             fix0             = _mm256_add_pd(fix0,tx);
1184             fiy0             = _mm256_add_pd(fiy0,ty);
1185             fiz0             = _mm256_add_pd(fiz0,tz);
1186
1187             fjx0             = _mm256_add_pd(fjx0,tx);
1188             fjy0             = _mm256_add_pd(fjy0,ty);
1189             fjz0             = _mm256_add_pd(fjz0,tz);
1190
1191             /**************************
1192              * CALCULATE INTERACTIONS *
1193              **************************/
1194
1195             r10              = _mm256_mul_pd(rsq10,rinv10);
1196             r10              = _mm256_andnot_pd(dummy_mask,r10);
1197
1198             /* Compute parameters for interactions between i and j atoms */
1199             qq10             = _mm256_mul_pd(iq1,jq0);
1200
1201             /* EWALD ELECTROSTATICS */
1202
1203             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1204             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1205             ewitab           = _mm256_cvttpd_epi32(ewrt);
1206             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1207             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1208                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1209                                             &ewtabF,&ewtabFn);
1210             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1211             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1212
1213             fscal            = felec;
1214
1215             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1216
1217             /* Calculate temporary vectorial force */
1218             tx               = _mm256_mul_pd(fscal,dx10);
1219             ty               = _mm256_mul_pd(fscal,dy10);
1220             tz               = _mm256_mul_pd(fscal,dz10);
1221
1222             /* Update vectorial force */
1223             fix1             = _mm256_add_pd(fix1,tx);
1224             fiy1             = _mm256_add_pd(fiy1,ty);
1225             fiz1             = _mm256_add_pd(fiz1,tz);
1226
1227             fjx0             = _mm256_add_pd(fjx0,tx);
1228             fjy0             = _mm256_add_pd(fjy0,ty);
1229             fjz0             = _mm256_add_pd(fjz0,tz);
1230
1231             /**************************
1232              * CALCULATE INTERACTIONS *
1233              **************************/
1234
1235             r20              = _mm256_mul_pd(rsq20,rinv20);
1236             r20              = _mm256_andnot_pd(dummy_mask,r20);
1237
1238             /* Compute parameters for interactions between i and j atoms */
1239             qq20             = _mm256_mul_pd(iq2,jq0);
1240
1241             /* EWALD ELECTROSTATICS */
1242
1243             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1244             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1245             ewitab           = _mm256_cvttpd_epi32(ewrt);
1246             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1247             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1248                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1249                                             &ewtabF,&ewtabFn);
1250             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1251             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1252
1253             fscal            = felec;
1254
1255             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1256
1257             /* Calculate temporary vectorial force */
1258             tx               = _mm256_mul_pd(fscal,dx20);
1259             ty               = _mm256_mul_pd(fscal,dy20);
1260             tz               = _mm256_mul_pd(fscal,dz20);
1261
1262             /* Update vectorial force */
1263             fix2             = _mm256_add_pd(fix2,tx);
1264             fiy2             = _mm256_add_pd(fiy2,ty);
1265             fiz2             = _mm256_add_pd(fiz2,tz);
1266
1267             fjx0             = _mm256_add_pd(fjx0,tx);
1268             fjy0             = _mm256_add_pd(fjy0,ty);
1269             fjz0             = _mm256_add_pd(fjz0,tz);
1270
1271             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1272             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1273             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1274             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1275
1276             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1277
1278             /* Inner loop uses 137 flops */
1279         }
1280
1281         /* End of innermost loop */
1282
1283         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1284                                                  f+i_coord_offset,fshift+i_shift_offset);
1285
1286         /* Increment number of inner iterations */
1287         inneriter                  += j_index_end - j_index_start;
1288
1289         /* Outer loop uses 18 flops */
1290     }
1291
1292     /* Increment number of outer iterations */
1293     outeriter        += nri;
1294
1295     /* Update outer/inner flops */
1296
1297     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1298 }