Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     real *           vdwgridioffsetptr0;
88     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
89     real *           vdwioffsetptr1;
90     real *           vdwgridioffsetptr1;
91     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     real *           vdwgridioffsetptr2;
94     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
95     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
96     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
97     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
98     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
99     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
100     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
107     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
108     __m256d           c6grid_00;
109     __m256d           c6grid_10;
110     __m256d           c6grid_20;
111     real             *vdwgridparam;
112     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
113     __m256d           one_half  = _mm256_set1_pd(0.5);
114     __m256d           minus_one = _mm256_set1_pd(-1.0);
115     __m128i          ewitab;
116     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
117     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
118     real             *ewtab;
119     __m256d          dummy_mask,cutoff_mask;
120     __m128           tmpmask0,tmpmask1;
121     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
122     __m256d          one     = _mm256_set1_pd(1.0);
123     __m256d          two     = _mm256_set1_pd(2.0);
124     x                = xx[0];
125     f                = ff[0];
126
127     nri              = nlist->nri;
128     iinr             = nlist->iinr;
129     jindex           = nlist->jindex;
130     jjnr             = nlist->jjnr;
131     shiftidx         = nlist->shift;
132     gid              = nlist->gid;
133     shiftvec         = fr->shift_vec[0];
134     fshift           = fr->fshift[0];
135     facel            = _mm256_set1_pd(fr->epsfac);
136     charge           = mdatoms->chargeA;
137     nvdwtype         = fr->ntype;
138     vdwparam         = fr->nbfp;
139     vdwtype          = mdatoms->typeA;
140     vdwgridparam     = fr->ljpme_c6grid;
141     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
142     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
143     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
144
145     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
146     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
147     beta2            = _mm256_mul_pd(beta,beta);
148     beta3            = _mm256_mul_pd(beta,beta2);
149
150     ewtab            = fr->ic->tabq_coul_FDV0;
151     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
152     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
153
154     /* Setup water-specific parameters */
155     inr              = nlist->iinr[0];
156     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
157     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
158     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
159     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
160     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
161
162     /* Avoid stupid compiler warnings */
163     jnrA = jnrB = jnrC = jnrD = 0;
164     j_coord_offsetA = 0;
165     j_coord_offsetB = 0;
166     j_coord_offsetC = 0;
167     j_coord_offsetD = 0;
168
169     outeriter        = 0;
170     inneriter        = 0;
171
172     for(iidx=0;iidx<4*DIM;iidx++)
173     {
174         scratch[iidx] = 0.0;
175     }
176
177     /* Start outer loop over neighborlists */
178     for(iidx=0; iidx<nri; iidx++)
179     {
180         /* Load shift vector for this list */
181         i_shift_offset   = DIM*shiftidx[iidx];
182
183         /* Load limits for loop over neighbors */
184         j_index_start    = jindex[iidx];
185         j_index_end      = jindex[iidx+1];
186
187         /* Get outer coordinate index */
188         inr              = iinr[iidx];
189         i_coord_offset   = DIM*inr;
190
191         /* Load i particle coords and add shift vector */
192         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
193                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
194
195         fix0             = _mm256_setzero_pd();
196         fiy0             = _mm256_setzero_pd();
197         fiz0             = _mm256_setzero_pd();
198         fix1             = _mm256_setzero_pd();
199         fiy1             = _mm256_setzero_pd();
200         fiz1             = _mm256_setzero_pd();
201         fix2             = _mm256_setzero_pd();
202         fiy2             = _mm256_setzero_pd();
203         fiz2             = _mm256_setzero_pd();
204
205         /* Reset potential sums */
206         velecsum         = _mm256_setzero_pd();
207         vvdwsum          = _mm256_setzero_pd();
208
209         /* Start inner kernel loop */
210         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
211         {
212
213             /* Get j neighbor index, and coordinate index */
214             jnrA             = jjnr[jidx];
215             jnrB             = jjnr[jidx+1];
216             jnrC             = jjnr[jidx+2];
217             jnrD             = jjnr[jidx+3];
218             j_coord_offsetA  = DIM*jnrA;
219             j_coord_offsetB  = DIM*jnrB;
220             j_coord_offsetC  = DIM*jnrC;
221             j_coord_offsetD  = DIM*jnrD;
222
223             /* load j atom coordinates */
224             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
225                                                  x+j_coord_offsetC,x+j_coord_offsetD,
226                                                  &jx0,&jy0,&jz0);
227
228             /* Calculate displacement vector */
229             dx00             = _mm256_sub_pd(ix0,jx0);
230             dy00             = _mm256_sub_pd(iy0,jy0);
231             dz00             = _mm256_sub_pd(iz0,jz0);
232             dx10             = _mm256_sub_pd(ix1,jx0);
233             dy10             = _mm256_sub_pd(iy1,jy0);
234             dz10             = _mm256_sub_pd(iz1,jz0);
235             dx20             = _mm256_sub_pd(ix2,jx0);
236             dy20             = _mm256_sub_pd(iy2,jy0);
237             dz20             = _mm256_sub_pd(iz2,jz0);
238
239             /* Calculate squared distance and things based on it */
240             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
241             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
242             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
243
244             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
245             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
246             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
247
248             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
249             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
250             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
251
252             /* Load parameters for j particles */
253             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
254                                                                  charge+jnrC+0,charge+jnrD+0);
255             vdwjidx0A        = 2*vdwtype[jnrA+0];
256             vdwjidx0B        = 2*vdwtype[jnrB+0];
257             vdwjidx0C        = 2*vdwtype[jnrC+0];
258             vdwjidx0D        = 2*vdwtype[jnrD+0];
259
260             fjx0             = _mm256_setzero_pd();
261             fjy0             = _mm256_setzero_pd();
262             fjz0             = _mm256_setzero_pd();
263
264             /**************************
265              * CALCULATE INTERACTIONS *
266              **************************/
267
268             r00              = _mm256_mul_pd(rsq00,rinv00);
269
270             /* Compute parameters for interactions between i and j atoms */
271             qq00             = _mm256_mul_pd(iq0,jq0);
272             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
273                                             vdwioffsetptr0+vdwjidx0B,
274                                             vdwioffsetptr0+vdwjidx0C,
275                                             vdwioffsetptr0+vdwjidx0D,
276                                             &c6_00,&c12_00);
277
278             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
279                                                                   vdwgridioffsetptr0+vdwjidx0B,
280                                                                   vdwgridioffsetptr0+vdwjidx0C,
281                                                                   vdwgridioffsetptr0+vdwjidx0D);
282
283             /* EWALD ELECTROSTATICS */
284
285             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
286             ewrt             = _mm256_mul_pd(r00,ewtabscale);
287             ewitab           = _mm256_cvttpd_epi32(ewrt);
288             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
289             ewitab           = _mm_slli_epi32(ewitab,2);
290             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
291             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
292             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
293             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
294             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
295             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
296             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
297             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
298             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
299
300             /* Analytical LJ-PME */
301             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
302             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
303             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
304             exponent         = gmx_simd_exp_d(ewcljrsq);
305             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
306             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
307             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
308             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
309             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
310             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
311             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
312             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velecsum         = _mm256_add_pd(velecsum,velec);
316             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
317
318             fscal            = _mm256_add_pd(felec,fvdw);
319
320             /* Calculate temporary vectorial force */
321             tx               = _mm256_mul_pd(fscal,dx00);
322             ty               = _mm256_mul_pd(fscal,dy00);
323             tz               = _mm256_mul_pd(fscal,dz00);
324
325             /* Update vectorial force */
326             fix0             = _mm256_add_pd(fix0,tx);
327             fiy0             = _mm256_add_pd(fiy0,ty);
328             fiz0             = _mm256_add_pd(fiz0,tz);
329
330             fjx0             = _mm256_add_pd(fjx0,tx);
331             fjy0             = _mm256_add_pd(fjy0,ty);
332             fjz0             = _mm256_add_pd(fjz0,tz);
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             r10              = _mm256_mul_pd(rsq10,rinv10);
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq10             = _mm256_mul_pd(iq1,jq0);
342
343             /* EWALD ELECTROSTATICS */
344
345             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
346             ewrt             = _mm256_mul_pd(r10,ewtabscale);
347             ewitab           = _mm256_cvttpd_epi32(ewrt);
348             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
349             ewitab           = _mm_slli_epi32(ewitab,2);
350             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
351             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
352             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
353             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
354             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
355             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
356             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
357             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
358             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velecsum         = _mm256_add_pd(velecsum,velec);
362
363             fscal            = felec;
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm256_mul_pd(fscal,dx10);
367             ty               = _mm256_mul_pd(fscal,dy10);
368             tz               = _mm256_mul_pd(fscal,dz10);
369
370             /* Update vectorial force */
371             fix1             = _mm256_add_pd(fix1,tx);
372             fiy1             = _mm256_add_pd(fiy1,ty);
373             fiz1             = _mm256_add_pd(fiz1,tz);
374
375             fjx0             = _mm256_add_pd(fjx0,tx);
376             fjy0             = _mm256_add_pd(fjy0,ty);
377             fjz0             = _mm256_add_pd(fjz0,tz);
378
379             /**************************
380              * CALCULATE INTERACTIONS *
381              **************************/
382
383             r20              = _mm256_mul_pd(rsq20,rinv20);
384
385             /* Compute parameters for interactions between i and j atoms */
386             qq20             = _mm256_mul_pd(iq2,jq0);
387
388             /* EWALD ELECTROSTATICS */
389
390             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
391             ewrt             = _mm256_mul_pd(r20,ewtabscale);
392             ewitab           = _mm256_cvttpd_epi32(ewrt);
393             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
394             ewitab           = _mm_slli_epi32(ewitab,2);
395             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
396             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
397             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
398             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
399             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
400             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
401             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
402             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
403             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
404
405             /* Update potential sum for this i atom from the interaction with this j atom. */
406             velecsum         = _mm256_add_pd(velecsum,velec);
407
408             fscal            = felec;
409
410             /* Calculate temporary vectorial force */
411             tx               = _mm256_mul_pd(fscal,dx20);
412             ty               = _mm256_mul_pd(fscal,dy20);
413             tz               = _mm256_mul_pd(fscal,dz20);
414
415             /* Update vectorial force */
416             fix2             = _mm256_add_pd(fix2,tx);
417             fiy2             = _mm256_add_pd(fiy2,ty);
418             fiz2             = _mm256_add_pd(fiz2,tz);
419
420             fjx0             = _mm256_add_pd(fjx0,tx);
421             fjy0             = _mm256_add_pd(fjy0,ty);
422             fjz0             = _mm256_add_pd(fjz0,tz);
423
424             fjptrA             = f+j_coord_offsetA;
425             fjptrB             = f+j_coord_offsetB;
426             fjptrC             = f+j_coord_offsetC;
427             fjptrD             = f+j_coord_offsetD;
428
429             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
430
431             /* Inner loop uses 157 flops */
432         }
433
434         if(jidx<j_index_end)
435         {
436
437             /* Get j neighbor index, and coordinate index */
438             jnrlistA         = jjnr[jidx];
439             jnrlistB         = jjnr[jidx+1];
440             jnrlistC         = jjnr[jidx+2];
441             jnrlistD         = jjnr[jidx+3];
442             /* Sign of each element will be negative for non-real atoms.
443              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
444              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
445              */
446             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
447
448             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
449             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
450             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
451
452             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
453             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
454             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
455             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
456             j_coord_offsetA  = DIM*jnrA;
457             j_coord_offsetB  = DIM*jnrB;
458             j_coord_offsetC  = DIM*jnrC;
459             j_coord_offsetD  = DIM*jnrD;
460
461             /* load j atom coordinates */
462             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
463                                                  x+j_coord_offsetC,x+j_coord_offsetD,
464                                                  &jx0,&jy0,&jz0);
465
466             /* Calculate displacement vector */
467             dx00             = _mm256_sub_pd(ix0,jx0);
468             dy00             = _mm256_sub_pd(iy0,jy0);
469             dz00             = _mm256_sub_pd(iz0,jz0);
470             dx10             = _mm256_sub_pd(ix1,jx0);
471             dy10             = _mm256_sub_pd(iy1,jy0);
472             dz10             = _mm256_sub_pd(iz1,jz0);
473             dx20             = _mm256_sub_pd(ix2,jx0);
474             dy20             = _mm256_sub_pd(iy2,jy0);
475             dz20             = _mm256_sub_pd(iz2,jz0);
476
477             /* Calculate squared distance and things based on it */
478             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
479             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
480             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
481
482             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
483             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
484             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
485
486             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
487             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
488             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
489
490             /* Load parameters for j particles */
491             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
492                                                                  charge+jnrC+0,charge+jnrD+0);
493             vdwjidx0A        = 2*vdwtype[jnrA+0];
494             vdwjidx0B        = 2*vdwtype[jnrB+0];
495             vdwjidx0C        = 2*vdwtype[jnrC+0];
496             vdwjidx0D        = 2*vdwtype[jnrD+0];
497
498             fjx0             = _mm256_setzero_pd();
499             fjy0             = _mm256_setzero_pd();
500             fjz0             = _mm256_setzero_pd();
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             r00              = _mm256_mul_pd(rsq00,rinv00);
507             r00              = _mm256_andnot_pd(dummy_mask,r00);
508
509             /* Compute parameters for interactions between i and j atoms */
510             qq00             = _mm256_mul_pd(iq0,jq0);
511             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
512                                             vdwioffsetptr0+vdwjidx0B,
513                                             vdwioffsetptr0+vdwjidx0C,
514                                             vdwioffsetptr0+vdwjidx0D,
515                                             &c6_00,&c12_00);
516
517             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
518                                                                   vdwgridioffsetptr0+vdwjidx0B,
519                                                                   vdwgridioffsetptr0+vdwjidx0C,
520                                                                   vdwgridioffsetptr0+vdwjidx0D);
521
522             /* EWALD ELECTROSTATICS */
523
524             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
525             ewrt             = _mm256_mul_pd(r00,ewtabscale);
526             ewitab           = _mm256_cvttpd_epi32(ewrt);
527             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
528             ewitab           = _mm_slli_epi32(ewitab,2);
529             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
530             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
531             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
532             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
533             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
534             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
535             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
536             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
537             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
538
539             /* Analytical LJ-PME */
540             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
541             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
542             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
543             exponent         = gmx_simd_exp_d(ewcljrsq);
544             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
545             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
546             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
547             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
548             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
549             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
550             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
551             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
552
553             /* Update potential sum for this i atom from the interaction with this j atom. */
554             velec            = _mm256_andnot_pd(dummy_mask,velec);
555             velecsum         = _mm256_add_pd(velecsum,velec);
556             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
557             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
558
559             fscal            = _mm256_add_pd(felec,fvdw);
560
561             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
562
563             /* Calculate temporary vectorial force */
564             tx               = _mm256_mul_pd(fscal,dx00);
565             ty               = _mm256_mul_pd(fscal,dy00);
566             tz               = _mm256_mul_pd(fscal,dz00);
567
568             /* Update vectorial force */
569             fix0             = _mm256_add_pd(fix0,tx);
570             fiy0             = _mm256_add_pd(fiy0,ty);
571             fiz0             = _mm256_add_pd(fiz0,tz);
572
573             fjx0             = _mm256_add_pd(fjx0,tx);
574             fjy0             = _mm256_add_pd(fjy0,ty);
575             fjz0             = _mm256_add_pd(fjz0,tz);
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             r10              = _mm256_mul_pd(rsq10,rinv10);
582             r10              = _mm256_andnot_pd(dummy_mask,r10);
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq10             = _mm256_mul_pd(iq1,jq0);
586
587             /* EWALD ELECTROSTATICS */
588
589             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
590             ewrt             = _mm256_mul_pd(r10,ewtabscale);
591             ewitab           = _mm256_cvttpd_epi32(ewrt);
592             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
593             ewitab           = _mm_slli_epi32(ewitab,2);
594             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
595             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
596             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
597             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
598             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
599             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
600             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
601             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
602             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
603
604             /* Update potential sum for this i atom from the interaction with this j atom. */
605             velec            = _mm256_andnot_pd(dummy_mask,velec);
606             velecsum         = _mm256_add_pd(velecsum,velec);
607
608             fscal            = felec;
609
610             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
611
612             /* Calculate temporary vectorial force */
613             tx               = _mm256_mul_pd(fscal,dx10);
614             ty               = _mm256_mul_pd(fscal,dy10);
615             tz               = _mm256_mul_pd(fscal,dz10);
616
617             /* Update vectorial force */
618             fix1             = _mm256_add_pd(fix1,tx);
619             fiy1             = _mm256_add_pd(fiy1,ty);
620             fiz1             = _mm256_add_pd(fiz1,tz);
621
622             fjx0             = _mm256_add_pd(fjx0,tx);
623             fjy0             = _mm256_add_pd(fjy0,ty);
624             fjz0             = _mm256_add_pd(fjz0,tz);
625
626             /**************************
627              * CALCULATE INTERACTIONS *
628              **************************/
629
630             r20              = _mm256_mul_pd(rsq20,rinv20);
631             r20              = _mm256_andnot_pd(dummy_mask,r20);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq20             = _mm256_mul_pd(iq2,jq0);
635
636             /* EWALD ELECTROSTATICS */
637
638             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
639             ewrt             = _mm256_mul_pd(r20,ewtabscale);
640             ewitab           = _mm256_cvttpd_epi32(ewrt);
641             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
642             ewitab           = _mm_slli_epi32(ewitab,2);
643             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
644             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
645             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
646             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
647             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
648             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
649             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
650             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
651             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
652
653             /* Update potential sum for this i atom from the interaction with this j atom. */
654             velec            = _mm256_andnot_pd(dummy_mask,velec);
655             velecsum         = _mm256_add_pd(velecsum,velec);
656
657             fscal            = felec;
658
659             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
660
661             /* Calculate temporary vectorial force */
662             tx               = _mm256_mul_pd(fscal,dx20);
663             ty               = _mm256_mul_pd(fscal,dy20);
664             tz               = _mm256_mul_pd(fscal,dz20);
665
666             /* Update vectorial force */
667             fix2             = _mm256_add_pd(fix2,tx);
668             fiy2             = _mm256_add_pd(fiy2,ty);
669             fiz2             = _mm256_add_pd(fiz2,tz);
670
671             fjx0             = _mm256_add_pd(fjx0,tx);
672             fjy0             = _mm256_add_pd(fjy0,ty);
673             fjz0             = _mm256_add_pd(fjz0,tz);
674
675             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
676             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
677             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
678             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
679
680             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
681
682             /* Inner loop uses 160 flops */
683         }
684
685         /* End of innermost loop */
686
687         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
688                                                  f+i_coord_offset,fshift+i_shift_offset);
689
690         ggid                        = gid[iidx];
691         /* Update potential energies */
692         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
693         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
694
695         /* Increment number of inner iterations */
696         inneriter                  += j_index_end - j_index_start;
697
698         /* Outer loop uses 20 flops */
699     }
700
701     /* Increment number of outer iterations */
702     outeriter        += nri;
703
704     /* Update outer/inner flops */
705
706     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*160);
707 }
708 /*
709  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_256_double
710  * Electrostatics interaction: Ewald
711  * VdW interaction:            LJEwald
712  * Geometry:                   Water3-Particle
713  * Calculate force/pot:        Force
714  */
715 void
716 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_256_double
717                     (t_nblist                    * gmx_restrict       nlist,
718                      rvec                        * gmx_restrict          xx,
719                      rvec                        * gmx_restrict          ff,
720                      t_forcerec                  * gmx_restrict          fr,
721                      t_mdatoms                   * gmx_restrict     mdatoms,
722                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
723                      t_nrnb                      * gmx_restrict        nrnb)
724 {
725     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
726      * just 0 for non-waters.
727      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
728      * jnr indices corresponding to data put in the four positions in the SIMD register.
729      */
730     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
731     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
732     int              jnrA,jnrB,jnrC,jnrD;
733     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
734     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
735     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
736     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
737     real             rcutoff_scalar;
738     real             *shiftvec,*fshift,*x,*f;
739     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
740     real             scratch[4*DIM];
741     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
742     real *           vdwioffsetptr0;
743     real *           vdwgridioffsetptr0;
744     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
745     real *           vdwioffsetptr1;
746     real *           vdwgridioffsetptr1;
747     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
748     real *           vdwioffsetptr2;
749     real *           vdwgridioffsetptr2;
750     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
751     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
752     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
753     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
754     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
755     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
756     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
757     real             *charge;
758     int              nvdwtype;
759     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
760     int              *vdwtype;
761     real             *vdwparam;
762     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
763     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
764     __m256d           c6grid_00;
765     __m256d           c6grid_10;
766     __m256d           c6grid_20;
767     real             *vdwgridparam;
768     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
769     __m256d           one_half  = _mm256_set1_pd(0.5);
770     __m256d           minus_one = _mm256_set1_pd(-1.0);
771     __m128i          ewitab;
772     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
773     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
774     real             *ewtab;
775     __m256d          dummy_mask,cutoff_mask;
776     __m128           tmpmask0,tmpmask1;
777     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
778     __m256d          one     = _mm256_set1_pd(1.0);
779     __m256d          two     = _mm256_set1_pd(2.0);
780     x                = xx[0];
781     f                = ff[0];
782
783     nri              = nlist->nri;
784     iinr             = nlist->iinr;
785     jindex           = nlist->jindex;
786     jjnr             = nlist->jjnr;
787     shiftidx         = nlist->shift;
788     gid              = nlist->gid;
789     shiftvec         = fr->shift_vec[0];
790     fshift           = fr->fshift[0];
791     facel            = _mm256_set1_pd(fr->epsfac);
792     charge           = mdatoms->chargeA;
793     nvdwtype         = fr->ntype;
794     vdwparam         = fr->nbfp;
795     vdwtype          = mdatoms->typeA;
796     vdwgridparam     = fr->ljpme_c6grid;
797     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
798     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
799     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
800
801     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
802     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
803     beta2            = _mm256_mul_pd(beta,beta);
804     beta3            = _mm256_mul_pd(beta,beta2);
805
806     ewtab            = fr->ic->tabq_coul_F;
807     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
808     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
809
810     /* Setup water-specific parameters */
811     inr              = nlist->iinr[0];
812     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
813     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
814     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
815     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
816     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
817
818     /* Avoid stupid compiler warnings */
819     jnrA = jnrB = jnrC = jnrD = 0;
820     j_coord_offsetA = 0;
821     j_coord_offsetB = 0;
822     j_coord_offsetC = 0;
823     j_coord_offsetD = 0;
824
825     outeriter        = 0;
826     inneriter        = 0;
827
828     for(iidx=0;iidx<4*DIM;iidx++)
829     {
830         scratch[iidx] = 0.0;
831     }
832
833     /* Start outer loop over neighborlists */
834     for(iidx=0; iidx<nri; iidx++)
835     {
836         /* Load shift vector for this list */
837         i_shift_offset   = DIM*shiftidx[iidx];
838
839         /* Load limits for loop over neighbors */
840         j_index_start    = jindex[iidx];
841         j_index_end      = jindex[iidx+1];
842
843         /* Get outer coordinate index */
844         inr              = iinr[iidx];
845         i_coord_offset   = DIM*inr;
846
847         /* Load i particle coords and add shift vector */
848         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
849                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
850
851         fix0             = _mm256_setzero_pd();
852         fiy0             = _mm256_setzero_pd();
853         fiz0             = _mm256_setzero_pd();
854         fix1             = _mm256_setzero_pd();
855         fiy1             = _mm256_setzero_pd();
856         fiz1             = _mm256_setzero_pd();
857         fix2             = _mm256_setzero_pd();
858         fiy2             = _mm256_setzero_pd();
859         fiz2             = _mm256_setzero_pd();
860
861         /* Start inner kernel loop */
862         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
863         {
864
865             /* Get j neighbor index, and coordinate index */
866             jnrA             = jjnr[jidx];
867             jnrB             = jjnr[jidx+1];
868             jnrC             = jjnr[jidx+2];
869             jnrD             = jjnr[jidx+3];
870             j_coord_offsetA  = DIM*jnrA;
871             j_coord_offsetB  = DIM*jnrB;
872             j_coord_offsetC  = DIM*jnrC;
873             j_coord_offsetD  = DIM*jnrD;
874
875             /* load j atom coordinates */
876             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
877                                                  x+j_coord_offsetC,x+j_coord_offsetD,
878                                                  &jx0,&jy0,&jz0);
879
880             /* Calculate displacement vector */
881             dx00             = _mm256_sub_pd(ix0,jx0);
882             dy00             = _mm256_sub_pd(iy0,jy0);
883             dz00             = _mm256_sub_pd(iz0,jz0);
884             dx10             = _mm256_sub_pd(ix1,jx0);
885             dy10             = _mm256_sub_pd(iy1,jy0);
886             dz10             = _mm256_sub_pd(iz1,jz0);
887             dx20             = _mm256_sub_pd(ix2,jx0);
888             dy20             = _mm256_sub_pd(iy2,jy0);
889             dz20             = _mm256_sub_pd(iz2,jz0);
890
891             /* Calculate squared distance and things based on it */
892             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
893             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
894             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
895
896             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
897             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
898             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
899
900             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
901             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
902             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
903
904             /* Load parameters for j particles */
905             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
906                                                                  charge+jnrC+0,charge+jnrD+0);
907             vdwjidx0A        = 2*vdwtype[jnrA+0];
908             vdwjidx0B        = 2*vdwtype[jnrB+0];
909             vdwjidx0C        = 2*vdwtype[jnrC+0];
910             vdwjidx0D        = 2*vdwtype[jnrD+0];
911
912             fjx0             = _mm256_setzero_pd();
913             fjy0             = _mm256_setzero_pd();
914             fjz0             = _mm256_setzero_pd();
915
916             /**************************
917              * CALCULATE INTERACTIONS *
918              **************************/
919
920             r00              = _mm256_mul_pd(rsq00,rinv00);
921
922             /* Compute parameters for interactions between i and j atoms */
923             qq00             = _mm256_mul_pd(iq0,jq0);
924             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
925                                             vdwioffsetptr0+vdwjidx0B,
926                                             vdwioffsetptr0+vdwjidx0C,
927                                             vdwioffsetptr0+vdwjidx0D,
928                                             &c6_00,&c12_00);
929
930             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
931                                                                   vdwgridioffsetptr0+vdwjidx0B,
932                                                                   vdwgridioffsetptr0+vdwjidx0C,
933                                                                   vdwgridioffsetptr0+vdwjidx0D);
934
935             /* EWALD ELECTROSTATICS */
936
937             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
938             ewrt             = _mm256_mul_pd(r00,ewtabscale);
939             ewitab           = _mm256_cvttpd_epi32(ewrt);
940             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
941             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
942                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
943                                             &ewtabF,&ewtabFn);
944             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
945             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
946
947             /* Analytical LJ-PME */
948             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
949             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
950             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
951             exponent         = gmx_simd_exp_d(ewcljrsq);
952             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
953             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
954             /* f6A = 6 * C6grid * (1 - poly) */
955             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
956             /* f6B = C6grid * exponent * beta^6 */
957             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
958             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
959             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
960
961             fscal            = _mm256_add_pd(felec,fvdw);
962
963             /* Calculate temporary vectorial force */
964             tx               = _mm256_mul_pd(fscal,dx00);
965             ty               = _mm256_mul_pd(fscal,dy00);
966             tz               = _mm256_mul_pd(fscal,dz00);
967
968             /* Update vectorial force */
969             fix0             = _mm256_add_pd(fix0,tx);
970             fiy0             = _mm256_add_pd(fiy0,ty);
971             fiz0             = _mm256_add_pd(fiz0,tz);
972
973             fjx0             = _mm256_add_pd(fjx0,tx);
974             fjy0             = _mm256_add_pd(fjy0,ty);
975             fjz0             = _mm256_add_pd(fjz0,tz);
976
977             /**************************
978              * CALCULATE INTERACTIONS *
979              **************************/
980
981             r10              = _mm256_mul_pd(rsq10,rinv10);
982
983             /* Compute parameters for interactions between i and j atoms */
984             qq10             = _mm256_mul_pd(iq1,jq0);
985
986             /* EWALD ELECTROSTATICS */
987
988             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
989             ewrt             = _mm256_mul_pd(r10,ewtabscale);
990             ewitab           = _mm256_cvttpd_epi32(ewrt);
991             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
992             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
993                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
994                                             &ewtabF,&ewtabFn);
995             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
996             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
997
998             fscal            = felec;
999
1000             /* Calculate temporary vectorial force */
1001             tx               = _mm256_mul_pd(fscal,dx10);
1002             ty               = _mm256_mul_pd(fscal,dy10);
1003             tz               = _mm256_mul_pd(fscal,dz10);
1004
1005             /* Update vectorial force */
1006             fix1             = _mm256_add_pd(fix1,tx);
1007             fiy1             = _mm256_add_pd(fiy1,ty);
1008             fiz1             = _mm256_add_pd(fiz1,tz);
1009
1010             fjx0             = _mm256_add_pd(fjx0,tx);
1011             fjy0             = _mm256_add_pd(fjy0,ty);
1012             fjz0             = _mm256_add_pd(fjz0,tz);
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             r20              = _mm256_mul_pd(rsq20,rinv20);
1019
1020             /* Compute parameters for interactions between i and j atoms */
1021             qq20             = _mm256_mul_pd(iq2,jq0);
1022
1023             /* EWALD ELECTROSTATICS */
1024
1025             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1026             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1027             ewitab           = _mm256_cvttpd_epi32(ewrt);
1028             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1029             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1030                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1031                                             &ewtabF,&ewtabFn);
1032             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1033             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1034
1035             fscal            = felec;
1036
1037             /* Calculate temporary vectorial force */
1038             tx               = _mm256_mul_pd(fscal,dx20);
1039             ty               = _mm256_mul_pd(fscal,dy20);
1040             tz               = _mm256_mul_pd(fscal,dz20);
1041
1042             /* Update vectorial force */
1043             fix2             = _mm256_add_pd(fix2,tx);
1044             fiy2             = _mm256_add_pd(fiy2,ty);
1045             fiz2             = _mm256_add_pd(fiz2,tz);
1046
1047             fjx0             = _mm256_add_pd(fjx0,tx);
1048             fjy0             = _mm256_add_pd(fjy0,ty);
1049             fjz0             = _mm256_add_pd(fjz0,tz);
1050
1051             fjptrA             = f+j_coord_offsetA;
1052             fjptrB             = f+j_coord_offsetB;
1053             fjptrC             = f+j_coord_offsetC;
1054             fjptrD             = f+j_coord_offsetD;
1055
1056             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1057
1058             /* Inner loop uses 134 flops */
1059         }
1060
1061         if(jidx<j_index_end)
1062         {
1063
1064             /* Get j neighbor index, and coordinate index */
1065             jnrlistA         = jjnr[jidx];
1066             jnrlistB         = jjnr[jidx+1];
1067             jnrlistC         = jjnr[jidx+2];
1068             jnrlistD         = jjnr[jidx+3];
1069             /* Sign of each element will be negative for non-real atoms.
1070              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1071              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1072              */
1073             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1074
1075             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1076             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1077             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1078
1079             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1080             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1081             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1082             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1083             j_coord_offsetA  = DIM*jnrA;
1084             j_coord_offsetB  = DIM*jnrB;
1085             j_coord_offsetC  = DIM*jnrC;
1086             j_coord_offsetD  = DIM*jnrD;
1087
1088             /* load j atom coordinates */
1089             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1090                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1091                                                  &jx0,&jy0,&jz0);
1092
1093             /* Calculate displacement vector */
1094             dx00             = _mm256_sub_pd(ix0,jx0);
1095             dy00             = _mm256_sub_pd(iy0,jy0);
1096             dz00             = _mm256_sub_pd(iz0,jz0);
1097             dx10             = _mm256_sub_pd(ix1,jx0);
1098             dy10             = _mm256_sub_pd(iy1,jy0);
1099             dz10             = _mm256_sub_pd(iz1,jz0);
1100             dx20             = _mm256_sub_pd(ix2,jx0);
1101             dy20             = _mm256_sub_pd(iy2,jy0);
1102             dz20             = _mm256_sub_pd(iz2,jz0);
1103
1104             /* Calculate squared distance and things based on it */
1105             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1106             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1107             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1108
1109             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1110             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1111             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1112
1113             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1114             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1115             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1116
1117             /* Load parameters for j particles */
1118             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1119                                                                  charge+jnrC+0,charge+jnrD+0);
1120             vdwjidx0A        = 2*vdwtype[jnrA+0];
1121             vdwjidx0B        = 2*vdwtype[jnrB+0];
1122             vdwjidx0C        = 2*vdwtype[jnrC+0];
1123             vdwjidx0D        = 2*vdwtype[jnrD+0];
1124
1125             fjx0             = _mm256_setzero_pd();
1126             fjy0             = _mm256_setzero_pd();
1127             fjz0             = _mm256_setzero_pd();
1128
1129             /**************************
1130              * CALCULATE INTERACTIONS *
1131              **************************/
1132
1133             r00              = _mm256_mul_pd(rsq00,rinv00);
1134             r00              = _mm256_andnot_pd(dummy_mask,r00);
1135
1136             /* Compute parameters for interactions between i and j atoms */
1137             qq00             = _mm256_mul_pd(iq0,jq0);
1138             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1139                                             vdwioffsetptr0+vdwjidx0B,
1140                                             vdwioffsetptr0+vdwjidx0C,
1141                                             vdwioffsetptr0+vdwjidx0D,
1142                                             &c6_00,&c12_00);
1143
1144             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
1145                                                                   vdwgridioffsetptr0+vdwjidx0B,
1146                                                                   vdwgridioffsetptr0+vdwjidx0C,
1147                                                                   vdwgridioffsetptr0+vdwjidx0D);
1148
1149             /* EWALD ELECTROSTATICS */
1150
1151             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1152             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1153             ewitab           = _mm256_cvttpd_epi32(ewrt);
1154             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1155             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1156                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1157                                             &ewtabF,&ewtabFn);
1158             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1159             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1160
1161             /* Analytical LJ-PME */
1162             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1163             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
1164             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
1165             exponent         = gmx_simd_exp_d(ewcljrsq);
1166             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1167             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1168             /* f6A = 6 * C6grid * (1 - poly) */
1169             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
1170             /* f6B = C6grid * exponent * beta^6 */
1171             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
1172             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1173             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1174
1175             fscal            = _mm256_add_pd(felec,fvdw);
1176
1177             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1178
1179             /* Calculate temporary vectorial force */
1180             tx               = _mm256_mul_pd(fscal,dx00);
1181             ty               = _mm256_mul_pd(fscal,dy00);
1182             tz               = _mm256_mul_pd(fscal,dz00);
1183
1184             /* Update vectorial force */
1185             fix0             = _mm256_add_pd(fix0,tx);
1186             fiy0             = _mm256_add_pd(fiy0,ty);
1187             fiz0             = _mm256_add_pd(fiz0,tz);
1188
1189             fjx0             = _mm256_add_pd(fjx0,tx);
1190             fjy0             = _mm256_add_pd(fjy0,ty);
1191             fjz0             = _mm256_add_pd(fjz0,tz);
1192
1193             /**************************
1194              * CALCULATE INTERACTIONS *
1195              **************************/
1196
1197             r10              = _mm256_mul_pd(rsq10,rinv10);
1198             r10              = _mm256_andnot_pd(dummy_mask,r10);
1199
1200             /* Compute parameters for interactions between i and j atoms */
1201             qq10             = _mm256_mul_pd(iq1,jq0);
1202
1203             /* EWALD ELECTROSTATICS */
1204
1205             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1206             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1207             ewitab           = _mm256_cvttpd_epi32(ewrt);
1208             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1209             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1210                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1211                                             &ewtabF,&ewtabFn);
1212             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1213             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1214
1215             fscal            = felec;
1216
1217             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1218
1219             /* Calculate temporary vectorial force */
1220             tx               = _mm256_mul_pd(fscal,dx10);
1221             ty               = _mm256_mul_pd(fscal,dy10);
1222             tz               = _mm256_mul_pd(fscal,dz10);
1223
1224             /* Update vectorial force */
1225             fix1             = _mm256_add_pd(fix1,tx);
1226             fiy1             = _mm256_add_pd(fiy1,ty);
1227             fiz1             = _mm256_add_pd(fiz1,tz);
1228
1229             fjx0             = _mm256_add_pd(fjx0,tx);
1230             fjy0             = _mm256_add_pd(fjy0,ty);
1231             fjz0             = _mm256_add_pd(fjz0,tz);
1232
1233             /**************************
1234              * CALCULATE INTERACTIONS *
1235              **************************/
1236
1237             r20              = _mm256_mul_pd(rsq20,rinv20);
1238             r20              = _mm256_andnot_pd(dummy_mask,r20);
1239
1240             /* Compute parameters for interactions between i and j atoms */
1241             qq20             = _mm256_mul_pd(iq2,jq0);
1242
1243             /* EWALD ELECTROSTATICS */
1244
1245             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1246             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1247             ewitab           = _mm256_cvttpd_epi32(ewrt);
1248             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1249             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1250                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1251                                             &ewtabF,&ewtabFn);
1252             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1253             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1254
1255             fscal            = felec;
1256
1257             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1258
1259             /* Calculate temporary vectorial force */
1260             tx               = _mm256_mul_pd(fscal,dx20);
1261             ty               = _mm256_mul_pd(fscal,dy20);
1262             tz               = _mm256_mul_pd(fscal,dz20);
1263
1264             /* Update vectorial force */
1265             fix2             = _mm256_add_pd(fix2,tx);
1266             fiy2             = _mm256_add_pd(fiy2,ty);
1267             fiz2             = _mm256_add_pd(fiz2,tz);
1268
1269             fjx0             = _mm256_add_pd(fjx0,tx);
1270             fjy0             = _mm256_add_pd(fjy0,ty);
1271             fjz0             = _mm256_add_pd(fjz0,tz);
1272
1273             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1274             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1275             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1276             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1277
1278             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1279
1280             /* Inner loop uses 137 flops */
1281         }
1282
1283         /* End of innermost loop */
1284
1285         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1286                                                  f+i_coord_offset,fshift+i_shift_offset);
1287
1288         /* Increment number of inner iterations */
1289         inneriter                  += j_index_end - j_index_start;
1290
1291         /* Outer loop uses 18 flops */
1292     }
1293
1294     /* Increment number of outer iterations */
1295     outeriter        += nri;
1296
1297     /* Update outer/inner flops */
1298
1299     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1300 }