Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     real *           vdwgridioffsetptr0;
88     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
93     real             *charge;
94     int              nvdwtype;
95     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
99     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
100     __m256d           c6grid_00;
101     real             *vdwgridparam;
102     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
103     __m256d           one_half  = _mm256_set1_pd(0.5);
104     __m256d           minus_one = _mm256_set1_pd(-1.0);
105     __m128i          ewitab;
106     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
108     real             *ewtab;
109     __m256d          dummy_mask,cutoff_mask;
110     __m128           tmpmask0,tmpmask1;
111     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
112     __m256d          one     = _mm256_set1_pd(1.0);
113     __m256d          two     = _mm256_set1_pd(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_pd(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130     vdwgridparam     = fr->ljpme_c6grid;
131     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
132     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
133     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
134
135     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
136     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
137     beta2            = _mm256_mul_pd(beta,beta);
138     beta3            = _mm256_mul_pd(beta,beta2);
139
140     ewtab            = fr->ic->tabq_coul_FDV0;
141     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
142     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     for(iidx=0;iidx<4*DIM;iidx++)
155     {
156         scratch[iidx] = 0.0;
157     }
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
175
176         fix0             = _mm256_setzero_pd();
177         fiy0             = _mm256_setzero_pd();
178         fiz0             = _mm256_setzero_pd();
179
180         /* Load parameters for i particles */
181         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
182         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
183         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
184
185         /* Reset potential sums */
186         velecsum         = _mm256_setzero_pd();
187         vvdwsum          = _mm256_setzero_pd();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             j_coord_offsetA  = DIM*jnrA;
199             j_coord_offsetB  = DIM*jnrB;
200             j_coord_offsetC  = DIM*jnrC;
201             j_coord_offsetD  = DIM*jnrD;
202
203             /* load j atom coordinates */
204             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
205                                                  x+j_coord_offsetC,x+j_coord_offsetD,
206                                                  &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm256_sub_pd(ix0,jx0);
210             dy00             = _mm256_sub_pd(iy0,jy0);
211             dz00             = _mm256_sub_pd(iz0,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
215
216             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
217
218             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
219
220             /* Load parameters for j particles */
221             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
222                                                                  charge+jnrC+0,charge+jnrD+0);
223             vdwjidx0A        = 2*vdwtype[jnrA+0];
224             vdwjidx0B        = 2*vdwtype[jnrB+0];
225             vdwjidx0C        = 2*vdwtype[jnrC+0];
226             vdwjidx0D        = 2*vdwtype[jnrD+0];
227
228             /**************************
229              * CALCULATE INTERACTIONS *
230              **************************/
231
232             r00              = _mm256_mul_pd(rsq00,rinv00);
233
234             /* Compute parameters for interactions between i and j atoms */
235             qq00             = _mm256_mul_pd(iq0,jq0);
236             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
237                                             vdwioffsetptr0+vdwjidx0B,
238                                             vdwioffsetptr0+vdwjidx0C,
239                                             vdwioffsetptr0+vdwjidx0D,
240                                             &c6_00,&c12_00);
241
242             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
243                                                                   vdwgridioffsetptr0+vdwjidx0B,
244                                                                   vdwgridioffsetptr0+vdwjidx0C,
245                                                                   vdwgridioffsetptr0+vdwjidx0D);
246
247             /* EWALD ELECTROSTATICS */
248
249             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
250             ewrt             = _mm256_mul_pd(r00,ewtabscale);
251             ewitab           = _mm256_cvttpd_epi32(ewrt);
252             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
253             ewitab           = _mm_slli_epi32(ewitab,2);
254             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
255             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
256             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
257             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
258             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
259             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
260             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
261             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
262             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
263
264             /* Analytical LJ-PME */
265             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
266             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
267             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
268             exponent         = gmx_simd_exp_d(ewcljrsq);
269             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
270             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
271             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
272             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
273             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
274             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
275             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
276             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velecsum         = _mm256_add_pd(velecsum,velec);
280             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
281
282             fscal            = _mm256_add_pd(felec,fvdw);
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm256_mul_pd(fscal,dx00);
286             ty               = _mm256_mul_pd(fscal,dy00);
287             tz               = _mm256_mul_pd(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm256_add_pd(fix0,tx);
291             fiy0             = _mm256_add_pd(fiy0,ty);
292             fiz0             = _mm256_add_pd(fiz0,tz);
293
294             fjptrA             = f+j_coord_offsetA;
295             fjptrB             = f+j_coord_offsetB;
296             fjptrC             = f+j_coord_offsetC;
297             fjptrD             = f+j_coord_offsetD;
298             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
299
300             /* Inner loop uses 72 flops */
301         }
302
303         if(jidx<j_index_end)
304         {
305
306             /* Get j neighbor index, and coordinate index */
307             jnrlistA         = jjnr[jidx];
308             jnrlistB         = jjnr[jidx+1];
309             jnrlistC         = jjnr[jidx+2];
310             jnrlistD         = jjnr[jidx+3];
311             /* Sign of each element will be negative for non-real atoms.
312              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
313              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
314              */
315             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
316
317             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
318             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
319             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
320
321             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
322             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
323             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
324             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
325             j_coord_offsetA  = DIM*jnrA;
326             j_coord_offsetB  = DIM*jnrB;
327             j_coord_offsetC  = DIM*jnrC;
328             j_coord_offsetD  = DIM*jnrD;
329
330             /* load j atom coordinates */
331             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
332                                                  x+j_coord_offsetC,x+j_coord_offsetD,
333                                                  &jx0,&jy0,&jz0);
334
335             /* Calculate displacement vector */
336             dx00             = _mm256_sub_pd(ix0,jx0);
337             dy00             = _mm256_sub_pd(iy0,jy0);
338             dz00             = _mm256_sub_pd(iz0,jz0);
339
340             /* Calculate squared distance and things based on it */
341             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
342
343             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
344
345             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
346
347             /* Load parameters for j particles */
348             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
349                                                                  charge+jnrC+0,charge+jnrD+0);
350             vdwjidx0A        = 2*vdwtype[jnrA+0];
351             vdwjidx0B        = 2*vdwtype[jnrB+0];
352             vdwjidx0C        = 2*vdwtype[jnrC+0];
353             vdwjidx0D        = 2*vdwtype[jnrD+0];
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             r00              = _mm256_mul_pd(rsq00,rinv00);
360             r00              = _mm256_andnot_pd(dummy_mask,r00);
361
362             /* Compute parameters for interactions between i and j atoms */
363             qq00             = _mm256_mul_pd(iq0,jq0);
364             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
365                                             vdwioffsetptr0+vdwjidx0B,
366                                             vdwioffsetptr0+vdwjidx0C,
367                                             vdwioffsetptr0+vdwjidx0D,
368                                             &c6_00,&c12_00);
369
370             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
371                                                                   vdwgridioffsetptr0+vdwjidx0B,
372                                                                   vdwgridioffsetptr0+vdwjidx0C,
373                                                                   vdwgridioffsetptr0+vdwjidx0D);
374
375             /* EWALD ELECTROSTATICS */
376
377             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
378             ewrt             = _mm256_mul_pd(r00,ewtabscale);
379             ewitab           = _mm256_cvttpd_epi32(ewrt);
380             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
381             ewitab           = _mm_slli_epi32(ewitab,2);
382             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
383             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
384             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
385             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
386             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
387             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
388             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
389             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
390             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
391
392             /* Analytical LJ-PME */
393             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
394             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
395             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
396             exponent         = gmx_simd_exp_d(ewcljrsq);
397             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
398             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
399             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
400             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
401             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
402             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
403             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
404             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velec            = _mm256_andnot_pd(dummy_mask,velec);
408             velecsum         = _mm256_add_pd(velecsum,velec);
409             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
410             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
411
412             fscal            = _mm256_add_pd(felec,fvdw);
413
414             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
415
416             /* Calculate temporary vectorial force */
417             tx               = _mm256_mul_pd(fscal,dx00);
418             ty               = _mm256_mul_pd(fscal,dy00);
419             tz               = _mm256_mul_pd(fscal,dz00);
420
421             /* Update vectorial force */
422             fix0             = _mm256_add_pd(fix0,tx);
423             fiy0             = _mm256_add_pd(fiy0,ty);
424             fiz0             = _mm256_add_pd(fiz0,tz);
425
426             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
427             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
428             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
429             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
430             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
431
432             /* Inner loop uses 73 flops */
433         }
434
435         /* End of innermost loop */
436
437         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
438                                                  f+i_coord_offset,fshift+i_shift_offset);
439
440         ggid                        = gid[iidx];
441         /* Update potential energies */
442         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
443         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
444
445         /* Increment number of inner iterations */
446         inneriter                  += j_index_end - j_index_start;
447
448         /* Outer loop uses 9 flops */
449     }
450
451     /* Increment number of outer iterations */
452     outeriter        += nri;
453
454     /* Update outer/inner flops */
455
456     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
457 }
458 /*
459  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_256_double
460  * Electrostatics interaction: Ewald
461  * VdW interaction:            LJEwald
462  * Geometry:                   Particle-Particle
463  * Calculate force/pot:        Force
464  */
465 void
466 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_256_double
467                     (t_nblist                    * gmx_restrict       nlist,
468                      rvec                        * gmx_restrict          xx,
469                      rvec                        * gmx_restrict          ff,
470                      t_forcerec                  * gmx_restrict          fr,
471                      t_mdatoms                   * gmx_restrict     mdatoms,
472                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
473                      t_nrnb                      * gmx_restrict        nrnb)
474 {
475     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
476      * just 0 for non-waters.
477      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
478      * jnr indices corresponding to data put in the four positions in the SIMD register.
479      */
480     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
481     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
482     int              jnrA,jnrB,jnrC,jnrD;
483     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
484     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
485     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
486     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
487     real             rcutoff_scalar;
488     real             *shiftvec,*fshift,*x,*f;
489     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
490     real             scratch[4*DIM];
491     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
492     real *           vdwioffsetptr0;
493     real *           vdwgridioffsetptr0;
494     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
495     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
496     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
497     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
498     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
499     real             *charge;
500     int              nvdwtype;
501     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
502     int              *vdwtype;
503     real             *vdwparam;
504     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
505     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
506     __m256d           c6grid_00;
507     real             *vdwgridparam;
508     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
509     __m256d           one_half  = _mm256_set1_pd(0.5);
510     __m256d           minus_one = _mm256_set1_pd(-1.0);
511     __m128i          ewitab;
512     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
513     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
514     real             *ewtab;
515     __m256d          dummy_mask,cutoff_mask;
516     __m128           tmpmask0,tmpmask1;
517     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
518     __m256d          one     = _mm256_set1_pd(1.0);
519     __m256d          two     = _mm256_set1_pd(2.0);
520     x                = xx[0];
521     f                = ff[0];
522
523     nri              = nlist->nri;
524     iinr             = nlist->iinr;
525     jindex           = nlist->jindex;
526     jjnr             = nlist->jjnr;
527     shiftidx         = nlist->shift;
528     gid              = nlist->gid;
529     shiftvec         = fr->shift_vec[0];
530     fshift           = fr->fshift[0];
531     facel            = _mm256_set1_pd(fr->epsfac);
532     charge           = mdatoms->chargeA;
533     nvdwtype         = fr->ntype;
534     vdwparam         = fr->nbfp;
535     vdwtype          = mdatoms->typeA;
536     vdwgridparam     = fr->ljpme_c6grid;
537     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
538     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
539     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
540
541     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
542     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
543     beta2            = _mm256_mul_pd(beta,beta);
544     beta3            = _mm256_mul_pd(beta,beta2);
545
546     ewtab            = fr->ic->tabq_coul_F;
547     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
548     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
549
550     /* Avoid stupid compiler warnings */
551     jnrA = jnrB = jnrC = jnrD = 0;
552     j_coord_offsetA = 0;
553     j_coord_offsetB = 0;
554     j_coord_offsetC = 0;
555     j_coord_offsetD = 0;
556
557     outeriter        = 0;
558     inneriter        = 0;
559
560     for(iidx=0;iidx<4*DIM;iidx++)
561     {
562         scratch[iidx] = 0.0;
563     }
564
565     /* Start outer loop over neighborlists */
566     for(iidx=0; iidx<nri; iidx++)
567     {
568         /* Load shift vector for this list */
569         i_shift_offset   = DIM*shiftidx[iidx];
570
571         /* Load limits for loop over neighbors */
572         j_index_start    = jindex[iidx];
573         j_index_end      = jindex[iidx+1];
574
575         /* Get outer coordinate index */
576         inr              = iinr[iidx];
577         i_coord_offset   = DIM*inr;
578
579         /* Load i particle coords and add shift vector */
580         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
581
582         fix0             = _mm256_setzero_pd();
583         fiy0             = _mm256_setzero_pd();
584         fiz0             = _mm256_setzero_pd();
585
586         /* Load parameters for i particles */
587         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
588         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
589         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
590
591         /* Start inner kernel loop */
592         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
593         {
594
595             /* Get j neighbor index, and coordinate index */
596             jnrA             = jjnr[jidx];
597             jnrB             = jjnr[jidx+1];
598             jnrC             = jjnr[jidx+2];
599             jnrD             = jjnr[jidx+3];
600             j_coord_offsetA  = DIM*jnrA;
601             j_coord_offsetB  = DIM*jnrB;
602             j_coord_offsetC  = DIM*jnrC;
603             j_coord_offsetD  = DIM*jnrD;
604
605             /* load j atom coordinates */
606             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
607                                                  x+j_coord_offsetC,x+j_coord_offsetD,
608                                                  &jx0,&jy0,&jz0);
609
610             /* Calculate displacement vector */
611             dx00             = _mm256_sub_pd(ix0,jx0);
612             dy00             = _mm256_sub_pd(iy0,jy0);
613             dz00             = _mm256_sub_pd(iz0,jz0);
614
615             /* Calculate squared distance and things based on it */
616             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
617
618             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
619
620             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
621
622             /* Load parameters for j particles */
623             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
624                                                                  charge+jnrC+0,charge+jnrD+0);
625             vdwjidx0A        = 2*vdwtype[jnrA+0];
626             vdwjidx0B        = 2*vdwtype[jnrB+0];
627             vdwjidx0C        = 2*vdwtype[jnrC+0];
628             vdwjidx0D        = 2*vdwtype[jnrD+0];
629
630             /**************************
631              * CALCULATE INTERACTIONS *
632              **************************/
633
634             r00              = _mm256_mul_pd(rsq00,rinv00);
635
636             /* Compute parameters for interactions between i and j atoms */
637             qq00             = _mm256_mul_pd(iq0,jq0);
638             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
639                                             vdwioffsetptr0+vdwjidx0B,
640                                             vdwioffsetptr0+vdwjidx0C,
641                                             vdwioffsetptr0+vdwjidx0D,
642                                             &c6_00,&c12_00);
643
644             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
645                                                                   vdwgridioffsetptr0+vdwjidx0B,
646                                                                   vdwgridioffsetptr0+vdwjidx0C,
647                                                                   vdwgridioffsetptr0+vdwjidx0D);
648
649             /* EWALD ELECTROSTATICS */
650
651             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
652             ewrt             = _mm256_mul_pd(r00,ewtabscale);
653             ewitab           = _mm256_cvttpd_epi32(ewrt);
654             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
655             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
656                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
657                                             &ewtabF,&ewtabFn);
658             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
659             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
660
661             /* Analytical LJ-PME */
662             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
663             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
664             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
665             exponent         = gmx_simd_exp_d(ewcljrsq);
666             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
667             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
668             /* f6A = 6 * C6grid * (1 - poly) */
669             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
670             /* f6B = C6grid * exponent * beta^6 */
671             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
672             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
673             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
674
675             fscal            = _mm256_add_pd(felec,fvdw);
676
677             /* Calculate temporary vectorial force */
678             tx               = _mm256_mul_pd(fscal,dx00);
679             ty               = _mm256_mul_pd(fscal,dy00);
680             tz               = _mm256_mul_pd(fscal,dz00);
681
682             /* Update vectorial force */
683             fix0             = _mm256_add_pd(fix0,tx);
684             fiy0             = _mm256_add_pd(fiy0,ty);
685             fiz0             = _mm256_add_pd(fiz0,tz);
686
687             fjptrA             = f+j_coord_offsetA;
688             fjptrB             = f+j_coord_offsetB;
689             fjptrC             = f+j_coord_offsetC;
690             fjptrD             = f+j_coord_offsetD;
691             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
692
693             /* Inner loop uses 59 flops */
694         }
695
696         if(jidx<j_index_end)
697         {
698
699             /* Get j neighbor index, and coordinate index */
700             jnrlistA         = jjnr[jidx];
701             jnrlistB         = jjnr[jidx+1];
702             jnrlistC         = jjnr[jidx+2];
703             jnrlistD         = jjnr[jidx+3];
704             /* Sign of each element will be negative for non-real atoms.
705              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
706              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
707              */
708             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
709
710             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
711             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
712             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
713
714             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
715             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
716             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
717             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
718             j_coord_offsetA  = DIM*jnrA;
719             j_coord_offsetB  = DIM*jnrB;
720             j_coord_offsetC  = DIM*jnrC;
721             j_coord_offsetD  = DIM*jnrD;
722
723             /* load j atom coordinates */
724             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
725                                                  x+j_coord_offsetC,x+j_coord_offsetD,
726                                                  &jx0,&jy0,&jz0);
727
728             /* Calculate displacement vector */
729             dx00             = _mm256_sub_pd(ix0,jx0);
730             dy00             = _mm256_sub_pd(iy0,jy0);
731             dz00             = _mm256_sub_pd(iz0,jz0);
732
733             /* Calculate squared distance and things based on it */
734             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
735
736             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
737
738             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
739
740             /* Load parameters for j particles */
741             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
742                                                                  charge+jnrC+0,charge+jnrD+0);
743             vdwjidx0A        = 2*vdwtype[jnrA+0];
744             vdwjidx0B        = 2*vdwtype[jnrB+0];
745             vdwjidx0C        = 2*vdwtype[jnrC+0];
746             vdwjidx0D        = 2*vdwtype[jnrD+0];
747
748             /**************************
749              * CALCULATE INTERACTIONS *
750              **************************/
751
752             r00              = _mm256_mul_pd(rsq00,rinv00);
753             r00              = _mm256_andnot_pd(dummy_mask,r00);
754
755             /* Compute parameters for interactions between i and j atoms */
756             qq00             = _mm256_mul_pd(iq0,jq0);
757             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
758                                             vdwioffsetptr0+vdwjidx0B,
759                                             vdwioffsetptr0+vdwjidx0C,
760                                             vdwioffsetptr0+vdwjidx0D,
761                                             &c6_00,&c12_00);
762
763             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
764                                                                   vdwgridioffsetptr0+vdwjidx0B,
765                                                                   vdwgridioffsetptr0+vdwjidx0C,
766                                                                   vdwgridioffsetptr0+vdwjidx0D);
767
768             /* EWALD ELECTROSTATICS */
769
770             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
771             ewrt             = _mm256_mul_pd(r00,ewtabscale);
772             ewitab           = _mm256_cvttpd_epi32(ewrt);
773             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
774             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
775                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
776                                             &ewtabF,&ewtabFn);
777             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
778             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
779
780             /* Analytical LJ-PME */
781             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
782             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
783             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
784             exponent         = gmx_simd_exp_d(ewcljrsq);
785             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
786             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
787             /* f6A = 6 * C6grid * (1 - poly) */
788             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
789             /* f6B = C6grid * exponent * beta^6 */
790             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
791             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
792             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
793
794             fscal            = _mm256_add_pd(felec,fvdw);
795
796             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
797
798             /* Calculate temporary vectorial force */
799             tx               = _mm256_mul_pd(fscal,dx00);
800             ty               = _mm256_mul_pd(fscal,dy00);
801             tz               = _mm256_mul_pd(fscal,dz00);
802
803             /* Update vectorial force */
804             fix0             = _mm256_add_pd(fix0,tx);
805             fiy0             = _mm256_add_pd(fiy0,ty);
806             fiz0             = _mm256_add_pd(fiz0,tz);
807
808             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
809             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
810             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
811             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
812             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
813
814             /* Inner loop uses 60 flops */
815         }
816
817         /* End of innermost loop */
818
819         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
820                                                  f+i_coord_offset,fshift+i_shift_offset);
821
822         /* Increment number of inner iterations */
823         inneriter                  += j_index_end - j_index_start;
824
825         /* Outer loop uses 7 flops */
826     }
827
828     /* Increment number of outer iterations */
829     outeriter        += nri;
830
831     /* Update outer/inner flops */
832
833     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
834 }