Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     real *           vdwgridioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m256d           c6grid_00;
98     real             *vdwgridparam;
99     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
100     __m256d           one_half  = _mm256_set1_pd(0.5);
101     __m256d           minus_one = _mm256_set1_pd(-1.0);
102     __m128i          ewitab;
103     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
105     real             *ewtab;
106     __m256d          dummy_mask,cutoff_mask;
107     __m128           tmpmask0,tmpmask1;
108     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
109     __m256d          one     = _mm256_set1_pd(1.0);
110     __m256d          two     = _mm256_set1_pd(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm256_set1_pd(fr->ic->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127     vdwgridparam     = fr->ljpme_c6grid;
128     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
129     ewclj            = _mm256_set1_pd(fr->ic->ewaldcoeff_lj);
130     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
131
132     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
133     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
134     beta2            = _mm256_mul_pd(beta,beta);
135     beta3            = _mm256_mul_pd(beta,beta2);
136
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
172
173         fix0             = _mm256_setzero_pd();
174         fiy0             = _mm256_setzero_pd();
175         fiz0             = _mm256_setzero_pd();
176
177         /* Load parameters for i particles */
178         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
179         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
180         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
181
182         /* Reset potential sums */
183         velecsum         = _mm256_setzero_pd();
184         vvdwsum          = _mm256_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_pd(ix0,jx0);
207             dy00             = _mm256_sub_pd(iy0,jy0);
208             dz00             = _mm256_sub_pd(iz0,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
212
213             rinv00           = avx256_invsqrt_d(rsq00);
214
215             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
219                                                                  charge+jnrC+0,charge+jnrD+0);
220             vdwjidx0A        = 2*vdwtype[jnrA+0];
221             vdwjidx0B        = 2*vdwtype[jnrB+0];
222             vdwjidx0C        = 2*vdwtype[jnrC+0];
223             vdwjidx0D        = 2*vdwtype[jnrD+0];
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             r00              = _mm256_mul_pd(rsq00,rinv00);
230
231             /* Compute parameters for interactions between i and j atoms */
232             qq00             = _mm256_mul_pd(iq0,jq0);
233             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
234                                             vdwioffsetptr0+vdwjidx0B,
235                                             vdwioffsetptr0+vdwjidx0C,
236                                             vdwioffsetptr0+vdwjidx0D,
237                                             &c6_00,&c12_00);
238
239             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
240                                                                   vdwgridioffsetptr0+vdwjidx0B,
241                                                                   vdwgridioffsetptr0+vdwjidx0C,
242                                                                   vdwgridioffsetptr0+vdwjidx0D);
243
244             /* EWALD ELECTROSTATICS */
245
246             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
247             ewrt             = _mm256_mul_pd(r00,ewtabscale);
248             ewitab           = _mm256_cvttpd_epi32(ewrt);
249             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
250             ewitab           = _mm_slli_epi32(ewitab,2);
251             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
252             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
253             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
254             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
255             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
256             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
257             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
258             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
259             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
260
261             /* Analytical LJ-PME */
262             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
263             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
264             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
265             exponent         = avx256_exp_d(ewcljrsq);
266             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
267             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
268             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
269             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
270             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
271             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
272             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
273             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velecsum         = _mm256_add_pd(velecsum,velec);
277             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
278
279             fscal            = _mm256_add_pd(felec,fvdw);
280
281             /* Calculate temporary vectorial force */
282             tx               = _mm256_mul_pd(fscal,dx00);
283             ty               = _mm256_mul_pd(fscal,dy00);
284             tz               = _mm256_mul_pd(fscal,dz00);
285
286             /* Update vectorial force */
287             fix0             = _mm256_add_pd(fix0,tx);
288             fiy0             = _mm256_add_pd(fiy0,ty);
289             fiz0             = _mm256_add_pd(fiz0,tz);
290
291             fjptrA             = f+j_coord_offsetA;
292             fjptrB             = f+j_coord_offsetB;
293             fjptrC             = f+j_coord_offsetC;
294             fjptrD             = f+j_coord_offsetD;
295             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
296
297             /* Inner loop uses 72 flops */
298         }
299
300         if(jidx<j_index_end)
301         {
302
303             /* Get j neighbor index, and coordinate index */
304             jnrlistA         = jjnr[jidx];
305             jnrlistB         = jjnr[jidx+1];
306             jnrlistC         = jjnr[jidx+2];
307             jnrlistD         = jjnr[jidx+3];
308             /* Sign of each element will be negative for non-real atoms.
309              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
310              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
311              */
312             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
313
314             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
315             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
316             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
317
318             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
319             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
320             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
321             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
322             j_coord_offsetA  = DIM*jnrA;
323             j_coord_offsetB  = DIM*jnrB;
324             j_coord_offsetC  = DIM*jnrC;
325             j_coord_offsetD  = DIM*jnrD;
326
327             /* load j atom coordinates */
328             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
329                                                  x+j_coord_offsetC,x+j_coord_offsetD,
330                                                  &jx0,&jy0,&jz0);
331
332             /* Calculate displacement vector */
333             dx00             = _mm256_sub_pd(ix0,jx0);
334             dy00             = _mm256_sub_pd(iy0,jy0);
335             dz00             = _mm256_sub_pd(iz0,jz0);
336
337             /* Calculate squared distance and things based on it */
338             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
339
340             rinv00           = avx256_invsqrt_d(rsq00);
341
342             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
343
344             /* Load parameters for j particles */
345             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
346                                                                  charge+jnrC+0,charge+jnrD+0);
347             vdwjidx0A        = 2*vdwtype[jnrA+0];
348             vdwjidx0B        = 2*vdwtype[jnrB+0];
349             vdwjidx0C        = 2*vdwtype[jnrC+0];
350             vdwjidx0D        = 2*vdwtype[jnrD+0];
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             r00              = _mm256_mul_pd(rsq00,rinv00);
357             r00              = _mm256_andnot_pd(dummy_mask,r00);
358
359             /* Compute parameters for interactions between i and j atoms */
360             qq00             = _mm256_mul_pd(iq0,jq0);
361             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
362                                             vdwioffsetptr0+vdwjidx0B,
363                                             vdwioffsetptr0+vdwjidx0C,
364                                             vdwioffsetptr0+vdwjidx0D,
365                                             &c6_00,&c12_00);
366
367             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
368                                                                   vdwgridioffsetptr0+vdwjidx0B,
369                                                                   vdwgridioffsetptr0+vdwjidx0C,
370                                                                   vdwgridioffsetptr0+vdwjidx0D);
371
372             /* EWALD ELECTROSTATICS */
373
374             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
375             ewrt             = _mm256_mul_pd(r00,ewtabscale);
376             ewitab           = _mm256_cvttpd_epi32(ewrt);
377             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
378             ewitab           = _mm_slli_epi32(ewitab,2);
379             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
380             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
381             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
382             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
383             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
384             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
385             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
386             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
387             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
388
389             /* Analytical LJ-PME */
390             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
391             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
392             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
393             exponent         = avx256_exp_d(ewcljrsq);
394             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
395             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
396             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
397             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
398             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
399             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
400             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
401             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
402
403             /* Update potential sum for this i atom from the interaction with this j atom. */
404             velec            = _mm256_andnot_pd(dummy_mask,velec);
405             velecsum         = _mm256_add_pd(velecsum,velec);
406             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
407             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
408
409             fscal            = _mm256_add_pd(felec,fvdw);
410
411             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
412
413             /* Calculate temporary vectorial force */
414             tx               = _mm256_mul_pd(fscal,dx00);
415             ty               = _mm256_mul_pd(fscal,dy00);
416             tz               = _mm256_mul_pd(fscal,dz00);
417
418             /* Update vectorial force */
419             fix0             = _mm256_add_pd(fix0,tx);
420             fiy0             = _mm256_add_pd(fiy0,ty);
421             fiz0             = _mm256_add_pd(fiz0,tz);
422
423             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
424             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
425             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
426             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
427             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
428
429             /* Inner loop uses 73 flops */
430         }
431
432         /* End of innermost loop */
433
434         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
435                                                  f+i_coord_offset,fshift+i_shift_offset);
436
437         ggid                        = gid[iidx];
438         /* Update potential energies */
439         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
440         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
441
442         /* Increment number of inner iterations */
443         inneriter                  += j_index_end - j_index_start;
444
445         /* Outer loop uses 9 flops */
446     }
447
448     /* Increment number of outer iterations */
449     outeriter        += nri;
450
451     /* Update outer/inner flops */
452
453     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
454 }
455 /*
456  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_256_double
457  * Electrostatics interaction: Ewald
458  * VdW interaction:            LJEwald
459  * Geometry:                   Particle-Particle
460  * Calculate force/pot:        Force
461  */
462 void
463 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_256_double
464                     (t_nblist                    * gmx_restrict       nlist,
465                      rvec                        * gmx_restrict          xx,
466                      rvec                        * gmx_restrict          ff,
467                      struct t_forcerec           * gmx_restrict          fr,
468                      t_mdatoms                   * gmx_restrict     mdatoms,
469                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
470                      t_nrnb                      * gmx_restrict        nrnb)
471 {
472     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
473      * just 0 for non-waters.
474      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
475      * jnr indices corresponding to data put in the four positions in the SIMD register.
476      */
477     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
478     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
479     int              jnrA,jnrB,jnrC,jnrD;
480     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
481     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
482     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
483     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
484     real             rcutoff_scalar;
485     real             *shiftvec,*fshift,*x,*f;
486     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
487     real             scratch[4*DIM];
488     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
489     real *           vdwioffsetptr0;
490     real *           vdwgridioffsetptr0;
491     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
492     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
493     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
494     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
495     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
496     real             *charge;
497     int              nvdwtype;
498     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
499     int              *vdwtype;
500     real             *vdwparam;
501     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
502     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
503     __m256d           c6grid_00;
504     real             *vdwgridparam;
505     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
506     __m256d           one_half  = _mm256_set1_pd(0.5);
507     __m256d           minus_one = _mm256_set1_pd(-1.0);
508     __m128i          ewitab;
509     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
510     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
511     real             *ewtab;
512     __m256d          dummy_mask,cutoff_mask;
513     __m128           tmpmask0,tmpmask1;
514     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
515     __m256d          one     = _mm256_set1_pd(1.0);
516     __m256d          two     = _mm256_set1_pd(2.0);
517     x                = xx[0];
518     f                = ff[0];
519
520     nri              = nlist->nri;
521     iinr             = nlist->iinr;
522     jindex           = nlist->jindex;
523     jjnr             = nlist->jjnr;
524     shiftidx         = nlist->shift;
525     gid              = nlist->gid;
526     shiftvec         = fr->shift_vec[0];
527     fshift           = fr->fshift[0];
528     facel            = _mm256_set1_pd(fr->ic->epsfac);
529     charge           = mdatoms->chargeA;
530     nvdwtype         = fr->ntype;
531     vdwparam         = fr->nbfp;
532     vdwtype          = mdatoms->typeA;
533     vdwgridparam     = fr->ljpme_c6grid;
534     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
535     ewclj            = _mm256_set1_pd(fr->ic->ewaldcoeff_lj);
536     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
537
538     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
539     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
540     beta2            = _mm256_mul_pd(beta,beta);
541     beta3            = _mm256_mul_pd(beta,beta2);
542
543     ewtab            = fr->ic->tabq_coul_F;
544     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
545     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
546
547     /* Avoid stupid compiler warnings */
548     jnrA = jnrB = jnrC = jnrD = 0;
549     j_coord_offsetA = 0;
550     j_coord_offsetB = 0;
551     j_coord_offsetC = 0;
552     j_coord_offsetD = 0;
553
554     outeriter        = 0;
555     inneriter        = 0;
556
557     for(iidx=0;iidx<4*DIM;iidx++)
558     {
559         scratch[iidx] = 0.0;
560     }
561
562     /* Start outer loop over neighborlists */
563     for(iidx=0; iidx<nri; iidx++)
564     {
565         /* Load shift vector for this list */
566         i_shift_offset   = DIM*shiftidx[iidx];
567
568         /* Load limits for loop over neighbors */
569         j_index_start    = jindex[iidx];
570         j_index_end      = jindex[iidx+1];
571
572         /* Get outer coordinate index */
573         inr              = iinr[iidx];
574         i_coord_offset   = DIM*inr;
575
576         /* Load i particle coords and add shift vector */
577         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
578
579         fix0             = _mm256_setzero_pd();
580         fiy0             = _mm256_setzero_pd();
581         fiz0             = _mm256_setzero_pd();
582
583         /* Load parameters for i particles */
584         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
585         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
586         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
587
588         /* Start inner kernel loop */
589         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
590         {
591
592             /* Get j neighbor index, and coordinate index */
593             jnrA             = jjnr[jidx];
594             jnrB             = jjnr[jidx+1];
595             jnrC             = jjnr[jidx+2];
596             jnrD             = jjnr[jidx+3];
597             j_coord_offsetA  = DIM*jnrA;
598             j_coord_offsetB  = DIM*jnrB;
599             j_coord_offsetC  = DIM*jnrC;
600             j_coord_offsetD  = DIM*jnrD;
601
602             /* load j atom coordinates */
603             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
604                                                  x+j_coord_offsetC,x+j_coord_offsetD,
605                                                  &jx0,&jy0,&jz0);
606
607             /* Calculate displacement vector */
608             dx00             = _mm256_sub_pd(ix0,jx0);
609             dy00             = _mm256_sub_pd(iy0,jy0);
610             dz00             = _mm256_sub_pd(iz0,jz0);
611
612             /* Calculate squared distance and things based on it */
613             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
614
615             rinv00           = avx256_invsqrt_d(rsq00);
616
617             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
618
619             /* Load parameters for j particles */
620             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
621                                                                  charge+jnrC+0,charge+jnrD+0);
622             vdwjidx0A        = 2*vdwtype[jnrA+0];
623             vdwjidx0B        = 2*vdwtype[jnrB+0];
624             vdwjidx0C        = 2*vdwtype[jnrC+0];
625             vdwjidx0D        = 2*vdwtype[jnrD+0];
626
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             r00              = _mm256_mul_pd(rsq00,rinv00);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq00             = _mm256_mul_pd(iq0,jq0);
635             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
636                                             vdwioffsetptr0+vdwjidx0B,
637                                             vdwioffsetptr0+vdwjidx0C,
638                                             vdwioffsetptr0+vdwjidx0D,
639                                             &c6_00,&c12_00);
640
641             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
642                                                                   vdwgridioffsetptr0+vdwjidx0B,
643                                                                   vdwgridioffsetptr0+vdwjidx0C,
644                                                                   vdwgridioffsetptr0+vdwjidx0D);
645
646             /* EWALD ELECTROSTATICS */
647
648             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
649             ewrt             = _mm256_mul_pd(r00,ewtabscale);
650             ewitab           = _mm256_cvttpd_epi32(ewrt);
651             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
652             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
653                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
654                                             &ewtabF,&ewtabFn);
655             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
656             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
657
658             /* Analytical LJ-PME */
659             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
660             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
661             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
662             exponent         = avx256_exp_d(ewcljrsq);
663             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
664             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
665             /* f6A = 6 * C6grid * (1 - poly) */
666             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
667             /* f6B = C6grid * exponent * beta^6 */
668             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
669             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
670             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
671
672             fscal            = _mm256_add_pd(felec,fvdw);
673
674             /* Calculate temporary vectorial force */
675             tx               = _mm256_mul_pd(fscal,dx00);
676             ty               = _mm256_mul_pd(fscal,dy00);
677             tz               = _mm256_mul_pd(fscal,dz00);
678
679             /* Update vectorial force */
680             fix0             = _mm256_add_pd(fix0,tx);
681             fiy0             = _mm256_add_pd(fiy0,ty);
682             fiz0             = _mm256_add_pd(fiz0,tz);
683
684             fjptrA             = f+j_coord_offsetA;
685             fjptrB             = f+j_coord_offsetB;
686             fjptrC             = f+j_coord_offsetC;
687             fjptrD             = f+j_coord_offsetD;
688             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
689
690             /* Inner loop uses 59 flops */
691         }
692
693         if(jidx<j_index_end)
694         {
695
696             /* Get j neighbor index, and coordinate index */
697             jnrlistA         = jjnr[jidx];
698             jnrlistB         = jjnr[jidx+1];
699             jnrlistC         = jjnr[jidx+2];
700             jnrlistD         = jjnr[jidx+3];
701             /* Sign of each element will be negative for non-real atoms.
702              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
703              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
704              */
705             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
706
707             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
708             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
709             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
710
711             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
712             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
713             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
714             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
715             j_coord_offsetA  = DIM*jnrA;
716             j_coord_offsetB  = DIM*jnrB;
717             j_coord_offsetC  = DIM*jnrC;
718             j_coord_offsetD  = DIM*jnrD;
719
720             /* load j atom coordinates */
721             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
722                                                  x+j_coord_offsetC,x+j_coord_offsetD,
723                                                  &jx0,&jy0,&jz0);
724
725             /* Calculate displacement vector */
726             dx00             = _mm256_sub_pd(ix0,jx0);
727             dy00             = _mm256_sub_pd(iy0,jy0);
728             dz00             = _mm256_sub_pd(iz0,jz0);
729
730             /* Calculate squared distance and things based on it */
731             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
732
733             rinv00           = avx256_invsqrt_d(rsq00);
734
735             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
736
737             /* Load parameters for j particles */
738             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
739                                                                  charge+jnrC+0,charge+jnrD+0);
740             vdwjidx0A        = 2*vdwtype[jnrA+0];
741             vdwjidx0B        = 2*vdwtype[jnrB+0];
742             vdwjidx0C        = 2*vdwtype[jnrC+0];
743             vdwjidx0D        = 2*vdwtype[jnrD+0];
744
745             /**************************
746              * CALCULATE INTERACTIONS *
747              **************************/
748
749             r00              = _mm256_mul_pd(rsq00,rinv00);
750             r00              = _mm256_andnot_pd(dummy_mask,r00);
751
752             /* Compute parameters for interactions between i and j atoms */
753             qq00             = _mm256_mul_pd(iq0,jq0);
754             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
755                                             vdwioffsetptr0+vdwjidx0B,
756                                             vdwioffsetptr0+vdwjidx0C,
757                                             vdwioffsetptr0+vdwjidx0D,
758                                             &c6_00,&c12_00);
759
760             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
761                                                                   vdwgridioffsetptr0+vdwjidx0B,
762                                                                   vdwgridioffsetptr0+vdwjidx0C,
763                                                                   vdwgridioffsetptr0+vdwjidx0D);
764
765             /* EWALD ELECTROSTATICS */
766
767             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
768             ewrt             = _mm256_mul_pd(r00,ewtabscale);
769             ewitab           = _mm256_cvttpd_epi32(ewrt);
770             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
771             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
772                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
773                                             &ewtabF,&ewtabFn);
774             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
775             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
776
777             /* Analytical LJ-PME */
778             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
779             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
780             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
781             exponent         = avx256_exp_d(ewcljrsq);
782             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
783             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
784             /* f6A = 6 * C6grid * (1 - poly) */
785             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
786             /* f6B = C6grid * exponent * beta^6 */
787             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
788             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
789             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
790
791             fscal            = _mm256_add_pd(felec,fvdw);
792
793             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
794
795             /* Calculate temporary vectorial force */
796             tx               = _mm256_mul_pd(fscal,dx00);
797             ty               = _mm256_mul_pd(fscal,dy00);
798             tz               = _mm256_mul_pd(fscal,dz00);
799
800             /* Update vectorial force */
801             fix0             = _mm256_add_pd(fix0,tx);
802             fiy0             = _mm256_add_pd(fiy0,ty);
803             fiz0             = _mm256_add_pd(fiz0,tz);
804
805             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
806             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
807             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
808             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
809             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
810
811             /* Inner loop uses 60 flops */
812         }
813
814         /* End of innermost loop */
815
816         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
817                                                  f+i_coord_offset,fshift+i_shift_offset);
818
819         /* Increment number of inner iterations */
820         inneriter                  += j_index_end - j_index_start;
821
822         /* Outer loop uses 7 flops */
823     }
824
825     /* Increment number of outer iterations */
826     outeriter        += nri;
827
828     /* Update outer/inner flops */
829
830     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
831 }