Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     real *           vdwgridioffsetptr0;
86     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
97     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
98     __m256d           c6grid_00;
99     real             *vdwgridparam;
100     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
101     __m256d           one_half  = _mm256_set1_pd(0.5);
102     __m256d           minus_one = _mm256_set1_pd(-1.0);
103     __m128i          ewitab;
104     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
106     real             *ewtab;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128     vdwgridparam     = fr->ljpme_c6grid;
129     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
130     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
131     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
132
133     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
134     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
135     beta2            = _mm256_mul_pd(beta,beta);
136     beta3            = _mm256_mul_pd(beta,beta2);
137
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
173
174         fix0             = _mm256_setzero_pd();
175         fiy0             = _mm256_setzero_pd();
176         fiz0             = _mm256_setzero_pd();
177
178         /* Load parameters for i particles */
179         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
180         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
181         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
182
183         /* Reset potential sums */
184         velecsum         = _mm256_setzero_pd();
185         vvdwsum          = _mm256_setzero_pd();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198             j_coord_offsetC  = DIM*jnrC;
199             j_coord_offsetD  = DIM*jnrD;
200
201             /* load j atom coordinates */
202             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
203                                                  x+j_coord_offsetC,x+j_coord_offsetD,
204                                                  &jx0,&jy0,&jz0);
205
206             /* Calculate displacement vector */
207             dx00             = _mm256_sub_pd(ix0,jx0);
208             dy00             = _mm256_sub_pd(iy0,jy0);
209             dz00             = _mm256_sub_pd(iz0,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
213
214             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
215
216             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
217
218             /* Load parameters for j particles */
219             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
220                                                                  charge+jnrC+0,charge+jnrD+0);
221             vdwjidx0A        = 2*vdwtype[jnrA+0];
222             vdwjidx0B        = 2*vdwtype[jnrB+0];
223             vdwjidx0C        = 2*vdwtype[jnrC+0];
224             vdwjidx0D        = 2*vdwtype[jnrD+0];
225
226             /**************************
227              * CALCULATE INTERACTIONS *
228              **************************/
229
230             r00              = _mm256_mul_pd(rsq00,rinv00);
231
232             /* Compute parameters for interactions between i and j atoms */
233             qq00             = _mm256_mul_pd(iq0,jq0);
234             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
235                                             vdwioffsetptr0+vdwjidx0B,
236                                             vdwioffsetptr0+vdwjidx0C,
237                                             vdwioffsetptr0+vdwjidx0D,
238                                             &c6_00,&c12_00);
239
240             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
241                                                                   vdwgridioffsetptr0+vdwjidx0B,
242                                                                   vdwgridioffsetptr0+vdwjidx0C,
243                                                                   vdwgridioffsetptr0+vdwjidx0D);
244
245             /* EWALD ELECTROSTATICS */
246
247             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
248             ewrt             = _mm256_mul_pd(r00,ewtabscale);
249             ewitab           = _mm256_cvttpd_epi32(ewrt);
250             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
251             ewitab           = _mm_slli_epi32(ewitab,2);
252             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
253             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
254             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
255             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
256             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
257             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
258             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
259             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
260             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
261
262             /* Analytical LJ-PME */
263             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
264             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
265             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
266             exponent         = gmx_simd_exp_d(ewcljrsq);
267             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
268             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
269             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
270             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
271             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
272             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
273             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
274             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velecsum         = _mm256_add_pd(velecsum,velec);
278             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
279
280             fscal            = _mm256_add_pd(felec,fvdw);
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm256_mul_pd(fscal,dx00);
284             ty               = _mm256_mul_pd(fscal,dy00);
285             tz               = _mm256_mul_pd(fscal,dz00);
286
287             /* Update vectorial force */
288             fix0             = _mm256_add_pd(fix0,tx);
289             fiy0             = _mm256_add_pd(fiy0,ty);
290             fiz0             = _mm256_add_pd(fiz0,tz);
291
292             fjptrA             = f+j_coord_offsetA;
293             fjptrB             = f+j_coord_offsetB;
294             fjptrC             = f+j_coord_offsetC;
295             fjptrD             = f+j_coord_offsetD;
296             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
297
298             /* Inner loop uses 72 flops */
299         }
300
301         if(jidx<j_index_end)
302         {
303
304             /* Get j neighbor index, and coordinate index */
305             jnrlistA         = jjnr[jidx];
306             jnrlistB         = jjnr[jidx+1];
307             jnrlistC         = jjnr[jidx+2];
308             jnrlistD         = jjnr[jidx+3];
309             /* Sign of each element will be negative for non-real atoms.
310              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
311              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
312              */
313             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
314
315             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
316             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
317             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
318
319             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
320             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
321             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
322             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
323             j_coord_offsetA  = DIM*jnrA;
324             j_coord_offsetB  = DIM*jnrB;
325             j_coord_offsetC  = DIM*jnrC;
326             j_coord_offsetD  = DIM*jnrD;
327
328             /* load j atom coordinates */
329             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
330                                                  x+j_coord_offsetC,x+j_coord_offsetD,
331                                                  &jx0,&jy0,&jz0);
332
333             /* Calculate displacement vector */
334             dx00             = _mm256_sub_pd(ix0,jx0);
335             dy00             = _mm256_sub_pd(iy0,jy0);
336             dz00             = _mm256_sub_pd(iz0,jz0);
337
338             /* Calculate squared distance and things based on it */
339             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
340
341             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
342
343             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
344
345             /* Load parameters for j particles */
346             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
347                                                                  charge+jnrC+0,charge+jnrD+0);
348             vdwjidx0A        = 2*vdwtype[jnrA+0];
349             vdwjidx0B        = 2*vdwtype[jnrB+0];
350             vdwjidx0C        = 2*vdwtype[jnrC+0];
351             vdwjidx0D        = 2*vdwtype[jnrD+0];
352
353             /**************************
354              * CALCULATE INTERACTIONS *
355              **************************/
356
357             r00              = _mm256_mul_pd(rsq00,rinv00);
358             r00              = _mm256_andnot_pd(dummy_mask,r00);
359
360             /* Compute parameters for interactions between i and j atoms */
361             qq00             = _mm256_mul_pd(iq0,jq0);
362             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
363                                             vdwioffsetptr0+vdwjidx0B,
364                                             vdwioffsetptr0+vdwjidx0C,
365                                             vdwioffsetptr0+vdwjidx0D,
366                                             &c6_00,&c12_00);
367
368             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
369                                                                   vdwgridioffsetptr0+vdwjidx0B,
370                                                                   vdwgridioffsetptr0+vdwjidx0C,
371                                                                   vdwgridioffsetptr0+vdwjidx0D);
372
373             /* EWALD ELECTROSTATICS */
374
375             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
376             ewrt             = _mm256_mul_pd(r00,ewtabscale);
377             ewitab           = _mm256_cvttpd_epi32(ewrt);
378             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
379             ewitab           = _mm_slli_epi32(ewitab,2);
380             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
381             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
382             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
383             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
384             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
385             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
386             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
387             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
388             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
389
390             /* Analytical LJ-PME */
391             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
392             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
393             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
394             exponent         = gmx_simd_exp_d(ewcljrsq);
395             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
396             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
397             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
398             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
399             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
400             vvdw             = _mm256_sub_pd(_mm256_mul_pd(vvdw12,one_twelfth),_mm256_mul_pd(vvdw6,one_sixth));
401             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
402             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velec            = _mm256_andnot_pd(dummy_mask,velec);
406             velecsum         = _mm256_add_pd(velecsum,velec);
407             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
408             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
409
410             fscal            = _mm256_add_pd(felec,fvdw);
411
412             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
413
414             /* Calculate temporary vectorial force */
415             tx               = _mm256_mul_pd(fscal,dx00);
416             ty               = _mm256_mul_pd(fscal,dy00);
417             tz               = _mm256_mul_pd(fscal,dz00);
418
419             /* Update vectorial force */
420             fix0             = _mm256_add_pd(fix0,tx);
421             fiy0             = _mm256_add_pd(fiy0,ty);
422             fiz0             = _mm256_add_pd(fiz0,tz);
423
424             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
425             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
426             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
427             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
428             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
429
430             /* Inner loop uses 73 flops */
431         }
432
433         /* End of innermost loop */
434
435         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
436                                                  f+i_coord_offset,fshift+i_shift_offset);
437
438         ggid                        = gid[iidx];
439         /* Update potential energies */
440         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
441         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
442
443         /* Increment number of inner iterations */
444         inneriter                  += j_index_end - j_index_start;
445
446         /* Outer loop uses 9 flops */
447     }
448
449     /* Increment number of outer iterations */
450     outeriter        += nri;
451
452     /* Update outer/inner flops */
453
454     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
455 }
456 /*
457  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_256_double
458  * Electrostatics interaction: Ewald
459  * VdW interaction:            LJEwald
460  * Geometry:                   Particle-Particle
461  * Calculate force/pot:        Force
462  */
463 void
464 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_256_double
465                     (t_nblist                    * gmx_restrict       nlist,
466                      rvec                        * gmx_restrict          xx,
467                      rvec                        * gmx_restrict          ff,
468                      t_forcerec                  * gmx_restrict          fr,
469                      t_mdatoms                   * gmx_restrict     mdatoms,
470                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
471                      t_nrnb                      * gmx_restrict        nrnb)
472 {
473     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
474      * just 0 for non-waters.
475      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
476      * jnr indices corresponding to data put in the four positions in the SIMD register.
477      */
478     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
479     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
480     int              jnrA,jnrB,jnrC,jnrD;
481     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
482     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
483     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
484     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
485     real             rcutoff_scalar;
486     real             *shiftvec,*fshift,*x,*f;
487     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
488     real             scratch[4*DIM];
489     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
490     real *           vdwioffsetptr0;
491     real *           vdwgridioffsetptr0;
492     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
493     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
494     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
495     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
496     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
497     real             *charge;
498     int              nvdwtype;
499     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
500     int              *vdwtype;
501     real             *vdwparam;
502     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
503     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
504     __m256d           c6grid_00;
505     real             *vdwgridparam;
506     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
507     __m256d           one_half  = _mm256_set1_pd(0.5);
508     __m256d           minus_one = _mm256_set1_pd(-1.0);
509     __m128i          ewitab;
510     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
511     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
512     real             *ewtab;
513     __m256d          dummy_mask,cutoff_mask;
514     __m128           tmpmask0,tmpmask1;
515     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
516     __m256d          one     = _mm256_set1_pd(1.0);
517     __m256d          two     = _mm256_set1_pd(2.0);
518     x                = xx[0];
519     f                = ff[0];
520
521     nri              = nlist->nri;
522     iinr             = nlist->iinr;
523     jindex           = nlist->jindex;
524     jjnr             = nlist->jjnr;
525     shiftidx         = nlist->shift;
526     gid              = nlist->gid;
527     shiftvec         = fr->shift_vec[0];
528     fshift           = fr->fshift[0];
529     facel            = _mm256_set1_pd(fr->epsfac);
530     charge           = mdatoms->chargeA;
531     nvdwtype         = fr->ntype;
532     vdwparam         = fr->nbfp;
533     vdwtype          = mdatoms->typeA;
534     vdwgridparam     = fr->ljpme_c6grid;
535     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
536     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
537     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
538
539     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
540     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
541     beta2            = _mm256_mul_pd(beta,beta);
542     beta3            = _mm256_mul_pd(beta,beta2);
543
544     ewtab            = fr->ic->tabq_coul_F;
545     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
546     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
547
548     /* Avoid stupid compiler warnings */
549     jnrA = jnrB = jnrC = jnrD = 0;
550     j_coord_offsetA = 0;
551     j_coord_offsetB = 0;
552     j_coord_offsetC = 0;
553     j_coord_offsetD = 0;
554
555     outeriter        = 0;
556     inneriter        = 0;
557
558     for(iidx=0;iidx<4*DIM;iidx++)
559     {
560         scratch[iidx] = 0.0;
561     }
562
563     /* Start outer loop over neighborlists */
564     for(iidx=0; iidx<nri; iidx++)
565     {
566         /* Load shift vector for this list */
567         i_shift_offset   = DIM*shiftidx[iidx];
568
569         /* Load limits for loop over neighbors */
570         j_index_start    = jindex[iidx];
571         j_index_end      = jindex[iidx+1];
572
573         /* Get outer coordinate index */
574         inr              = iinr[iidx];
575         i_coord_offset   = DIM*inr;
576
577         /* Load i particle coords and add shift vector */
578         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
579
580         fix0             = _mm256_setzero_pd();
581         fiy0             = _mm256_setzero_pd();
582         fiz0             = _mm256_setzero_pd();
583
584         /* Load parameters for i particles */
585         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
586         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
587         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
588
589         /* Start inner kernel loop */
590         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
591         {
592
593             /* Get j neighbor index, and coordinate index */
594             jnrA             = jjnr[jidx];
595             jnrB             = jjnr[jidx+1];
596             jnrC             = jjnr[jidx+2];
597             jnrD             = jjnr[jidx+3];
598             j_coord_offsetA  = DIM*jnrA;
599             j_coord_offsetB  = DIM*jnrB;
600             j_coord_offsetC  = DIM*jnrC;
601             j_coord_offsetD  = DIM*jnrD;
602
603             /* load j atom coordinates */
604             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
605                                                  x+j_coord_offsetC,x+j_coord_offsetD,
606                                                  &jx0,&jy0,&jz0);
607
608             /* Calculate displacement vector */
609             dx00             = _mm256_sub_pd(ix0,jx0);
610             dy00             = _mm256_sub_pd(iy0,jy0);
611             dz00             = _mm256_sub_pd(iz0,jz0);
612
613             /* Calculate squared distance and things based on it */
614             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
615
616             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
617
618             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
619
620             /* Load parameters for j particles */
621             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
622                                                                  charge+jnrC+0,charge+jnrD+0);
623             vdwjidx0A        = 2*vdwtype[jnrA+0];
624             vdwjidx0B        = 2*vdwtype[jnrB+0];
625             vdwjidx0C        = 2*vdwtype[jnrC+0];
626             vdwjidx0D        = 2*vdwtype[jnrD+0];
627
628             /**************************
629              * CALCULATE INTERACTIONS *
630              **************************/
631
632             r00              = _mm256_mul_pd(rsq00,rinv00);
633
634             /* Compute parameters for interactions between i and j atoms */
635             qq00             = _mm256_mul_pd(iq0,jq0);
636             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
637                                             vdwioffsetptr0+vdwjidx0B,
638                                             vdwioffsetptr0+vdwjidx0C,
639                                             vdwioffsetptr0+vdwjidx0D,
640                                             &c6_00,&c12_00);
641
642             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
643                                                                   vdwgridioffsetptr0+vdwjidx0B,
644                                                                   vdwgridioffsetptr0+vdwjidx0C,
645                                                                   vdwgridioffsetptr0+vdwjidx0D);
646
647             /* EWALD ELECTROSTATICS */
648
649             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
650             ewrt             = _mm256_mul_pd(r00,ewtabscale);
651             ewitab           = _mm256_cvttpd_epi32(ewrt);
652             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
653             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
654                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
655                                             &ewtabF,&ewtabFn);
656             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
657             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
658
659             /* Analytical LJ-PME */
660             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
661             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
662             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
663             exponent         = gmx_simd_exp_d(ewcljrsq);
664             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
665             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
666             /* f6A = 6 * C6grid * (1 - poly) */
667             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
668             /* f6B = C6grid * exponent * beta^6 */
669             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
670             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
671             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
672
673             fscal            = _mm256_add_pd(felec,fvdw);
674
675             /* Calculate temporary vectorial force */
676             tx               = _mm256_mul_pd(fscal,dx00);
677             ty               = _mm256_mul_pd(fscal,dy00);
678             tz               = _mm256_mul_pd(fscal,dz00);
679
680             /* Update vectorial force */
681             fix0             = _mm256_add_pd(fix0,tx);
682             fiy0             = _mm256_add_pd(fiy0,ty);
683             fiz0             = _mm256_add_pd(fiz0,tz);
684
685             fjptrA             = f+j_coord_offsetA;
686             fjptrB             = f+j_coord_offsetB;
687             fjptrC             = f+j_coord_offsetC;
688             fjptrD             = f+j_coord_offsetD;
689             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
690
691             /* Inner loop uses 59 flops */
692         }
693
694         if(jidx<j_index_end)
695         {
696
697             /* Get j neighbor index, and coordinate index */
698             jnrlistA         = jjnr[jidx];
699             jnrlistB         = jjnr[jidx+1];
700             jnrlistC         = jjnr[jidx+2];
701             jnrlistD         = jjnr[jidx+3];
702             /* Sign of each element will be negative for non-real atoms.
703              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
704              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
705              */
706             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
707
708             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
709             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
710             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
711
712             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
713             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
714             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
715             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
716             j_coord_offsetA  = DIM*jnrA;
717             j_coord_offsetB  = DIM*jnrB;
718             j_coord_offsetC  = DIM*jnrC;
719             j_coord_offsetD  = DIM*jnrD;
720
721             /* load j atom coordinates */
722             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
723                                                  x+j_coord_offsetC,x+j_coord_offsetD,
724                                                  &jx0,&jy0,&jz0);
725
726             /* Calculate displacement vector */
727             dx00             = _mm256_sub_pd(ix0,jx0);
728             dy00             = _mm256_sub_pd(iy0,jy0);
729             dz00             = _mm256_sub_pd(iz0,jz0);
730
731             /* Calculate squared distance and things based on it */
732             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
733
734             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
735
736             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
737
738             /* Load parameters for j particles */
739             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
740                                                                  charge+jnrC+0,charge+jnrD+0);
741             vdwjidx0A        = 2*vdwtype[jnrA+0];
742             vdwjidx0B        = 2*vdwtype[jnrB+0];
743             vdwjidx0C        = 2*vdwtype[jnrC+0];
744             vdwjidx0D        = 2*vdwtype[jnrD+0];
745
746             /**************************
747              * CALCULATE INTERACTIONS *
748              **************************/
749
750             r00              = _mm256_mul_pd(rsq00,rinv00);
751             r00              = _mm256_andnot_pd(dummy_mask,r00);
752
753             /* Compute parameters for interactions between i and j atoms */
754             qq00             = _mm256_mul_pd(iq0,jq0);
755             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
756                                             vdwioffsetptr0+vdwjidx0B,
757                                             vdwioffsetptr0+vdwjidx0C,
758                                             vdwioffsetptr0+vdwjidx0D,
759                                             &c6_00,&c12_00);
760
761             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
762                                                                   vdwgridioffsetptr0+vdwjidx0B,
763                                                                   vdwgridioffsetptr0+vdwjidx0C,
764                                                                   vdwgridioffsetptr0+vdwjidx0D);
765
766             /* EWALD ELECTROSTATICS */
767
768             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
769             ewrt             = _mm256_mul_pd(r00,ewtabscale);
770             ewitab           = _mm256_cvttpd_epi32(ewrt);
771             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
772             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
773                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
774                                             &ewtabF,&ewtabFn);
775             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
776             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
777
778             /* Analytical LJ-PME */
779             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
780             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
781             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
782             exponent         = gmx_simd_exp_d(ewcljrsq);
783             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
784             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
785             /* f6A = 6 * C6grid * (1 - poly) */
786             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
787             /* f6B = C6grid * exponent * beta^6 */
788             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
789             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
790             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
791
792             fscal            = _mm256_add_pd(felec,fvdw);
793
794             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
795
796             /* Calculate temporary vectorial force */
797             tx               = _mm256_mul_pd(fscal,dx00);
798             ty               = _mm256_mul_pd(fscal,dy00);
799             tz               = _mm256_mul_pd(fscal,dz00);
800
801             /* Update vectorial force */
802             fix0             = _mm256_add_pd(fix0,tx);
803             fiy0             = _mm256_add_pd(fiy0,ty);
804             fiz0             = _mm256_add_pd(fiz0,tz);
805
806             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
807             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
808             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
809             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
810             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
811
812             /* Inner loop uses 60 flops */
813         }
814
815         /* End of innermost loop */
816
817         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
818                                                  f+i_coord_offset,fshift+i_shift_offset);
819
820         /* Increment number of inner iterations */
821         inneriter                  += j_index_end - j_index_start;
822
823         /* Outer loop uses 7 flops */
824     }
825
826     /* Increment number of outer iterations */
827     outeriter        += nri;
828
829     /* Update outer/inner flops */
830
831     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
832 }