Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
95     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
107     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
108     __m128i          vfitab;
109     __m128i          ifour       = _mm_set1_epi32(4);
110     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
111     real             *vftab;
112     __m128i          ewitab;
113     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
114     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
115     real             *ewtab;
116     __m256d          dummy_mask,cutoff_mask;
117     __m128           tmpmask0,tmpmask1;
118     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
119     __m256d          one     = _mm256_set1_pd(1.0);
120     __m256d          two     = _mm256_set1_pd(2.0);
121     x                = xx[0];
122     f                = ff[0];
123
124     nri              = nlist->nri;
125     iinr             = nlist->iinr;
126     jindex           = nlist->jindex;
127     jjnr             = nlist->jjnr;
128     shiftidx         = nlist->shift;
129     gid              = nlist->gid;
130     shiftvec         = fr->shift_vec[0];
131     fshift           = fr->fshift[0];
132     facel            = _mm256_set1_pd(fr->epsfac);
133     charge           = mdatoms->chargeA;
134     nvdwtype         = fr->ntype;
135     vdwparam         = fr->nbfp;
136     vdwtype          = mdatoms->typeA;
137
138     vftab            = kernel_data->table_vdw->data;
139     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
140
141     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
142     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
143     beta2            = _mm256_mul_pd(beta,beta);
144     beta3            = _mm256_mul_pd(beta,beta2);
145
146     ewtab            = fr->ic->tabq_coul_FDV0;
147     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
148     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
149
150     /* Setup water-specific parameters */
151     inr              = nlist->iinr[0];
152     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
153     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
154     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
155     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = jnrC = jnrD = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161     j_coord_offsetC = 0;
162     j_coord_offsetD = 0;
163
164     outeriter        = 0;
165     inneriter        = 0;
166
167     for(iidx=0;iidx<4*DIM;iidx++)
168     {
169         scratch[iidx] = 0.0;
170     }
171
172     /* Start outer loop over neighborlists */
173     for(iidx=0; iidx<nri; iidx++)
174     {
175         /* Load shift vector for this list */
176         i_shift_offset   = DIM*shiftidx[iidx];
177
178         /* Load limits for loop over neighbors */
179         j_index_start    = jindex[iidx];
180         j_index_end      = jindex[iidx+1];
181
182         /* Get outer coordinate index */
183         inr              = iinr[iidx];
184         i_coord_offset   = DIM*inr;
185
186         /* Load i particle coords and add shift vector */
187         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
188                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
189
190         fix0             = _mm256_setzero_pd();
191         fiy0             = _mm256_setzero_pd();
192         fiz0             = _mm256_setzero_pd();
193         fix1             = _mm256_setzero_pd();
194         fiy1             = _mm256_setzero_pd();
195         fiz1             = _mm256_setzero_pd();
196         fix2             = _mm256_setzero_pd();
197         fiy2             = _mm256_setzero_pd();
198         fiz2             = _mm256_setzero_pd();
199         fix3             = _mm256_setzero_pd();
200         fiy3             = _mm256_setzero_pd();
201         fiz3             = _mm256_setzero_pd();
202
203         /* Reset potential sums */
204         velecsum         = _mm256_setzero_pd();
205         vvdwsum          = _mm256_setzero_pd();
206
207         /* Start inner kernel loop */
208         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
209         {
210
211             /* Get j neighbor index, and coordinate index */
212             jnrA             = jjnr[jidx];
213             jnrB             = jjnr[jidx+1];
214             jnrC             = jjnr[jidx+2];
215             jnrD             = jjnr[jidx+3];
216             j_coord_offsetA  = DIM*jnrA;
217             j_coord_offsetB  = DIM*jnrB;
218             j_coord_offsetC  = DIM*jnrC;
219             j_coord_offsetD  = DIM*jnrD;
220
221             /* load j atom coordinates */
222             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
223                                                  x+j_coord_offsetC,x+j_coord_offsetD,
224                                                  &jx0,&jy0,&jz0);
225
226             /* Calculate displacement vector */
227             dx00             = _mm256_sub_pd(ix0,jx0);
228             dy00             = _mm256_sub_pd(iy0,jy0);
229             dz00             = _mm256_sub_pd(iz0,jz0);
230             dx10             = _mm256_sub_pd(ix1,jx0);
231             dy10             = _mm256_sub_pd(iy1,jy0);
232             dz10             = _mm256_sub_pd(iz1,jz0);
233             dx20             = _mm256_sub_pd(ix2,jx0);
234             dy20             = _mm256_sub_pd(iy2,jy0);
235             dz20             = _mm256_sub_pd(iz2,jz0);
236             dx30             = _mm256_sub_pd(ix3,jx0);
237             dy30             = _mm256_sub_pd(iy3,jy0);
238             dz30             = _mm256_sub_pd(iz3,jz0);
239
240             /* Calculate squared distance and things based on it */
241             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
242             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
243             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
244             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
245
246             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
247             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
248             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
249             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
250
251             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
252             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
253             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
254
255             /* Load parameters for j particles */
256             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
257                                                                  charge+jnrC+0,charge+jnrD+0);
258             vdwjidx0A        = 2*vdwtype[jnrA+0];
259             vdwjidx0B        = 2*vdwtype[jnrB+0];
260             vdwjidx0C        = 2*vdwtype[jnrC+0];
261             vdwjidx0D        = 2*vdwtype[jnrD+0];
262
263             fjx0             = _mm256_setzero_pd();
264             fjy0             = _mm256_setzero_pd();
265             fjz0             = _mm256_setzero_pd();
266
267             /**************************
268              * CALCULATE INTERACTIONS *
269              **************************/
270
271             r00              = _mm256_mul_pd(rsq00,rinv00);
272
273             /* Compute parameters for interactions between i and j atoms */
274             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
275                                             vdwioffsetptr0+vdwjidx0B,
276                                             vdwioffsetptr0+vdwjidx0C,
277                                             vdwioffsetptr0+vdwjidx0D,
278                                             &c6_00,&c12_00);
279
280             /* Calculate table index by multiplying r with table scale and truncate to integer */
281             rt               = _mm256_mul_pd(r00,vftabscale);
282             vfitab           = _mm256_cvttpd_epi32(rt);
283             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
284             vfitab           = _mm_slli_epi32(vfitab,3);
285
286             /* CUBIC SPLINE TABLE DISPERSION */
287             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
288             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
289             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
290             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
291             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
292             Heps             = _mm256_mul_pd(vfeps,H);
293             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
294             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
295             vvdw6            = _mm256_mul_pd(c6_00,VV);
296             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
297             fvdw6            = _mm256_mul_pd(c6_00,FF);
298
299             /* CUBIC SPLINE TABLE REPULSION */
300             vfitab           = _mm_add_epi32(vfitab,ifour);
301             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
302             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
303             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
304             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
305             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
306             Heps             = _mm256_mul_pd(vfeps,H);
307             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
308             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
309             vvdw12           = _mm256_mul_pd(c12_00,VV);
310             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
311             fvdw12           = _mm256_mul_pd(c12_00,FF);
312             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
313             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
317
318             fscal            = fvdw;
319
320             /* Calculate temporary vectorial force */
321             tx               = _mm256_mul_pd(fscal,dx00);
322             ty               = _mm256_mul_pd(fscal,dy00);
323             tz               = _mm256_mul_pd(fscal,dz00);
324
325             /* Update vectorial force */
326             fix0             = _mm256_add_pd(fix0,tx);
327             fiy0             = _mm256_add_pd(fiy0,ty);
328             fiz0             = _mm256_add_pd(fiz0,tz);
329
330             fjx0             = _mm256_add_pd(fjx0,tx);
331             fjy0             = _mm256_add_pd(fjy0,ty);
332             fjz0             = _mm256_add_pd(fjz0,tz);
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             r10              = _mm256_mul_pd(rsq10,rinv10);
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq10             = _mm256_mul_pd(iq1,jq0);
342
343             /* EWALD ELECTROSTATICS */
344
345             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
346             ewrt             = _mm256_mul_pd(r10,ewtabscale);
347             ewitab           = _mm256_cvttpd_epi32(ewrt);
348             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
349             ewitab           = _mm_slli_epi32(ewitab,2);
350             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
351             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
352             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
353             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
354             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
355             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
356             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
357             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
358             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velecsum         = _mm256_add_pd(velecsum,velec);
362
363             fscal            = felec;
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm256_mul_pd(fscal,dx10);
367             ty               = _mm256_mul_pd(fscal,dy10);
368             tz               = _mm256_mul_pd(fscal,dz10);
369
370             /* Update vectorial force */
371             fix1             = _mm256_add_pd(fix1,tx);
372             fiy1             = _mm256_add_pd(fiy1,ty);
373             fiz1             = _mm256_add_pd(fiz1,tz);
374
375             fjx0             = _mm256_add_pd(fjx0,tx);
376             fjy0             = _mm256_add_pd(fjy0,ty);
377             fjz0             = _mm256_add_pd(fjz0,tz);
378
379             /**************************
380              * CALCULATE INTERACTIONS *
381              **************************/
382
383             r20              = _mm256_mul_pd(rsq20,rinv20);
384
385             /* Compute parameters for interactions between i and j atoms */
386             qq20             = _mm256_mul_pd(iq2,jq0);
387
388             /* EWALD ELECTROSTATICS */
389
390             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
391             ewrt             = _mm256_mul_pd(r20,ewtabscale);
392             ewitab           = _mm256_cvttpd_epi32(ewrt);
393             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
394             ewitab           = _mm_slli_epi32(ewitab,2);
395             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
396             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
397             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
398             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
399             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
400             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
401             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
402             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
403             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
404
405             /* Update potential sum for this i atom from the interaction with this j atom. */
406             velecsum         = _mm256_add_pd(velecsum,velec);
407
408             fscal            = felec;
409
410             /* Calculate temporary vectorial force */
411             tx               = _mm256_mul_pd(fscal,dx20);
412             ty               = _mm256_mul_pd(fscal,dy20);
413             tz               = _mm256_mul_pd(fscal,dz20);
414
415             /* Update vectorial force */
416             fix2             = _mm256_add_pd(fix2,tx);
417             fiy2             = _mm256_add_pd(fiy2,ty);
418             fiz2             = _mm256_add_pd(fiz2,tz);
419
420             fjx0             = _mm256_add_pd(fjx0,tx);
421             fjy0             = _mm256_add_pd(fjy0,ty);
422             fjz0             = _mm256_add_pd(fjz0,tz);
423
424             /**************************
425              * CALCULATE INTERACTIONS *
426              **************************/
427
428             r30              = _mm256_mul_pd(rsq30,rinv30);
429
430             /* Compute parameters for interactions between i and j atoms */
431             qq30             = _mm256_mul_pd(iq3,jq0);
432
433             /* EWALD ELECTROSTATICS */
434
435             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
436             ewrt             = _mm256_mul_pd(r30,ewtabscale);
437             ewitab           = _mm256_cvttpd_epi32(ewrt);
438             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
439             ewitab           = _mm_slli_epi32(ewitab,2);
440             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
441             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
442             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
443             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
444             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
445             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
446             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
447             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
448             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
449
450             /* Update potential sum for this i atom from the interaction with this j atom. */
451             velecsum         = _mm256_add_pd(velecsum,velec);
452
453             fscal            = felec;
454
455             /* Calculate temporary vectorial force */
456             tx               = _mm256_mul_pd(fscal,dx30);
457             ty               = _mm256_mul_pd(fscal,dy30);
458             tz               = _mm256_mul_pd(fscal,dz30);
459
460             /* Update vectorial force */
461             fix3             = _mm256_add_pd(fix3,tx);
462             fiy3             = _mm256_add_pd(fiy3,ty);
463             fiz3             = _mm256_add_pd(fiz3,tz);
464
465             fjx0             = _mm256_add_pd(fjx0,tx);
466             fjy0             = _mm256_add_pd(fjy0,ty);
467             fjz0             = _mm256_add_pd(fjz0,tz);
468
469             fjptrA             = f+j_coord_offsetA;
470             fjptrB             = f+j_coord_offsetB;
471             fjptrC             = f+j_coord_offsetC;
472             fjptrD             = f+j_coord_offsetD;
473
474             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
475
476             /* Inner loop uses 182 flops */
477         }
478
479         if(jidx<j_index_end)
480         {
481
482             /* Get j neighbor index, and coordinate index */
483             jnrlistA         = jjnr[jidx];
484             jnrlistB         = jjnr[jidx+1];
485             jnrlistC         = jjnr[jidx+2];
486             jnrlistD         = jjnr[jidx+3];
487             /* Sign of each element will be negative for non-real atoms.
488              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
489              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
490              */
491             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
492
493             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
494             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
495             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
496
497             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
498             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
499             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
500             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
501             j_coord_offsetA  = DIM*jnrA;
502             j_coord_offsetB  = DIM*jnrB;
503             j_coord_offsetC  = DIM*jnrC;
504             j_coord_offsetD  = DIM*jnrD;
505
506             /* load j atom coordinates */
507             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
508                                                  x+j_coord_offsetC,x+j_coord_offsetD,
509                                                  &jx0,&jy0,&jz0);
510
511             /* Calculate displacement vector */
512             dx00             = _mm256_sub_pd(ix0,jx0);
513             dy00             = _mm256_sub_pd(iy0,jy0);
514             dz00             = _mm256_sub_pd(iz0,jz0);
515             dx10             = _mm256_sub_pd(ix1,jx0);
516             dy10             = _mm256_sub_pd(iy1,jy0);
517             dz10             = _mm256_sub_pd(iz1,jz0);
518             dx20             = _mm256_sub_pd(ix2,jx0);
519             dy20             = _mm256_sub_pd(iy2,jy0);
520             dz20             = _mm256_sub_pd(iz2,jz0);
521             dx30             = _mm256_sub_pd(ix3,jx0);
522             dy30             = _mm256_sub_pd(iy3,jy0);
523             dz30             = _mm256_sub_pd(iz3,jz0);
524
525             /* Calculate squared distance and things based on it */
526             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
527             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
528             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
529             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
530
531             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
532             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
533             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
534             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
535
536             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
537             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
538             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
539
540             /* Load parameters for j particles */
541             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
542                                                                  charge+jnrC+0,charge+jnrD+0);
543             vdwjidx0A        = 2*vdwtype[jnrA+0];
544             vdwjidx0B        = 2*vdwtype[jnrB+0];
545             vdwjidx0C        = 2*vdwtype[jnrC+0];
546             vdwjidx0D        = 2*vdwtype[jnrD+0];
547
548             fjx0             = _mm256_setzero_pd();
549             fjy0             = _mm256_setzero_pd();
550             fjz0             = _mm256_setzero_pd();
551
552             /**************************
553              * CALCULATE INTERACTIONS *
554              **************************/
555
556             r00              = _mm256_mul_pd(rsq00,rinv00);
557             r00              = _mm256_andnot_pd(dummy_mask,r00);
558
559             /* Compute parameters for interactions between i and j atoms */
560             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
561                                             vdwioffsetptr0+vdwjidx0B,
562                                             vdwioffsetptr0+vdwjidx0C,
563                                             vdwioffsetptr0+vdwjidx0D,
564                                             &c6_00,&c12_00);
565
566             /* Calculate table index by multiplying r with table scale and truncate to integer */
567             rt               = _mm256_mul_pd(r00,vftabscale);
568             vfitab           = _mm256_cvttpd_epi32(rt);
569             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
570             vfitab           = _mm_slli_epi32(vfitab,3);
571
572             /* CUBIC SPLINE TABLE DISPERSION */
573             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
574             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
575             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
576             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
577             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
578             Heps             = _mm256_mul_pd(vfeps,H);
579             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
580             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
581             vvdw6            = _mm256_mul_pd(c6_00,VV);
582             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
583             fvdw6            = _mm256_mul_pd(c6_00,FF);
584
585             /* CUBIC SPLINE TABLE REPULSION */
586             vfitab           = _mm_add_epi32(vfitab,ifour);
587             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
588             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
589             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
590             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
591             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
592             Heps             = _mm256_mul_pd(vfeps,H);
593             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
594             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
595             vvdw12           = _mm256_mul_pd(c12_00,VV);
596             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
597             fvdw12           = _mm256_mul_pd(c12_00,FF);
598             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
599             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
600
601             /* Update potential sum for this i atom from the interaction with this j atom. */
602             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
603             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
604
605             fscal            = fvdw;
606
607             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
608
609             /* Calculate temporary vectorial force */
610             tx               = _mm256_mul_pd(fscal,dx00);
611             ty               = _mm256_mul_pd(fscal,dy00);
612             tz               = _mm256_mul_pd(fscal,dz00);
613
614             /* Update vectorial force */
615             fix0             = _mm256_add_pd(fix0,tx);
616             fiy0             = _mm256_add_pd(fiy0,ty);
617             fiz0             = _mm256_add_pd(fiz0,tz);
618
619             fjx0             = _mm256_add_pd(fjx0,tx);
620             fjy0             = _mm256_add_pd(fjy0,ty);
621             fjz0             = _mm256_add_pd(fjz0,tz);
622
623             /**************************
624              * CALCULATE INTERACTIONS *
625              **************************/
626
627             r10              = _mm256_mul_pd(rsq10,rinv10);
628             r10              = _mm256_andnot_pd(dummy_mask,r10);
629
630             /* Compute parameters for interactions between i and j atoms */
631             qq10             = _mm256_mul_pd(iq1,jq0);
632
633             /* EWALD ELECTROSTATICS */
634
635             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
636             ewrt             = _mm256_mul_pd(r10,ewtabscale);
637             ewitab           = _mm256_cvttpd_epi32(ewrt);
638             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
639             ewitab           = _mm_slli_epi32(ewitab,2);
640             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
641             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
642             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
643             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
644             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
645             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
646             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
647             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
648             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
649
650             /* Update potential sum for this i atom from the interaction with this j atom. */
651             velec            = _mm256_andnot_pd(dummy_mask,velec);
652             velecsum         = _mm256_add_pd(velecsum,velec);
653
654             fscal            = felec;
655
656             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
657
658             /* Calculate temporary vectorial force */
659             tx               = _mm256_mul_pd(fscal,dx10);
660             ty               = _mm256_mul_pd(fscal,dy10);
661             tz               = _mm256_mul_pd(fscal,dz10);
662
663             /* Update vectorial force */
664             fix1             = _mm256_add_pd(fix1,tx);
665             fiy1             = _mm256_add_pd(fiy1,ty);
666             fiz1             = _mm256_add_pd(fiz1,tz);
667
668             fjx0             = _mm256_add_pd(fjx0,tx);
669             fjy0             = _mm256_add_pd(fjy0,ty);
670             fjz0             = _mm256_add_pd(fjz0,tz);
671
672             /**************************
673              * CALCULATE INTERACTIONS *
674              **************************/
675
676             r20              = _mm256_mul_pd(rsq20,rinv20);
677             r20              = _mm256_andnot_pd(dummy_mask,r20);
678
679             /* Compute parameters for interactions between i and j atoms */
680             qq20             = _mm256_mul_pd(iq2,jq0);
681
682             /* EWALD ELECTROSTATICS */
683
684             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
685             ewrt             = _mm256_mul_pd(r20,ewtabscale);
686             ewitab           = _mm256_cvttpd_epi32(ewrt);
687             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
688             ewitab           = _mm_slli_epi32(ewitab,2);
689             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
690             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
691             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
692             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
693             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
694             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
695             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
696             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
697             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
698
699             /* Update potential sum for this i atom from the interaction with this j atom. */
700             velec            = _mm256_andnot_pd(dummy_mask,velec);
701             velecsum         = _mm256_add_pd(velecsum,velec);
702
703             fscal            = felec;
704
705             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
706
707             /* Calculate temporary vectorial force */
708             tx               = _mm256_mul_pd(fscal,dx20);
709             ty               = _mm256_mul_pd(fscal,dy20);
710             tz               = _mm256_mul_pd(fscal,dz20);
711
712             /* Update vectorial force */
713             fix2             = _mm256_add_pd(fix2,tx);
714             fiy2             = _mm256_add_pd(fiy2,ty);
715             fiz2             = _mm256_add_pd(fiz2,tz);
716
717             fjx0             = _mm256_add_pd(fjx0,tx);
718             fjy0             = _mm256_add_pd(fjy0,ty);
719             fjz0             = _mm256_add_pd(fjz0,tz);
720
721             /**************************
722              * CALCULATE INTERACTIONS *
723              **************************/
724
725             r30              = _mm256_mul_pd(rsq30,rinv30);
726             r30              = _mm256_andnot_pd(dummy_mask,r30);
727
728             /* Compute parameters for interactions between i and j atoms */
729             qq30             = _mm256_mul_pd(iq3,jq0);
730
731             /* EWALD ELECTROSTATICS */
732
733             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
734             ewrt             = _mm256_mul_pd(r30,ewtabscale);
735             ewitab           = _mm256_cvttpd_epi32(ewrt);
736             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
737             ewitab           = _mm_slli_epi32(ewitab,2);
738             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
739             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
740             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
741             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
742             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
743             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
744             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
745             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
746             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
747
748             /* Update potential sum for this i atom from the interaction with this j atom. */
749             velec            = _mm256_andnot_pd(dummy_mask,velec);
750             velecsum         = _mm256_add_pd(velecsum,velec);
751
752             fscal            = felec;
753
754             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
755
756             /* Calculate temporary vectorial force */
757             tx               = _mm256_mul_pd(fscal,dx30);
758             ty               = _mm256_mul_pd(fscal,dy30);
759             tz               = _mm256_mul_pd(fscal,dz30);
760
761             /* Update vectorial force */
762             fix3             = _mm256_add_pd(fix3,tx);
763             fiy3             = _mm256_add_pd(fiy3,ty);
764             fiz3             = _mm256_add_pd(fiz3,tz);
765
766             fjx0             = _mm256_add_pd(fjx0,tx);
767             fjy0             = _mm256_add_pd(fjy0,ty);
768             fjz0             = _mm256_add_pd(fjz0,tz);
769
770             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
771             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
772             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
773             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
774
775             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
776
777             /* Inner loop uses 186 flops */
778         }
779
780         /* End of innermost loop */
781
782         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
783                                                  f+i_coord_offset,fshift+i_shift_offset);
784
785         ggid                        = gid[iidx];
786         /* Update potential energies */
787         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
788         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
789
790         /* Increment number of inner iterations */
791         inneriter                  += j_index_end - j_index_start;
792
793         /* Outer loop uses 26 flops */
794     }
795
796     /* Increment number of outer iterations */
797     outeriter        += nri;
798
799     /* Update outer/inner flops */
800
801     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*186);
802 }
803 /*
804  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_256_double
805  * Electrostatics interaction: Ewald
806  * VdW interaction:            CubicSplineTable
807  * Geometry:                   Water4-Particle
808  * Calculate force/pot:        Force
809  */
810 void
811 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_256_double
812                     (t_nblist                    * gmx_restrict       nlist,
813                      rvec                        * gmx_restrict          xx,
814                      rvec                        * gmx_restrict          ff,
815                      t_forcerec                  * gmx_restrict          fr,
816                      t_mdatoms                   * gmx_restrict     mdatoms,
817                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
818                      t_nrnb                      * gmx_restrict        nrnb)
819 {
820     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
821      * just 0 for non-waters.
822      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
823      * jnr indices corresponding to data put in the four positions in the SIMD register.
824      */
825     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
826     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
827     int              jnrA,jnrB,jnrC,jnrD;
828     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
829     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
830     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
831     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
832     real             rcutoff_scalar;
833     real             *shiftvec,*fshift,*x,*f;
834     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
835     real             scratch[4*DIM];
836     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
837     real *           vdwioffsetptr0;
838     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
839     real *           vdwioffsetptr1;
840     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
841     real *           vdwioffsetptr2;
842     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
843     real *           vdwioffsetptr3;
844     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
845     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
846     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
847     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
848     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
849     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
850     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
851     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
852     real             *charge;
853     int              nvdwtype;
854     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
855     int              *vdwtype;
856     real             *vdwparam;
857     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
858     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
859     __m128i          vfitab;
860     __m128i          ifour       = _mm_set1_epi32(4);
861     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
862     real             *vftab;
863     __m128i          ewitab;
864     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
865     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
866     real             *ewtab;
867     __m256d          dummy_mask,cutoff_mask;
868     __m128           tmpmask0,tmpmask1;
869     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
870     __m256d          one     = _mm256_set1_pd(1.0);
871     __m256d          two     = _mm256_set1_pd(2.0);
872     x                = xx[0];
873     f                = ff[0];
874
875     nri              = nlist->nri;
876     iinr             = nlist->iinr;
877     jindex           = nlist->jindex;
878     jjnr             = nlist->jjnr;
879     shiftidx         = nlist->shift;
880     gid              = nlist->gid;
881     shiftvec         = fr->shift_vec[0];
882     fshift           = fr->fshift[0];
883     facel            = _mm256_set1_pd(fr->epsfac);
884     charge           = mdatoms->chargeA;
885     nvdwtype         = fr->ntype;
886     vdwparam         = fr->nbfp;
887     vdwtype          = mdatoms->typeA;
888
889     vftab            = kernel_data->table_vdw->data;
890     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
891
892     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
893     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
894     beta2            = _mm256_mul_pd(beta,beta);
895     beta3            = _mm256_mul_pd(beta,beta2);
896
897     ewtab            = fr->ic->tabq_coul_F;
898     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
899     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
900
901     /* Setup water-specific parameters */
902     inr              = nlist->iinr[0];
903     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
904     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
905     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
906     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
907
908     /* Avoid stupid compiler warnings */
909     jnrA = jnrB = jnrC = jnrD = 0;
910     j_coord_offsetA = 0;
911     j_coord_offsetB = 0;
912     j_coord_offsetC = 0;
913     j_coord_offsetD = 0;
914
915     outeriter        = 0;
916     inneriter        = 0;
917
918     for(iidx=0;iidx<4*DIM;iidx++)
919     {
920         scratch[iidx] = 0.0;
921     }
922
923     /* Start outer loop over neighborlists */
924     for(iidx=0; iidx<nri; iidx++)
925     {
926         /* Load shift vector for this list */
927         i_shift_offset   = DIM*shiftidx[iidx];
928
929         /* Load limits for loop over neighbors */
930         j_index_start    = jindex[iidx];
931         j_index_end      = jindex[iidx+1];
932
933         /* Get outer coordinate index */
934         inr              = iinr[iidx];
935         i_coord_offset   = DIM*inr;
936
937         /* Load i particle coords and add shift vector */
938         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
939                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
940
941         fix0             = _mm256_setzero_pd();
942         fiy0             = _mm256_setzero_pd();
943         fiz0             = _mm256_setzero_pd();
944         fix1             = _mm256_setzero_pd();
945         fiy1             = _mm256_setzero_pd();
946         fiz1             = _mm256_setzero_pd();
947         fix2             = _mm256_setzero_pd();
948         fiy2             = _mm256_setzero_pd();
949         fiz2             = _mm256_setzero_pd();
950         fix3             = _mm256_setzero_pd();
951         fiy3             = _mm256_setzero_pd();
952         fiz3             = _mm256_setzero_pd();
953
954         /* Start inner kernel loop */
955         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
956         {
957
958             /* Get j neighbor index, and coordinate index */
959             jnrA             = jjnr[jidx];
960             jnrB             = jjnr[jidx+1];
961             jnrC             = jjnr[jidx+2];
962             jnrD             = jjnr[jidx+3];
963             j_coord_offsetA  = DIM*jnrA;
964             j_coord_offsetB  = DIM*jnrB;
965             j_coord_offsetC  = DIM*jnrC;
966             j_coord_offsetD  = DIM*jnrD;
967
968             /* load j atom coordinates */
969             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
970                                                  x+j_coord_offsetC,x+j_coord_offsetD,
971                                                  &jx0,&jy0,&jz0);
972
973             /* Calculate displacement vector */
974             dx00             = _mm256_sub_pd(ix0,jx0);
975             dy00             = _mm256_sub_pd(iy0,jy0);
976             dz00             = _mm256_sub_pd(iz0,jz0);
977             dx10             = _mm256_sub_pd(ix1,jx0);
978             dy10             = _mm256_sub_pd(iy1,jy0);
979             dz10             = _mm256_sub_pd(iz1,jz0);
980             dx20             = _mm256_sub_pd(ix2,jx0);
981             dy20             = _mm256_sub_pd(iy2,jy0);
982             dz20             = _mm256_sub_pd(iz2,jz0);
983             dx30             = _mm256_sub_pd(ix3,jx0);
984             dy30             = _mm256_sub_pd(iy3,jy0);
985             dz30             = _mm256_sub_pd(iz3,jz0);
986
987             /* Calculate squared distance and things based on it */
988             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
989             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
990             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
991             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
992
993             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
994             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
995             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
996             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
997
998             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
999             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1000             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1001
1002             /* Load parameters for j particles */
1003             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1004                                                                  charge+jnrC+0,charge+jnrD+0);
1005             vdwjidx0A        = 2*vdwtype[jnrA+0];
1006             vdwjidx0B        = 2*vdwtype[jnrB+0];
1007             vdwjidx0C        = 2*vdwtype[jnrC+0];
1008             vdwjidx0D        = 2*vdwtype[jnrD+0];
1009
1010             fjx0             = _mm256_setzero_pd();
1011             fjy0             = _mm256_setzero_pd();
1012             fjz0             = _mm256_setzero_pd();
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             r00              = _mm256_mul_pd(rsq00,rinv00);
1019
1020             /* Compute parameters for interactions between i and j atoms */
1021             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1022                                             vdwioffsetptr0+vdwjidx0B,
1023                                             vdwioffsetptr0+vdwjidx0C,
1024                                             vdwioffsetptr0+vdwjidx0D,
1025                                             &c6_00,&c12_00);
1026
1027             /* Calculate table index by multiplying r with table scale and truncate to integer */
1028             rt               = _mm256_mul_pd(r00,vftabscale);
1029             vfitab           = _mm256_cvttpd_epi32(rt);
1030             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1031             vfitab           = _mm_slli_epi32(vfitab,3);
1032
1033             /* CUBIC SPLINE TABLE DISPERSION */
1034             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1035             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1036             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1037             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1038             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1039             Heps             = _mm256_mul_pd(vfeps,H);
1040             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1041             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1042             fvdw6            = _mm256_mul_pd(c6_00,FF);
1043
1044             /* CUBIC SPLINE TABLE REPULSION */
1045             vfitab           = _mm_add_epi32(vfitab,ifour);
1046             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1047             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1048             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1049             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1050             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1051             Heps             = _mm256_mul_pd(vfeps,H);
1052             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1053             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1054             fvdw12           = _mm256_mul_pd(c12_00,FF);
1055             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1056
1057             fscal            = fvdw;
1058
1059             /* Calculate temporary vectorial force */
1060             tx               = _mm256_mul_pd(fscal,dx00);
1061             ty               = _mm256_mul_pd(fscal,dy00);
1062             tz               = _mm256_mul_pd(fscal,dz00);
1063
1064             /* Update vectorial force */
1065             fix0             = _mm256_add_pd(fix0,tx);
1066             fiy0             = _mm256_add_pd(fiy0,ty);
1067             fiz0             = _mm256_add_pd(fiz0,tz);
1068
1069             fjx0             = _mm256_add_pd(fjx0,tx);
1070             fjy0             = _mm256_add_pd(fjy0,ty);
1071             fjz0             = _mm256_add_pd(fjz0,tz);
1072
1073             /**************************
1074              * CALCULATE INTERACTIONS *
1075              **************************/
1076
1077             r10              = _mm256_mul_pd(rsq10,rinv10);
1078
1079             /* Compute parameters for interactions between i and j atoms */
1080             qq10             = _mm256_mul_pd(iq1,jq0);
1081
1082             /* EWALD ELECTROSTATICS */
1083
1084             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1085             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1086             ewitab           = _mm256_cvttpd_epi32(ewrt);
1087             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1088             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1089                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1090                                             &ewtabF,&ewtabFn);
1091             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1092             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1093
1094             fscal            = felec;
1095
1096             /* Calculate temporary vectorial force */
1097             tx               = _mm256_mul_pd(fscal,dx10);
1098             ty               = _mm256_mul_pd(fscal,dy10);
1099             tz               = _mm256_mul_pd(fscal,dz10);
1100
1101             /* Update vectorial force */
1102             fix1             = _mm256_add_pd(fix1,tx);
1103             fiy1             = _mm256_add_pd(fiy1,ty);
1104             fiz1             = _mm256_add_pd(fiz1,tz);
1105
1106             fjx0             = _mm256_add_pd(fjx0,tx);
1107             fjy0             = _mm256_add_pd(fjy0,ty);
1108             fjz0             = _mm256_add_pd(fjz0,tz);
1109
1110             /**************************
1111              * CALCULATE INTERACTIONS *
1112              **************************/
1113
1114             r20              = _mm256_mul_pd(rsq20,rinv20);
1115
1116             /* Compute parameters for interactions between i and j atoms */
1117             qq20             = _mm256_mul_pd(iq2,jq0);
1118
1119             /* EWALD ELECTROSTATICS */
1120
1121             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1122             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1123             ewitab           = _mm256_cvttpd_epi32(ewrt);
1124             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1125             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1126                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1127                                             &ewtabF,&ewtabFn);
1128             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1129             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1130
1131             fscal            = felec;
1132
1133             /* Calculate temporary vectorial force */
1134             tx               = _mm256_mul_pd(fscal,dx20);
1135             ty               = _mm256_mul_pd(fscal,dy20);
1136             tz               = _mm256_mul_pd(fscal,dz20);
1137
1138             /* Update vectorial force */
1139             fix2             = _mm256_add_pd(fix2,tx);
1140             fiy2             = _mm256_add_pd(fiy2,ty);
1141             fiz2             = _mm256_add_pd(fiz2,tz);
1142
1143             fjx0             = _mm256_add_pd(fjx0,tx);
1144             fjy0             = _mm256_add_pd(fjy0,ty);
1145             fjz0             = _mm256_add_pd(fjz0,tz);
1146
1147             /**************************
1148              * CALCULATE INTERACTIONS *
1149              **************************/
1150
1151             r30              = _mm256_mul_pd(rsq30,rinv30);
1152
1153             /* Compute parameters for interactions between i and j atoms */
1154             qq30             = _mm256_mul_pd(iq3,jq0);
1155
1156             /* EWALD ELECTROSTATICS */
1157
1158             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1159             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1160             ewitab           = _mm256_cvttpd_epi32(ewrt);
1161             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1162             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1163                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1164                                             &ewtabF,&ewtabFn);
1165             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1166             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1167
1168             fscal            = felec;
1169
1170             /* Calculate temporary vectorial force */
1171             tx               = _mm256_mul_pd(fscal,dx30);
1172             ty               = _mm256_mul_pd(fscal,dy30);
1173             tz               = _mm256_mul_pd(fscal,dz30);
1174
1175             /* Update vectorial force */
1176             fix3             = _mm256_add_pd(fix3,tx);
1177             fiy3             = _mm256_add_pd(fiy3,ty);
1178             fiz3             = _mm256_add_pd(fiz3,tz);
1179
1180             fjx0             = _mm256_add_pd(fjx0,tx);
1181             fjy0             = _mm256_add_pd(fjy0,ty);
1182             fjz0             = _mm256_add_pd(fjz0,tz);
1183
1184             fjptrA             = f+j_coord_offsetA;
1185             fjptrB             = f+j_coord_offsetB;
1186             fjptrC             = f+j_coord_offsetC;
1187             fjptrD             = f+j_coord_offsetD;
1188
1189             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1190
1191             /* Inner loop uses 159 flops */
1192         }
1193
1194         if(jidx<j_index_end)
1195         {
1196
1197             /* Get j neighbor index, and coordinate index */
1198             jnrlistA         = jjnr[jidx];
1199             jnrlistB         = jjnr[jidx+1];
1200             jnrlistC         = jjnr[jidx+2];
1201             jnrlistD         = jjnr[jidx+3];
1202             /* Sign of each element will be negative for non-real atoms.
1203              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1204              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1205              */
1206             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1207
1208             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1209             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1210             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1211
1212             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1213             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1214             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1215             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1216             j_coord_offsetA  = DIM*jnrA;
1217             j_coord_offsetB  = DIM*jnrB;
1218             j_coord_offsetC  = DIM*jnrC;
1219             j_coord_offsetD  = DIM*jnrD;
1220
1221             /* load j atom coordinates */
1222             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1223                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1224                                                  &jx0,&jy0,&jz0);
1225
1226             /* Calculate displacement vector */
1227             dx00             = _mm256_sub_pd(ix0,jx0);
1228             dy00             = _mm256_sub_pd(iy0,jy0);
1229             dz00             = _mm256_sub_pd(iz0,jz0);
1230             dx10             = _mm256_sub_pd(ix1,jx0);
1231             dy10             = _mm256_sub_pd(iy1,jy0);
1232             dz10             = _mm256_sub_pd(iz1,jz0);
1233             dx20             = _mm256_sub_pd(ix2,jx0);
1234             dy20             = _mm256_sub_pd(iy2,jy0);
1235             dz20             = _mm256_sub_pd(iz2,jz0);
1236             dx30             = _mm256_sub_pd(ix3,jx0);
1237             dy30             = _mm256_sub_pd(iy3,jy0);
1238             dz30             = _mm256_sub_pd(iz3,jz0);
1239
1240             /* Calculate squared distance and things based on it */
1241             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1242             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1243             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1244             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1245
1246             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1247             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1248             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1249             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1250
1251             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1252             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1253             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1254
1255             /* Load parameters for j particles */
1256             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1257                                                                  charge+jnrC+0,charge+jnrD+0);
1258             vdwjidx0A        = 2*vdwtype[jnrA+0];
1259             vdwjidx0B        = 2*vdwtype[jnrB+0];
1260             vdwjidx0C        = 2*vdwtype[jnrC+0];
1261             vdwjidx0D        = 2*vdwtype[jnrD+0];
1262
1263             fjx0             = _mm256_setzero_pd();
1264             fjy0             = _mm256_setzero_pd();
1265             fjz0             = _mm256_setzero_pd();
1266
1267             /**************************
1268              * CALCULATE INTERACTIONS *
1269              **************************/
1270
1271             r00              = _mm256_mul_pd(rsq00,rinv00);
1272             r00              = _mm256_andnot_pd(dummy_mask,r00);
1273
1274             /* Compute parameters for interactions between i and j atoms */
1275             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1276                                             vdwioffsetptr0+vdwjidx0B,
1277                                             vdwioffsetptr0+vdwjidx0C,
1278                                             vdwioffsetptr0+vdwjidx0D,
1279                                             &c6_00,&c12_00);
1280
1281             /* Calculate table index by multiplying r with table scale and truncate to integer */
1282             rt               = _mm256_mul_pd(r00,vftabscale);
1283             vfitab           = _mm256_cvttpd_epi32(rt);
1284             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1285             vfitab           = _mm_slli_epi32(vfitab,3);
1286
1287             /* CUBIC SPLINE TABLE DISPERSION */
1288             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1289             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1290             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1291             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1292             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1293             Heps             = _mm256_mul_pd(vfeps,H);
1294             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1295             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1296             fvdw6            = _mm256_mul_pd(c6_00,FF);
1297
1298             /* CUBIC SPLINE TABLE REPULSION */
1299             vfitab           = _mm_add_epi32(vfitab,ifour);
1300             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1301             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1302             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1303             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1304             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1305             Heps             = _mm256_mul_pd(vfeps,H);
1306             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1307             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1308             fvdw12           = _mm256_mul_pd(c12_00,FF);
1309             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1310
1311             fscal            = fvdw;
1312
1313             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1314
1315             /* Calculate temporary vectorial force */
1316             tx               = _mm256_mul_pd(fscal,dx00);
1317             ty               = _mm256_mul_pd(fscal,dy00);
1318             tz               = _mm256_mul_pd(fscal,dz00);
1319
1320             /* Update vectorial force */
1321             fix0             = _mm256_add_pd(fix0,tx);
1322             fiy0             = _mm256_add_pd(fiy0,ty);
1323             fiz0             = _mm256_add_pd(fiz0,tz);
1324
1325             fjx0             = _mm256_add_pd(fjx0,tx);
1326             fjy0             = _mm256_add_pd(fjy0,ty);
1327             fjz0             = _mm256_add_pd(fjz0,tz);
1328
1329             /**************************
1330              * CALCULATE INTERACTIONS *
1331              **************************/
1332
1333             r10              = _mm256_mul_pd(rsq10,rinv10);
1334             r10              = _mm256_andnot_pd(dummy_mask,r10);
1335
1336             /* Compute parameters for interactions between i and j atoms */
1337             qq10             = _mm256_mul_pd(iq1,jq0);
1338
1339             /* EWALD ELECTROSTATICS */
1340
1341             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1342             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1343             ewitab           = _mm256_cvttpd_epi32(ewrt);
1344             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1345             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1346                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1347                                             &ewtabF,&ewtabFn);
1348             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1349             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1350
1351             fscal            = felec;
1352
1353             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1354
1355             /* Calculate temporary vectorial force */
1356             tx               = _mm256_mul_pd(fscal,dx10);
1357             ty               = _mm256_mul_pd(fscal,dy10);
1358             tz               = _mm256_mul_pd(fscal,dz10);
1359
1360             /* Update vectorial force */
1361             fix1             = _mm256_add_pd(fix1,tx);
1362             fiy1             = _mm256_add_pd(fiy1,ty);
1363             fiz1             = _mm256_add_pd(fiz1,tz);
1364
1365             fjx0             = _mm256_add_pd(fjx0,tx);
1366             fjy0             = _mm256_add_pd(fjy0,ty);
1367             fjz0             = _mm256_add_pd(fjz0,tz);
1368
1369             /**************************
1370              * CALCULATE INTERACTIONS *
1371              **************************/
1372
1373             r20              = _mm256_mul_pd(rsq20,rinv20);
1374             r20              = _mm256_andnot_pd(dummy_mask,r20);
1375
1376             /* Compute parameters for interactions between i and j atoms */
1377             qq20             = _mm256_mul_pd(iq2,jq0);
1378
1379             /* EWALD ELECTROSTATICS */
1380
1381             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1382             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1383             ewitab           = _mm256_cvttpd_epi32(ewrt);
1384             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1385             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1386                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1387                                             &ewtabF,&ewtabFn);
1388             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1389             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1390
1391             fscal            = felec;
1392
1393             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1394
1395             /* Calculate temporary vectorial force */
1396             tx               = _mm256_mul_pd(fscal,dx20);
1397             ty               = _mm256_mul_pd(fscal,dy20);
1398             tz               = _mm256_mul_pd(fscal,dz20);
1399
1400             /* Update vectorial force */
1401             fix2             = _mm256_add_pd(fix2,tx);
1402             fiy2             = _mm256_add_pd(fiy2,ty);
1403             fiz2             = _mm256_add_pd(fiz2,tz);
1404
1405             fjx0             = _mm256_add_pd(fjx0,tx);
1406             fjy0             = _mm256_add_pd(fjy0,ty);
1407             fjz0             = _mm256_add_pd(fjz0,tz);
1408
1409             /**************************
1410              * CALCULATE INTERACTIONS *
1411              **************************/
1412
1413             r30              = _mm256_mul_pd(rsq30,rinv30);
1414             r30              = _mm256_andnot_pd(dummy_mask,r30);
1415
1416             /* Compute parameters for interactions between i and j atoms */
1417             qq30             = _mm256_mul_pd(iq3,jq0);
1418
1419             /* EWALD ELECTROSTATICS */
1420
1421             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1422             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1423             ewitab           = _mm256_cvttpd_epi32(ewrt);
1424             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1425             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1426                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1427                                             &ewtabF,&ewtabFn);
1428             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1429             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1430
1431             fscal            = felec;
1432
1433             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1434
1435             /* Calculate temporary vectorial force */
1436             tx               = _mm256_mul_pd(fscal,dx30);
1437             ty               = _mm256_mul_pd(fscal,dy30);
1438             tz               = _mm256_mul_pd(fscal,dz30);
1439
1440             /* Update vectorial force */
1441             fix3             = _mm256_add_pd(fix3,tx);
1442             fiy3             = _mm256_add_pd(fiy3,ty);
1443             fiz3             = _mm256_add_pd(fiz3,tz);
1444
1445             fjx0             = _mm256_add_pd(fjx0,tx);
1446             fjy0             = _mm256_add_pd(fjy0,ty);
1447             fjz0             = _mm256_add_pd(fjz0,tz);
1448
1449             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1450             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1451             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1452             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1453
1454             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1455
1456             /* Inner loop uses 163 flops */
1457         }
1458
1459         /* End of innermost loop */
1460
1461         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1462                                                  f+i_coord_offset,fshift+i_shift_offset);
1463
1464         /* Increment number of inner iterations */
1465         inneriter                  += j_index_end - j_index_start;
1466
1467         /* Outer loop uses 24 flops */
1468     }
1469
1470     /* Increment number of outer iterations */
1471     outeriter        += nri;
1472
1473     /* Update outer/inner flops */
1474
1475     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*163);
1476 }