17ba56354c742da57fc1ba4cd40787e485ef4be1
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
98     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
105     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
106     __m128i          vfitab;
107     __m128i          ifour       = _mm_set1_epi32(4);
108     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
109     real             *vftab;
110     __m128i          ewitab;
111     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
112     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
113     real             *ewtab;
114     __m256d          dummy_mask,cutoff_mask;
115     __m128           tmpmask0,tmpmask1;
116     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
117     __m256d          one     = _mm256_set1_pd(1.0);
118     __m256d          two     = _mm256_set1_pd(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm256_set1_pd(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135
136     vftab            = kernel_data->table_vdw->data;
137     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
138
139     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
140     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
141     beta2            = _mm256_mul_pd(beta,beta);
142     beta3            = _mm256_mul_pd(beta,beta2);
143
144     ewtab            = fr->ic->tabq_coul_FDV0;
145     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
146     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
147
148     /* Setup water-specific parameters */
149     inr              = nlist->iinr[0];
150     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
151     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
152     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
153     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
154
155     /* Avoid stupid compiler warnings */
156     jnrA = jnrB = jnrC = jnrD = 0;
157     j_coord_offsetA = 0;
158     j_coord_offsetB = 0;
159     j_coord_offsetC = 0;
160     j_coord_offsetD = 0;
161
162     outeriter        = 0;
163     inneriter        = 0;
164
165     for(iidx=0;iidx<4*DIM;iidx++)
166     {
167         scratch[iidx] = 0.0;
168     }
169
170     /* Start outer loop over neighborlists */
171     for(iidx=0; iidx<nri; iidx++)
172     {
173         /* Load shift vector for this list */
174         i_shift_offset   = DIM*shiftidx[iidx];
175
176         /* Load limits for loop over neighbors */
177         j_index_start    = jindex[iidx];
178         j_index_end      = jindex[iidx+1];
179
180         /* Get outer coordinate index */
181         inr              = iinr[iidx];
182         i_coord_offset   = DIM*inr;
183
184         /* Load i particle coords and add shift vector */
185         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
186                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
187
188         fix0             = _mm256_setzero_pd();
189         fiy0             = _mm256_setzero_pd();
190         fiz0             = _mm256_setzero_pd();
191         fix1             = _mm256_setzero_pd();
192         fiy1             = _mm256_setzero_pd();
193         fiz1             = _mm256_setzero_pd();
194         fix2             = _mm256_setzero_pd();
195         fiy2             = _mm256_setzero_pd();
196         fiz2             = _mm256_setzero_pd();
197         fix3             = _mm256_setzero_pd();
198         fiy3             = _mm256_setzero_pd();
199         fiz3             = _mm256_setzero_pd();
200
201         /* Reset potential sums */
202         velecsum         = _mm256_setzero_pd();
203         vvdwsum          = _mm256_setzero_pd();
204
205         /* Start inner kernel loop */
206         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
207         {
208
209             /* Get j neighbor index, and coordinate index */
210             jnrA             = jjnr[jidx];
211             jnrB             = jjnr[jidx+1];
212             jnrC             = jjnr[jidx+2];
213             jnrD             = jjnr[jidx+3];
214             j_coord_offsetA  = DIM*jnrA;
215             j_coord_offsetB  = DIM*jnrB;
216             j_coord_offsetC  = DIM*jnrC;
217             j_coord_offsetD  = DIM*jnrD;
218
219             /* load j atom coordinates */
220             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
221                                                  x+j_coord_offsetC,x+j_coord_offsetD,
222                                                  &jx0,&jy0,&jz0);
223
224             /* Calculate displacement vector */
225             dx00             = _mm256_sub_pd(ix0,jx0);
226             dy00             = _mm256_sub_pd(iy0,jy0);
227             dz00             = _mm256_sub_pd(iz0,jz0);
228             dx10             = _mm256_sub_pd(ix1,jx0);
229             dy10             = _mm256_sub_pd(iy1,jy0);
230             dz10             = _mm256_sub_pd(iz1,jz0);
231             dx20             = _mm256_sub_pd(ix2,jx0);
232             dy20             = _mm256_sub_pd(iy2,jy0);
233             dz20             = _mm256_sub_pd(iz2,jz0);
234             dx30             = _mm256_sub_pd(ix3,jx0);
235             dy30             = _mm256_sub_pd(iy3,jy0);
236             dz30             = _mm256_sub_pd(iz3,jz0);
237
238             /* Calculate squared distance and things based on it */
239             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
240             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
241             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
242             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
243
244             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
245             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
246             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
247             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
248
249             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
250             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
251             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
252
253             /* Load parameters for j particles */
254             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
255                                                                  charge+jnrC+0,charge+jnrD+0);
256             vdwjidx0A        = 2*vdwtype[jnrA+0];
257             vdwjidx0B        = 2*vdwtype[jnrB+0];
258             vdwjidx0C        = 2*vdwtype[jnrC+0];
259             vdwjidx0D        = 2*vdwtype[jnrD+0];
260
261             fjx0             = _mm256_setzero_pd();
262             fjy0             = _mm256_setzero_pd();
263             fjz0             = _mm256_setzero_pd();
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             r00              = _mm256_mul_pd(rsq00,rinv00);
270
271             /* Compute parameters for interactions between i and j atoms */
272             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
273                                             vdwioffsetptr0+vdwjidx0B,
274                                             vdwioffsetptr0+vdwjidx0C,
275                                             vdwioffsetptr0+vdwjidx0D,
276                                             &c6_00,&c12_00);
277
278             /* Calculate table index by multiplying r with table scale and truncate to integer */
279             rt               = _mm256_mul_pd(r00,vftabscale);
280             vfitab           = _mm256_cvttpd_epi32(rt);
281             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
282             vfitab           = _mm_slli_epi32(vfitab,3);
283
284             /* CUBIC SPLINE TABLE DISPERSION */
285             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
286             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
287             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
288             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
289             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
290             Heps             = _mm256_mul_pd(vfeps,H);
291             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
292             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
293             vvdw6            = _mm256_mul_pd(c6_00,VV);
294             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
295             fvdw6            = _mm256_mul_pd(c6_00,FF);
296
297             /* CUBIC SPLINE TABLE REPULSION */
298             vfitab           = _mm_add_epi32(vfitab,ifour);
299             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
300             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
301             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
302             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
303             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
304             Heps             = _mm256_mul_pd(vfeps,H);
305             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
306             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
307             vvdw12           = _mm256_mul_pd(c12_00,VV);
308             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
309             fvdw12           = _mm256_mul_pd(c12_00,FF);
310             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
311             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
312
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
315
316             fscal            = fvdw;
317
318             /* Calculate temporary vectorial force */
319             tx               = _mm256_mul_pd(fscal,dx00);
320             ty               = _mm256_mul_pd(fscal,dy00);
321             tz               = _mm256_mul_pd(fscal,dz00);
322
323             /* Update vectorial force */
324             fix0             = _mm256_add_pd(fix0,tx);
325             fiy0             = _mm256_add_pd(fiy0,ty);
326             fiz0             = _mm256_add_pd(fiz0,tz);
327
328             fjx0             = _mm256_add_pd(fjx0,tx);
329             fjy0             = _mm256_add_pd(fjy0,ty);
330             fjz0             = _mm256_add_pd(fjz0,tz);
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             r10              = _mm256_mul_pd(rsq10,rinv10);
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq10             = _mm256_mul_pd(iq1,jq0);
340
341             /* EWALD ELECTROSTATICS */
342
343             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
344             ewrt             = _mm256_mul_pd(r10,ewtabscale);
345             ewitab           = _mm256_cvttpd_epi32(ewrt);
346             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
347             ewitab           = _mm_slli_epi32(ewitab,2);
348             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
349             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
350             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
351             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
352             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
353             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
354             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
355             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
356             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
357
358             /* Update potential sum for this i atom from the interaction with this j atom. */
359             velecsum         = _mm256_add_pd(velecsum,velec);
360
361             fscal            = felec;
362
363             /* Calculate temporary vectorial force */
364             tx               = _mm256_mul_pd(fscal,dx10);
365             ty               = _mm256_mul_pd(fscal,dy10);
366             tz               = _mm256_mul_pd(fscal,dz10);
367
368             /* Update vectorial force */
369             fix1             = _mm256_add_pd(fix1,tx);
370             fiy1             = _mm256_add_pd(fiy1,ty);
371             fiz1             = _mm256_add_pd(fiz1,tz);
372
373             fjx0             = _mm256_add_pd(fjx0,tx);
374             fjy0             = _mm256_add_pd(fjy0,ty);
375             fjz0             = _mm256_add_pd(fjz0,tz);
376
377             /**************************
378              * CALCULATE INTERACTIONS *
379              **************************/
380
381             r20              = _mm256_mul_pd(rsq20,rinv20);
382
383             /* Compute parameters for interactions between i and j atoms */
384             qq20             = _mm256_mul_pd(iq2,jq0);
385
386             /* EWALD ELECTROSTATICS */
387
388             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
389             ewrt             = _mm256_mul_pd(r20,ewtabscale);
390             ewitab           = _mm256_cvttpd_epi32(ewrt);
391             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
392             ewitab           = _mm_slli_epi32(ewitab,2);
393             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
394             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
395             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
396             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
397             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
398             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
399             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
400             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
401             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
402
403             /* Update potential sum for this i atom from the interaction with this j atom. */
404             velecsum         = _mm256_add_pd(velecsum,velec);
405
406             fscal            = felec;
407
408             /* Calculate temporary vectorial force */
409             tx               = _mm256_mul_pd(fscal,dx20);
410             ty               = _mm256_mul_pd(fscal,dy20);
411             tz               = _mm256_mul_pd(fscal,dz20);
412
413             /* Update vectorial force */
414             fix2             = _mm256_add_pd(fix2,tx);
415             fiy2             = _mm256_add_pd(fiy2,ty);
416             fiz2             = _mm256_add_pd(fiz2,tz);
417
418             fjx0             = _mm256_add_pd(fjx0,tx);
419             fjy0             = _mm256_add_pd(fjy0,ty);
420             fjz0             = _mm256_add_pd(fjz0,tz);
421
422             /**************************
423              * CALCULATE INTERACTIONS *
424              **************************/
425
426             r30              = _mm256_mul_pd(rsq30,rinv30);
427
428             /* Compute parameters for interactions between i and j atoms */
429             qq30             = _mm256_mul_pd(iq3,jq0);
430
431             /* EWALD ELECTROSTATICS */
432
433             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
434             ewrt             = _mm256_mul_pd(r30,ewtabscale);
435             ewitab           = _mm256_cvttpd_epi32(ewrt);
436             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
437             ewitab           = _mm_slli_epi32(ewitab,2);
438             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
439             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
440             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
441             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
442             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
443             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
444             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
445             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
446             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
447
448             /* Update potential sum for this i atom from the interaction with this j atom. */
449             velecsum         = _mm256_add_pd(velecsum,velec);
450
451             fscal            = felec;
452
453             /* Calculate temporary vectorial force */
454             tx               = _mm256_mul_pd(fscal,dx30);
455             ty               = _mm256_mul_pd(fscal,dy30);
456             tz               = _mm256_mul_pd(fscal,dz30);
457
458             /* Update vectorial force */
459             fix3             = _mm256_add_pd(fix3,tx);
460             fiy3             = _mm256_add_pd(fiy3,ty);
461             fiz3             = _mm256_add_pd(fiz3,tz);
462
463             fjx0             = _mm256_add_pd(fjx0,tx);
464             fjy0             = _mm256_add_pd(fjy0,ty);
465             fjz0             = _mm256_add_pd(fjz0,tz);
466
467             fjptrA             = f+j_coord_offsetA;
468             fjptrB             = f+j_coord_offsetB;
469             fjptrC             = f+j_coord_offsetC;
470             fjptrD             = f+j_coord_offsetD;
471
472             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
473
474             /* Inner loop uses 182 flops */
475         }
476
477         if(jidx<j_index_end)
478         {
479
480             /* Get j neighbor index, and coordinate index */
481             jnrlistA         = jjnr[jidx];
482             jnrlistB         = jjnr[jidx+1];
483             jnrlistC         = jjnr[jidx+2];
484             jnrlistD         = jjnr[jidx+3];
485             /* Sign of each element will be negative for non-real atoms.
486              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
487              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
488              */
489             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
490
491             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
492             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
493             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
494
495             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
496             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
497             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
498             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
499             j_coord_offsetA  = DIM*jnrA;
500             j_coord_offsetB  = DIM*jnrB;
501             j_coord_offsetC  = DIM*jnrC;
502             j_coord_offsetD  = DIM*jnrD;
503
504             /* load j atom coordinates */
505             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
506                                                  x+j_coord_offsetC,x+j_coord_offsetD,
507                                                  &jx0,&jy0,&jz0);
508
509             /* Calculate displacement vector */
510             dx00             = _mm256_sub_pd(ix0,jx0);
511             dy00             = _mm256_sub_pd(iy0,jy0);
512             dz00             = _mm256_sub_pd(iz0,jz0);
513             dx10             = _mm256_sub_pd(ix1,jx0);
514             dy10             = _mm256_sub_pd(iy1,jy0);
515             dz10             = _mm256_sub_pd(iz1,jz0);
516             dx20             = _mm256_sub_pd(ix2,jx0);
517             dy20             = _mm256_sub_pd(iy2,jy0);
518             dz20             = _mm256_sub_pd(iz2,jz0);
519             dx30             = _mm256_sub_pd(ix3,jx0);
520             dy30             = _mm256_sub_pd(iy3,jy0);
521             dz30             = _mm256_sub_pd(iz3,jz0);
522
523             /* Calculate squared distance and things based on it */
524             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
525             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
526             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
527             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
528
529             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
530             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
531             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
532             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
533
534             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
535             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
536             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
537
538             /* Load parameters for j particles */
539             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
540                                                                  charge+jnrC+0,charge+jnrD+0);
541             vdwjidx0A        = 2*vdwtype[jnrA+0];
542             vdwjidx0B        = 2*vdwtype[jnrB+0];
543             vdwjidx0C        = 2*vdwtype[jnrC+0];
544             vdwjidx0D        = 2*vdwtype[jnrD+0];
545
546             fjx0             = _mm256_setzero_pd();
547             fjy0             = _mm256_setzero_pd();
548             fjz0             = _mm256_setzero_pd();
549
550             /**************************
551              * CALCULATE INTERACTIONS *
552              **************************/
553
554             r00              = _mm256_mul_pd(rsq00,rinv00);
555             r00              = _mm256_andnot_pd(dummy_mask,r00);
556
557             /* Compute parameters for interactions between i and j atoms */
558             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
559                                             vdwioffsetptr0+vdwjidx0B,
560                                             vdwioffsetptr0+vdwjidx0C,
561                                             vdwioffsetptr0+vdwjidx0D,
562                                             &c6_00,&c12_00);
563
564             /* Calculate table index by multiplying r with table scale and truncate to integer */
565             rt               = _mm256_mul_pd(r00,vftabscale);
566             vfitab           = _mm256_cvttpd_epi32(rt);
567             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
568             vfitab           = _mm_slli_epi32(vfitab,3);
569
570             /* CUBIC SPLINE TABLE DISPERSION */
571             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
572             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
573             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
574             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
575             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
576             Heps             = _mm256_mul_pd(vfeps,H);
577             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
578             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
579             vvdw6            = _mm256_mul_pd(c6_00,VV);
580             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
581             fvdw6            = _mm256_mul_pd(c6_00,FF);
582
583             /* CUBIC SPLINE TABLE REPULSION */
584             vfitab           = _mm_add_epi32(vfitab,ifour);
585             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
586             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
587             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
588             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
589             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
590             Heps             = _mm256_mul_pd(vfeps,H);
591             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
592             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
593             vvdw12           = _mm256_mul_pd(c12_00,VV);
594             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
595             fvdw12           = _mm256_mul_pd(c12_00,FF);
596             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
597             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
598
599             /* Update potential sum for this i atom from the interaction with this j atom. */
600             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
601             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
602
603             fscal            = fvdw;
604
605             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
606
607             /* Calculate temporary vectorial force */
608             tx               = _mm256_mul_pd(fscal,dx00);
609             ty               = _mm256_mul_pd(fscal,dy00);
610             tz               = _mm256_mul_pd(fscal,dz00);
611
612             /* Update vectorial force */
613             fix0             = _mm256_add_pd(fix0,tx);
614             fiy0             = _mm256_add_pd(fiy0,ty);
615             fiz0             = _mm256_add_pd(fiz0,tz);
616
617             fjx0             = _mm256_add_pd(fjx0,tx);
618             fjy0             = _mm256_add_pd(fjy0,ty);
619             fjz0             = _mm256_add_pd(fjz0,tz);
620
621             /**************************
622              * CALCULATE INTERACTIONS *
623              **************************/
624
625             r10              = _mm256_mul_pd(rsq10,rinv10);
626             r10              = _mm256_andnot_pd(dummy_mask,r10);
627
628             /* Compute parameters for interactions between i and j atoms */
629             qq10             = _mm256_mul_pd(iq1,jq0);
630
631             /* EWALD ELECTROSTATICS */
632
633             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
634             ewrt             = _mm256_mul_pd(r10,ewtabscale);
635             ewitab           = _mm256_cvttpd_epi32(ewrt);
636             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
637             ewitab           = _mm_slli_epi32(ewitab,2);
638             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
639             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
640             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
641             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
642             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
643             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
644             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
645             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
646             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
647
648             /* Update potential sum for this i atom from the interaction with this j atom. */
649             velec            = _mm256_andnot_pd(dummy_mask,velec);
650             velecsum         = _mm256_add_pd(velecsum,velec);
651
652             fscal            = felec;
653
654             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
655
656             /* Calculate temporary vectorial force */
657             tx               = _mm256_mul_pd(fscal,dx10);
658             ty               = _mm256_mul_pd(fscal,dy10);
659             tz               = _mm256_mul_pd(fscal,dz10);
660
661             /* Update vectorial force */
662             fix1             = _mm256_add_pd(fix1,tx);
663             fiy1             = _mm256_add_pd(fiy1,ty);
664             fiz1             = _mm256_add_pd(fiz1,tz);
665
666             fjx0             = _mm256_add_pd(fjx0,tx);
667             fjy0             = _mm256_add_pd(fjy0,ty);
668             fjz0             = _mm256_add_pd(fjz0,tz);
669
670             /**************************
671              * CALCULATE INTERACTIONS *
672              **************************/
673
674             r20              = _mm256_mul_pd(rsq20,rinv20);
675             r20              = _mm256_andnot_pd(dummy_mask,r20);
676
677             /* Compute parameters for interactions between i and j atoms */
678             qq20             = _mm256_mul_pd(iq2,jq0);
679
680             /* EWALD ELECTROSTATICS */
681
682             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
683             ewrt             = _mm256_mul_pd(r20,ewtabscale);
684             ewitab           = _mm256_cvttpd_epi32(ewrt);
685             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
686             ewitab           = _mm_slli_epi32(ewitab,2);
687             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
688             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
689             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
690             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
691             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
692             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
693             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
694             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
695             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
696
697             /* Update potential sum for this i atom from the interaction with this j atom. */
698             velec            = _mm256_andnot_pd(dummy_mask,velec);
699             velecsum         = _mm256_add_pd(velecsum,velec);
700
701             fscal            = felec;
702
703             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
704
705             /* Calculate temporary vectorial force */
706             tx               = _mm256_mul_pd(fscal,dx20);
707             ty               = _mm256_mul_pd(fscal,dy20);
708             tz               = _mm256_mul_pd(fscal,dz20);
709
710             /* Update vectorial force */
711             fix2             = _mm256_add_pd(fix2,tx);
712             fiy2             = _mm256_add_pd(fiy2,ty);
713             fiz2             = _mm256_add_pd(fiz2,tz);
714
715             fjx0             = _mm256_add_pd(fjx0,tx);
716             fjy0             = _mm256_add_pd(fjy0,ty);
717             fjz0             = _mm256_add_pd(fjz0,tz);
718
719             /**************************
720              * CALCULATE INTERACTIONS *
721              **************************/
722
723             r30              = _mm256_mul_pd(rsq30,rinv30);
724             r30              = _mm256_andnot_pd(dummy_mask,r30);
725
726             /* Compute parameters for interactions between i and j atoms */
727             qq30             = _mm256_mul_pd(iq3,jq0);
728
729             /* EWALD ELECTROSTATICS */
730
731             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
732             ewrt             = _mm256_mul_pd(r30,ewtabscale);
733             ewitab           = _mm256_cvttpd_epi32(ewrt);
734             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
735             ewitab           = _mm_slli_epi32(ewitab,2);
736             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
737             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
738             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
739             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
740             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
741             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
742             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
743             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
744             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
745
746             /* Update potential sum for this i atom from the interaction with this j atom. */
747             velec            = _mm256_andnot_pd(dummy_mask,velec);
748             velecsum         = _mm256_add_pd(velecsum,velec);
749
750             fscal            = felec;
751
752             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
753
754             /* Calculate temporary vectorial force */
755             tx               = _mm256_mul_pd(fscal,dx30);
756             ty               = _mm256_mul_pd(fscal,dy30);
757             tz               = _mm256_mul_pd(fscal,dz30);
758
759             /* Update vectorial force */
760             fix3             = _mm256_add_pd(fix3,tx);
761             fiy3             = _mm256_add_pd(fiy3,ty);
762             fiz3             = _mm256_add_pd(fiz3,tz);
763
764             fjx0             = _mm256_add_pd(fjx0,tx);
765             fjy0             = _mm256_add_pd(fjy0,ty);
766             fjz0             = _mm256_add_pd(fjz0,tz);
767
768             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
769             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
770             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
771             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
772
773             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
774
775             /* Inner loop uses 186 flops */
776         }
777
778         /* End of innermost loop */
779
780         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
781                                                  f+i_coord_offset,fshift+i_shift_offset);
782
783         ggid                        = gid[iidx];
784         /* Update potential energies */
785         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
786         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
787
788         /* Increment number of inner iterations */
789         inneriter                  += j_index_end - j_index_start;
790
791         /* Outer loop uses 26 flops */
792     }
793
794     /* Increment number of outer iterations */
795     outeriter        += nri;
796
797     /* Update outer/inner flops */
798
799     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*186);
800 }
801 /*
802  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_256_double
803  * Electrostatics interaction: Ewald
804  * VdW interaction:            CubicSplineTable
805  * Geometry:                   Water4-Particle
806  * Calculate force/pot:        Force
807  */
808 void
809 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_256_double
810                     (t_nblist                    * gmx_restrict       nlist,
811                      rvec                        * gmx_restrict          xx,
812                      rvec                        * gmx_restrict          ff,
813                      t_forcerec                  * gmx_restrict          fr,
814                      t_mdatoms                   * gmx_restrict     mdatoms,
815                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
816                      t_nrnb                      * gmx_restrict        nrnb)
817 {
818     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
819      * just 0 for non-waters.
820      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
821      * jnr indices corresponding to data put in the four positions in the SIMD register.
822      */
823     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
824     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
825     int              jnrA,jnrB,jnrC,jnrD;
826     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
827     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
828     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
829     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
830     real             rcutoff_scalar;
831     real             *shiftvec,*fshift,*x,*f;
832     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
833     real             scratch[4*DIM];
834     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
835     real *           vdwioffsetptr0;
836     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
837     real *           vdwioffsetptr1;
838     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
839     real *           vdwioffsetptr2;
840     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
841     real *           vdwioffsetptr3;
842     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
843     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
844     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
845     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
846     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
847     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
848     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
849     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
850     real             *charge;
851     int              nvdwtype;
852     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
853     int              *vdwtype;
854     real             *vdwparam;
855     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
856     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
857     __m128i          vfitab;
858     __m128i          ifour       = _mm_set1_epi32(4);
859     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
860     real             *vftab;
861     __m128i          ewitab;
862     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
863     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
864     real             *ewtab;
865     __m256d          dummy_mask,cutoff_mask;
866     __m128           tmpmask0,tmpmask1;
867     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
868     __m256d          one     = _mm256_set1_pd(1.0);
869     __m256d          two     = _mm256_set1_pd(2.0);
870     x                = xx[0];
871     f                = ff[0];
872
873     nri              = nlist->nri;
874     iinr             = nlist->iinr;
875     jindex           = nlist->jindex;
876     jjnr             = nlist->jjnr;
877     shiftidx         = nlist->shift;
878     gid              = nlist->gid;
879     shiftvec         = fr->shift_vec[0];
880     fshift           = fr->fshift[0];
881     facel            = _mm256_set1_pd(fr->epsfac);
882     charge           = mdatoms->chargeA;
883     nvdwtype         = fr->ntype;
884     vdwparam         = fr->nbfp;
885     vdwtype          = mdatoms->typeA;
886
887     vftab            = kernel_data->table_vdw->data;
888     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
889
890     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
891     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
892     beta2            = _mm256_mul_pd(beta,beta);
893     beta3            = _mm256_mul_pd(beta,beta2);
894
895     ewtab            = fr->ic->tabq_coul_F;
896     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
897     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
898
899     /* Setup water-specific parameters */
900     inr              = nlist->iinr[0];
901     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
902     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
903     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
904     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
905
906     /* Avoid stupid compiler warnings */
907     jnrA = jnrB = jnrC = jnrD = 0;
908     j_coord_offsetA = 0;
909     j_coord_offsetB = 0;
910     j_coord_offsetC = 0;
911     j_coord_offsetD = 0;
912
913     outeriter        = 0;
914     inneriter        = 0;
915
916     for(iidx=0;iidx<4*DIM;iidx++)
917     {
918         scratch[iidx] = 0.0;
919     }
920
921     /* Start outer loop over neighborlists */
922     for(iidx=0; iidx<nri; iidx++)
923     {
924         /* Load shift vector for this list */
925         i_shift_offset   = DIM*shiftidx[iidx];
926
927         /* Load limits for loop over neighbors */
928         j_index_start    = jindex[iidx];
929         j_index_end      = jindex[iidx+1];
930
931         /* Get outer coordinate index */
932         inr              = iinr[iidx];
933         i_coord_offset   = DIM*inr;
934
935         /* Load i particle coords and add shift vector */
936         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
937                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
938
939         fix0             = _mm256_setzero_pd();
940         fiy0             = _mm256_setzero_pd();
941         fiz0             = _mm256_setzero_pd();
942         fix1             = _mm256_setzero_pd();
943         fiy1             = _mm256_setzero_pd();
944         fiz1             = _mm256_setzero_pd();
945         fix2             = _mm256_setzero_pd();
946         fiy2             = _mm256_setzero_pd();
947         fiz2             = _mm256_setzero_pd();
948         fix3             = _mm256_setzero_pd();
949         fiy3             = _mm256_setzero_pd();
950         fiz3             = _mm256_setzero_pd();
951
952         /* Start inner kernel loop */
953         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
954         {
955
956             /* Get j neighbor index, and coordinate index */
957             jnrA             = jjnr[jidx];
958             jnrB             = jjnr[jidx+1];
959             jnrC             = jjnr[jidx+2];
960             jnrD             = jjnr[jidx+3];
961             j_coord_offsetA  = DIM*jnrA;
962             j_coord_offsetB  = DIM*jnrB;
963             j_coord_offsetC  = DIM*jnrC;
964             j_coord_offsetD  = DIM*jnrD;
965
966             /* load j atom coordinates */
967             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
968                                                  x+j_coord_offsetC,x+j_coord_offsetD,
969                                                  &jx0,&jy0,&jz0);
970
971             /* Calculate displacement vector */
972             dx00             = _mm256_sub_pd(ix0,jx0);
973             dy00             = _mm256_sub_pd(iy0,jy0);
974             dz00             = _mm256_sub_pd(iz0,jz0);
975             dx10             = _mm256_sub_pd(ix1,jx0);
976             dy10             = _mm256_sub_pd(iy1,jy0);
977             dz10             = _mm256_sub_pd(iz1,jz0);
978             dx20             = _mm256_sub_pd(ix2,jx0);
979             dy20             = _mm256_sub_pd(iy2,jy0);
980             dz20             = _mm256_sub_pd(iz2,jz0);
981             dx30             = _mm256_sub_pd(ix3,jx0);
982             dy30             = _mm256_sub_pd(iy3,jy0);
983             dz30             = _mm256_sub_pd(iz3,jz0);
984
985             /* Calculate squared distance and things based on it */
986             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
987             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
988             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
989             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
990
991             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
992             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
993             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
994             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
995
996             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
997             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
998             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
999
1000             /* Load parameters for j particles */
1001             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1002                                                                  charge+jnrC+0,charge+jnrD+0);
1003             vdwjidx0A        = 2*vdwtype[jnrA+0];
1004             vdwjidx0B        = 2*vdwtype[jnrB+0];
1005             vdwjidx0C        = 2*vdwtype[jnrC+0];
1006             vdwjidx0D        = 2*vdwtype[jnrD+0];
1007
1008             fjx0             = _mm256_setzero_pd();
1009             fjy0             = _mm256_setzero_pd();
1010             fjz0             = _mm256_setzero_pd();
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             r00              = _mm256_mul_pd(rsq00,rinv00);
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1020                                             vdwioffsetptr0+vdwjidx0B,
1021                                             vdwioffsetptr0+vdwjidx0C,
1022                                             vdwioffsetptr0+vdwjidx0D,
1023                                             &c6_00,&c12_00);
1024
1025             /* Calculate table index by multiplying r with table scale and truncate to integer */
1026             rt               = _mm256_mul_pd(r00,vftabscale);
1027             vfitab           = _mm256_cvttpd_epi32(rt);
1028             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1029             vfitab           = _mm_slli_epi32(vfitab,3);
1030
1031             /* CUBIC SPLINE TABLE DISPERSION */
1032             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1033             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1034             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1035             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1036             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1037             Heps             = _mm256_mul_pd(vfeps,H);
1038             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1039             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1040             fvdw6            = _mm256_mul_pd(c6_00,FF);
1041
1042             /* CUBIC SPLINE TABLE REPULSION */
1043             vfitab           = _mm_add_epi32(vfitab,ifour);
1044             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1045             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1046             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1047             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1048             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1049             Heps             = _mm256_mul_pd(vfeps,H);
1050             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1051             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1052             fvdw12           = _mm256_mul_pd(c12_00,FF);
1053             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1054
1055             fscal            = fvdw;
1056
1057             /* Calculate temporary vectorial force */
1058             tx               = _mm256_mul_pd(fscal,dx00);
1059             ty               = _mm256_mul_pd(fscal,dy00);
1060             tz               = _mm256_mul_pd(fscal,dz00);
1061
1062             /* Update vectorial force */
1063             fix0             = _mm256_add_pd(fix0,tx);
1064             fiy0             = _mm256_add_pd(fiy0,ty);
1065             fiz0             = _mm256_add_pd(fiz0,tz);
1066
1067             fjx0             = _mm256_add_pd(fjx0,tx);
1068             fjy0             = _mm256_add_pd(fjy0,ty);
1069             fjz0             = _mm256_add_pd(fjz0,tz);
1070
1071             /**************************
1072              * CALCULATE INTERACTIONS *
1073              **************************/
1074
1075             r10              = _mm256_mul_pd(rsq10,rinv10);
1076
1077             /* Compute parameters for interactions between i and j atoms */
1078             qq10             = _mm256_mul_pd(iq1,jq0);
1079
1080             /* EWALD ELECTROSTATICS */
1081
1082             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1083             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1084             ewitab           = _mm256_cvttpd_epi32(ewrt);
1085             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1086             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1087                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1088                                             &ewtabF,&ewtabFn);
1089             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1090             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1091
1092             fscal            = felec;
1093
1094             /* Calculate temporary vectorial force */
1095             tx               = _mm256_mul_pd(fscal,dx10);
1096             ty               = _mm256_mul_pd(fscal,dy10);
1097             tz               = _mm256_mul_pd(fscal,dz10);
1098
1099             /* Update vectorial force */
1100             fix1             = _mm256_add_pd(fix1,tx);
1101             fiy1             = _mm256_add_pd(fiy1,ty);
1102             fiz1             = _mm256_add_pd(fiz1,tz);
1103
1104             fjx0             = _mm256_add_pd(fjx0,tx);
1105             fjy0             = _mm256_add_pd(fjy0,ty);
1106             fjz0             = _mm256_add_pd(fjz0,tz);
1107
1108             /**************************
1109              * CALCULATE INTERACTIONS *
1110              **************************/
1111
1112             r20              = _mm256_mul_pd(rsq20,rinv20);
1113
1114             /* Compute parameters for interactions between i and j atoms */
1115             qq20             = _mm256_mul_pd(iq2,jq0);
1116
1117             /* EWALD ELECTROSTATICS */
1118
1119             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1120             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1121             ewitab           = _mm256_cvttpd_epi32(ewrt);
1122             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1123             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1124                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1125                                             &ewtabF,&ewtabFn);
1126             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1127             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1128
1129             fscal            = felec;
1130
1131             /* Calculate temporary vectorial force */
1132             tx               = _mm256_mul_pd(fscal,dx20);
1133             ty               = _mm256_mul_pd(fscal,dy20);
1134             tz               = _mm256_mul_pd(fscal,dz20);
1135
1136             /* Update vectorial force */
1137             fix2             = _mm256_add_pd(fix2,tx);
1138             fiy2             = _mm256_add_pd(fiy2,ty);
1139             fiz2             = _mm256_add_pd(fiz2,tz);
1140
1141             fjx0             = _mm256_add_pd(fjx0,tx);
1142             fjy0             = _mm256_add_pd(fjy0,ty);
1143             fjz0             = _mm256_add_pd(fjz0,tz);
1144
1145             /**************************
1146              * CALCULATE INTERACTIONS *
1147              **************************/
1148
1149             r30              = _mm256_mul_pd(rsq30,rinv30);
1150
1151             /* Compute parameters for interactions between i and j atoms */
1152             qq30             = _mm256_mul_pd(iq3,jq0);
1153
1154             /* EWALD ELECTROSTATICS */
1155
1156             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1157             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1158             ewitab           = _mm256_cvttpd_epi32(ewrt);
1159             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1160             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1161                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1162                                             &ewtabF,&ewtabFn);
1163             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1164             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1165
1166             fscal            = felec;
1167
1168             /* Calculate temporary vectorial force */
1169             tx               = _mm256_mul_pd(fscal,dx30);
1170             ty               = _mm256_mul_pd(fscal,dy30);
1171             tz               = _mm256_mul_pd(fscal,dz30);
1172
1173             /* Update vectorial force */
1174             fix3             = _mm256_add_pd(fix3,tx);
1175             fiy3             = _mm256_add_pd(fiy3,ty);
1176             fiz3             = _mm256_add_pd(fiz3,tz);
1177
1178             fjx0             = _mm256_add_pd(fjx0,tx);
1179             fjy0             = _mm256_add_pd(fjy0,ty);
1180             fjz0             = _mm256_add_pd(fjz0,tz);
1181
1182             fjptrA             = f+j_coord_offsetA;
1183             fjptrB             = f+j_coord_offsetB;
1184             fjptrC             = f+j_coord_offsetC;
1185             fjptrD             = f+j_coord_offsetD;
1186
1187             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1188
1189             /* Inner loop uses 159 flops */
1190         }
1191
1192         if(jidx<j_index_end)
1193         {
1194
1195             /* Get j neighbor index, and coordinate index */
1196             jnrlistA         = jjnr[jidx];
1197             jnrlistB         = jjnr[jidx+1];
1198             jnrlistC         = jjnr[jidx+2];
1199             jnrlistD         = jjnr[jidx+3];
1200             /* Sign of each element will be negative for non-real atoms.
1201              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1202              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1203              */
1204             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1205
1206             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1207             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1208             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1209
1210             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1211             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1212             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1213             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1214             j_coord_offsetA  = DIM*jnrA;
1215             j_coord_offsetB  = DIM*jnrB;
1216             j_coord_offsetC  = DIM*jnrC;
1217             j_coord_offsetD  = DIM*jnrD;
1218
1219             /* load j atom coordinates */
1220             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1221                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1222                                                  &jx0,&jy0,&jz0);
1223
1224             /* Calculate displacement vector */
1225             dx00             = _mm256_sub_pd(ix0,jx0);
1226             dy00             = _mm256_sub_pd(iy0,jy0);
1227             dz00             = _mm256_sub_pd(iz0,jz0);
1228             dx10             = _mm256_sub_pd(ix1,jx0);
1229             dy10             = _mm256_sub_pd(iy1,jy0);
1230             dz10             = _mm256_sub_pd(iz1,jz0);
1231             dx20             = _mm256_sub_pd(ix2,jx0);
1232             dy20             = _mm256_sub_pd(iy2,jy0);
1233             dz20             = _mm256_sub_pd(iz2,jz0);
1234             dx30             = _mm256_sub_pd(ix3,jx0);
1235             dy30             = _mm256_sub_pd(iy3,jy0);
1236             dz30             = _mm256_sub_pd(iz3,jz0);
1237
1238             /* Calculate squared distance and things based on it */
1239             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1240             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1241             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1242             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1243
1244             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1245             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1246             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1247             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1248
1249             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1250             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1251             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1252
1253             /* Load parameters for j particles */
1254             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1255                                                                  charge+jnrC+0,charge+jnrD+0);
1256             vdwjidx0A        = 2*vdwtype[jnrA+0];
1257             vdwjidx0B        = 2*vdwtype[jnrB+0];
1258             vdwjidx0C        = 2*vdwtype[jnrC+0];
1259             vdwjidx0D        = 2*vdwtype[jnrD+0];
1260
1261             fjx0             = _mm256_setzero_pd();
1262             fjy0             = _mm256_setzero_pd();
1263             fjz0             = _mm256_setzero_pd();
1264
1265             /**************************
1266              * CALCULATE INTERACTIONS *
1267              **************************/
1268
1269             r00              = _mm256_mul_pd(rsq00,rinv00);
1270             r00              = _mm256_andnot_pd(dummy_mask,r00);
1271
1272             /* Compute parameters for interactions between i and j atoms */
1273             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1274                                             vdwioffsetptr0+vdwjidx0B,
1275                                             vdwioffsetptr0+vdwjidx0C,
1276                                             vdwioffsetptr0+vdwjidx0D,
1277                                             &c6_00,&c12_00);
1278
1279             /* Calculate table index by multiplying r with table scale and truncate to integer */
1280             rt               = _mm256_mul_pd(r00,vftabscale);
1281             vfitab           = _mm256_cvttpd_epi32(rt);
1282             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1283             vfitab           = _mm_slli_epi32(vfitab,3);
1284
1285             /* CUBIC SPLINE TABLE DISPERSION */
1286             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1287             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1288             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1289             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1290             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1291             Heps             = _mm256_mul_pd(vfeps,H);
1292             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1293             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1294             fvdw6            = _mm256_mul_pd(c6_00,FF);
1295
1296             /* CUBIC SPLINE TABLE REPULSION */
1297             vfitab           = _mm_add_epi32(vfitab,ifour);
1298             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1299             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1300             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1301             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1302             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1303             Heps             = _mm256_mul_pd(vfeps,H);
1304             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1305             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1306             fvdw12           = _mm256_mul_pd(c12_00,FF);
1307             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1308
1309             fscal            = fvdw;
1310
1311             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1312
1313             /* Calculate temporary vectorial force */
1314             tx               = _mm256_mul_pd(fscal,dx00);
1315             ty               = _mm256_mul_pd(fscal,dy00);
1316             tz               = _mm256_mul_pd(fscal,dz00);
1317
1318             /* Update vectorial force */
1319             fix0             = _mm256_add_pd(fix0,tx);
1320             fiy0             = _mm256_add_pd(fiy0,ty);
1321             fiz0             = _mm256_add_pd(fiz0,tz);
1322
1323             fjx0             = _mm256_add_pd(fjx0,tx);
1324             fjy0             = _mm256_add_pd(fjy0,ty);
1325             fjz0             = _mm256_add_pd(fjz0,tz);
1326
1327             /**************************
1328              * CALCULATE INTERACTIONS *
1329              **************************/
1330
1331             r10              = _mm256_mul_pd(rsq10,rinv10);
1332             r10              = _mm256_andnot_pd(dummy_mask,r10);
1333
1334             /* Compute parameters for interactions between i and j atoms */
1335             qq10             = _mm256_mul_pd(iq1,jq0);
1336
1337             /* EWALD ELECTROSTATICS */
1338
1339             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1340             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1341             ewitab           = _mm256_cvttpd_epi32(ewrt);
1342             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1343             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1344                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1345                                             &ewtabF,&ewtabFn);
1346             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1347             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1348
1349             fscal            = felec;
1350
1351             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1352
1353             /* Calculate temporary vectorial force */
1354             tx               = _mm256_mul_pd(fscal,dx10);
1355             ty               = _mm256_mul_pd(fscal,dy10);
1356             tz               = _mm256_mul_pd(fscal,dz10);
1357
1358             /* Update vectorial force */
1359             fix1             = _mm256_add_pd(fix1,tx);
1360             fiy1             = _mm256_add_pd(fiy1,ty);
1361             fiz1             = _mm256_add_pd(fiz1,tz);
1362
1363             fjx0             = _mm256_add_pd(fjx0,tx);
1364             fjy0             = _mm256_add_pd(fjy0,ty);
1365             fjz0             = _mm256_add_pd(fjz0,tz);
1366
1367             /**************************
1368              * CALCULATE INTERACTIONS *
1369              **************************/
1370
1371             r20              = _mm256_mul_pd(rsq20,rinv20);
1372             r20              = _mm256_andnot_pd(dummy_mask,r20);
1373
1374             /* Compute parameters for interactions between i and j atoms */
1375             qq20             = _mm256_mul_pd(iq2,jq0);
1376
1377             /* EWALD ELECTROSTATICS */
1378
1379             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1380             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1381             ewitab           = _mm256_cvttpd_epi32(ewrt);
1382             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1383             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1384                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1385                                             &ewtabF,&ewtabFn);
1386             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1387             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1388
1389             fscal            = felec;
1390
1391             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1392
1393             /* Calculate temporary vectorial force */
1394             tx               = _mm256_mul_pd(fscal,dx20);
1395             ty               = _mm256_mul_pd(fscal,dy20);
1396             tz               = _mm256_mul_pd(fscal,dz20);
1397
1398             /* Update vectorial force */
1399             fix2             = _mm256_add_pd(fix2,tx);
1400             fiy2             = _mm256_add_pd(fiy2,ty);
1401             fiz2             = _mm256_add_pd(fiz2,tz);
1402
1403             fjx0             = _mm256_add_pd(fjx0,tx);
1404             fjy0             = _mm256_add_pd(fjy0,ty);
1405             fjz0             = _mm256_add_pd(fjz0,tz);
1406
1407             /**************************
1408              * CALCULATE INTERACTIONS *
1409              **************************/
1410
1411             r30              = _mm256_mul_pd(rsq30,rinv30);
1412             r30              = _mm256_andnot_pd(dummy_mask,r30);
1413
1414             /* Compute parameters for interactions between i and j atoms */
1415             qq30             = _mm256_mul_pd(iq3,jq0);
1416
1417             /* EWALD ELECTROSTATICS */
1418
1419             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1420             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1421             ewitab           = _mm256_cvttpd_epi32(ewrt);
1422             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1423             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1424                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1425                                             &ewtabF,&ewtabFn);
1426             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1427             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1428
1429             fscal            = felec;
1430
1431             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1432
1433             /* Calculate temporary vectorial force */
1434             tx               = _mm256_mul_pd(fscal,dx30);
1435             ty               = _mm256_mul_pd(fscal,dy30);
1436             tz               = _mm256_mul_pd(fscal,dz30);
1437
1438             /* Update vectorial force */
1439             fix3             = _mm256_add_pd(fix3,tx);
1440             fiy3             = _mm256_add_pd(fiy3,ty);
1441             fiz3             = _mm256_add_pd(fiz3,tz);
1442
1443             fjx0             = _mm256_add_pd(fjx0,tx);
1444             fjy0             = _mm256_add_pd(fjy0,ty);
1445             fjz0             = _mm256_add_pd(fjz0,tz);
1446
1447             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1448             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1449             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1450             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1451
1452             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1453
1454             /* Inner loop uses 163 flops */
1455         }
1456
1457         /* End of innermost loop */
1458
1459         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1460                                                  f+i_coord_offset,fshift+i_shift_offset);
1461
1462         /* Increment number of inner iterations */
1463         inneriter                  += j_index_end - j_index_start;
1464
1465         /* Outer loop uses 24 flops */
1466     }
1467
1468     /* Increment number of outer iterations */
1469     outeriter        += nri;
1470
1471     /* Update outer/inner flops */
1472
1473     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*163);
1474 }