Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwCSTab_GeomW3W3_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Water3
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
79     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
80     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
81     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
82     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
83     __m256d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
84     __m256d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
85     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
86     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
87     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
88     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
89     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
90     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128i          ewitab;
104     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
106     real             *ewtab;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
131
132     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
133     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
134     beta2            = _mm256_mul_pd(beta,beta);
135     beta3            = _mm256_mul_pd(beta,beta2);
136
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
144     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
145     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
146     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
147
148     jq0              = _mm256_set1_pd(charge[inr+0]);
149     jq1              = _mm256_set1_pd(charge[inr+1]);
150     jq2              = _mm256_set1_pd(charge[inr+2]);
151     vdwjidx0A        = 2*vdwtype[inr+0];
152     qq00             = _mm256_mul_pd(iq0,jq0);
153     c6_00            = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A]);
154     c12_00           = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A+1]);
155     qq01             = _mm256_mul_pd(iq0,jq1);
156     qq02             = _mm256_mul_pd(iq0,jq2);
157     qq10             = _mm256_mul_pd(iq1,jq0);
158     qq11             = _mm256_mul_pd(iq1,jq1);
159     qq12             = _mm256_mul_pd(iq1,jq2);
160     qq20             = _mm256_mul_pd(iq2,jq0);
161     qq21             = _mm256_mul_pd(iq2,jq1);
162     qq22             = _mm256_mul_pd(iq2,jq2);
163
164     /* Avoid stupid compiler warnings */
165     jnrA = jnrB = jnrC = jnrD = 0;
166     j_coord_offsetA = 0;
167     j_coord_offsetB = 0;
168     j_coord_offsetC = 0;
169     j_coord_offsetD = 0;
170
171     outeriter        = 0;
172     inneriter        = 0;
173
174     for(iidx=0;iidx<4*DIM;iidx++)
175     {
176         scratch[iidx] = 0.0;
177     }
178
179     /* Start outer loop over neighborlists */
180     for(iidx=0; iidx<nri; iidx++)
181     {
182         /* Load shift vector for this list */
183         i_shift_offset   = DIM*shiftidx[iidx];
184
185         /* Load limits for loop over neighbors */
186         j_index_start    = jindex[iidx];
187         j_index_end      = jindex[iidx+1];
188
189         /* Get outer coordinate index */
190         inr              = iinr[iidx];
191         i_coord_offset   = DIM*inr;
192
193         /* Load i particle coords and add shift vector */
194         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
195                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
196
197         fix0             = _mm256_setzero_pd();
198         fiy0             = _mm256_setzero_pd();
199         fiz0             = _mm256_setzero_pd();
200         fix1             = _mm256_setzero_pd();
201         fiy1             = _mm256_setzero_pd();
202         fiz1             = _mm256_setzero_pd();
203         fix2             = _mm256_setzero_pd();
204         fiy2             = _mm256_setzero_pd();
205         fiz2             = _mm256_setzero_pd();
206
207         /* Reset potential sums */
208         velecsum         = _mm256_setzero_pd();
209         vvdwsum          = _mm256_setzero_pd();
210
211         /* Start inner kernel loop */
212         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
213         {
214
215             /* Get j neighbor index, and coordinate index */
216             jnrA             = jjnr[jidx];
217             jnrB             = jjnr[jidx+1];
218             jnrC             = jjnr[jidx+2];
219             jnrD             = jjnr[jidx+3];
220             j_coord_offsetA  = DIM*jnrA;
221             j_coord_offsetB  = DIM*jnrB;
222             j_coord_offsetC  = DIM*jnrC;
223             j_coord_offsetD  = DIM*jnrD;
224
225             /* load j atom coordinates */
226             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
227                                                  x+j_coord_offsetC,x+j_coord_offsetD,
228                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
229
230             /* Calculate displacement vector */
231             dx00             = _mm256_sub_pd(ix0,jx0);
232             dy00             = _mm256_sub_pd(iy0,jy0);
233             dz00             = _mm256_sub_pd(iz0,jz0);
234             dx01             = _mm256_sub_pd(ix0,jx1);
235             dy01             = _mm256_sub_pd(iy0,jy1);
236             dz01             = _mm256_sub_pd(iz0,jz1);
237             dx02             = _mm256_sub_pd(ix0,jx2);
238             dy02             = _mm256_sub_pd(iy0,jy2);
239             dz02             = _mm256_sub_pd(iz0,jz2);
240             dx10             = _mm256_sub_pd(ix1,jx0);
241             dy10             = _mm256_sub_pd(iy1,jy0);
242             dz10             = _mm256_sub_pd(iz1,jz0);
243             dx11             = _mm256_sub_pd(ix1,jx1);
244             dy11             = _mm256_sub_pd(iy1,jy1);
245             dz11             = _mm256_sub_pd(iz1,jz1);
246             dx12             = _mm256_sub_pd(ix1,jx2);
247             dy12             = _mm256_sub_pd(iy1,jy2);
248             dz12             = _mm256_sub_pd(iz1,jz2);
249             dx20             = _mm256_sub_pd(ix2,jx0);
250             dy20             = _mm256_sub_pd(iy2,jy0);
251             dz20             = _mm256_sub_pd(iz2,jz0);
252             dx21             = _mm256_sub_pd(ix2,jx1);
253             dy21             = _mm256_sub_pd(iy2,jy1);
254             dz21             = _mm256_sub_pd(iz2,jz1);
255             dx22             = _mm256_sub_pd(ix2,jx2);
256             dy22             = _mm256_sub_pd(iy2,jy2);
257             dz22             = _mm256_sub_pd(iz2,jz2);
258
259             /* Calculate squared distance and things based on it */
260             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
261             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
262             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
263             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
264             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
265             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
266             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
267             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
268             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
269
270             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
271             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
272             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
273             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
274             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
275             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
276             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
277             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
278             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
279
280             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
281             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
282             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
283             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
284             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
285             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
286             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
287             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
288             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
289
290             fjx0             = _mm256_setzero_pd();
291             fjy0             = _mm256_setzero_pd();
292             fjz0             = _mm256_setzero_pd();
293             fjx1             = _mm256_setzero_pd();
294             fjy1             = _mm256_setzero_pd();
295             fjz1             = _mm256_setzero_pd();
296             fjx2             = _mm256_setzero_pd();
297             fjy2             = _mm256_setzero_pd();
298             fjz2             = _mm256_setzero_pd();
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r00              = _mm256_mul_pd(rsq00,rinv00);
305
306             /* Calculate table index by multiplying r with table scale and truncate to integer */
307             rt               = _mm256_mul_pd(r00,vftabscale);
308             vfitab           = _mm256_cvttpd_epi32(rt);
309             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
310             vfitab           = _mm_slli_epi32(vfitab,3);
311
312             /* EWALD ELECTROSTATICS */
313
314             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
315             ewrt             = _mm256_mul_pd(r00,ewtabscale);
316             ewitab           = _mm256_cvttpd_epi32(ewrt);
317             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
318             ewitab           = _mm_slli_epi32(ewitab,2);
319             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
320             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
321             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
322             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
323             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
324             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
325             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
326             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
327             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
328
329             /* CUBIC SPLINE TABLE DISPERSION */
330             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
331             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
332             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
333             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
334             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
335             Heps             = _mm256_mul_pd(vfeps,H);
336             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
337             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
338             vvdw6            = _mm256_mul_pd(c6_00,VV);
339             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
340             fvdw6            = _mm256_mul_pd(c6_00,FF);
341
342             /* CUBIC SPLINE TABLE REPULSION */
343             vfitab           = _mm_add_epi32(vfitab,ifour);
344             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
345             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
346             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
347             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
348             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
349             Heps             = _mm256_mul_pd(vfeps,H);
350             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
351             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
352             vvdw12           = _mm256_mul_pd(c12_00,VV);
353             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
354             fvdw12           = _mm256_mul_pd(c12_00,FF);
355             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
356             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
357
358             /* Update potential sum for this i atom from the interaction with this j atom. */
359             velecsum         = _mm256_add_pd(velecsum,velec);
360             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
361
362             fscal            = _mm256_add_pd(felec,fvdw);
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm256_mul_pd(fscal,dx00);
366             ty               = _mm256_mul_pd(fscal,dy00);
367             tz               = _mm256_mul_pd(fscal,dz00);
368
369             /* Update vectorial force */
370             fix0             = _mm256_add_pd(fix0,tx);
371             fiy0             = _mm256_add_pd(fiy0,ty);
372             fiz0             = _mm256_add_pd(fiz0,tz);
373
374             fjx0             = _mm256_add_pd(fjx0,tx);
375             fjy0             = _mm256_add_pd(fjy0,ty);
376             fjz0             = _mm256_add_pd(fjz0,tz);
377
378             /**************************
379              * CALCULATE INTERACTIONS *
380              **************************/
381
382             r01              = _mm256_mul_pd(rsq01,rinv01);
383
384             /* EWALD ELECTROSTATICS */
385
386             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
387             ewrt             = _mm256_mul_pd(r01,ewtabscale);
388             ewitab           = _mm256_cvttpd_epi32(ewrt);
389             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
390             ewitab           = _mm_slli_epi32(ewitab,2);
391             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
392             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
393             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
394             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
395             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
396             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
397             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
398             velec            = _mm256_mul_pd(qq01,_mm256_sub_pd(rinv01,velec));
399             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
400
401             /* Update potential sum for this i atom from the interaction with this j atom. */
402             velecsum         = _mm256_add_pd(velecsum,velec);
403
404             fscal            = felec;
405
406             /* Calculate temporary vectorial force */
407             tx               = _mm256_mul_pd(fscal,dx01);
408             ty               = _mm256_mul_pd(fscal,dy01);
409             tz               = _mm256_mul_pd(fscal,dz01);
410
411             /* Update vectorial force */
412             fix0             = _mm256_add_pd(fix0,tx);
413             fiy0             = _mm256_add_pd(fiy0,ty);
414             fiz0             = _mm256_add_pd(fiz0,tz);
415
416             fjx1             = _mm256_add_pd(fjx1,tx);
417             fjy1             = _mm256_add_pd(fjy1,ty);
418             fjz1             = _mm256_add_pd(fjz1,tz);
419
420             /**************************
421              * CALCULATE INTERACTIONS *
422              **************************/
423
424             r02              = _mm256_mul_pd(rsq02,rinv02);
425
426             /* EWALD ELECTROSTATICS */
427
428             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
429             ewrt             = _mm256_mul_pd(r02,ewtabscale);
430             ewitab           = _mm256_cvttpd_epi32(ewrt);
431             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
432             ewitab           = _mm_slli_epi32(ewitab,2);
433             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
434             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
435             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
436             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
437             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
438             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
439             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
440             velec            = _mm256_mul_pd(qq02,_mm256_sub_pd(rinv02,velec));
441             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
442
443             /* Update potential sum for this i atom from the interaction with this j atom. */
444             velecsum         = _mm256_add_pd(velecsum,velec);
445
446             fscal            = felec;
447
448             /* Calculate temporary vectorial force */
449             tx               = _mm256_mul_pd(fscal,dx02);
450             ty               = _mm256_mul_pd(fscal,dy02);
451             tz               = _mm256_mul_pd(fscal,dz02);
452
453             /* Update vectorial force */
454             fix0             = _mm256_add_pd(fix0,tx);
455             fiy0             = _mm256_add_pd(fiy0,ty);
456             fiz0             = _mm256_add_pd(fiz0,tz);
457
458             fjx2             = _mm256_add_pd(fjx2,tx);
459             fjy2             = _mm256_add_pd(fjy2,ty);
460             fjz2             = _mm256_add_pd(fjz2,tz);
461
462             /**************************
463              * CALCULATE INTERACTIONS *
464              **************************/
465
466             r10              = _mm256_mul_pd(rsq10,rinv10);
467
468             /* EWALD ELECTROSTATICS */
469
470             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
471             ewrt             = _mm256_mul_pd(r10,ewtabscale);
472             ewitab           = _mm256_cvttpd_epi32(ewrt);
473             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
474             ewitab           = _mm_slli_epi32(ewitab,2);
475             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
476             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
477             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
478             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
479             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
480             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
481             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
482             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
483             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
484
485             /* Update potential sum for this i atom from the interaction with this j atom. */
486             velecsum         = _mm256_add_pd(velecsum,velec);
487
488             fscal            = felec;
489
490             /* Calculate temporary vectorial force */
491             tx               = _mm256_mul_pd(fscal,dx10);
492             ty               = _mm256_mul_pd(fscal,dy10);
493             tz               = _mm256_mul_pd(fscal,dz10);
494
495             /* Update vectorial force */
496             fix1             = _mm256_add_pd(fix1,tx);
497             fiy1             = _mm256_add_pd(fiy1,ty);
498             fiz1             = _mm256_add_pd(fiz1,tz);
499
500             fjx0             = _mm256_add_pd(fjx0,tx);
501             fjy0             = _mm256_add_pd(fjy0,ty);
502             fjz0             = _mm256_add_pd(fjz0,tz);
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             r11              = _mm256_mul_pd(rsq11,rinv11);
509
510             /* EWALD ELECTROSTATICS */
511
512             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
513             ewrt             = _mm256_mul_pd(r11,ewtabscale);
514             ewitab           = _mm256_cvttpd_epi32(ewrt);
515             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
516             ewitab           = _mm_slli_epi32(ewitab,2);
517             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
518             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
519             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
520             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
521             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
522             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
523             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
524             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(rinv11,velec));
525             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             velecsum         = _mm256_add_pd(velecsum,velec);
529
530             fscal            = felec;
531
532             /* Calculate temporary vectorial force */
533             tx               = _mm256_mul_pd(fscal,dx11);
534             ty               = _mm256_mul_pd(fscal,dy11);
535             tz               = _mm256_mul_pd(fscal,dz11);
536
537             /* Update vectorial force */
538             fix1             = _mm256_add_pd(fix1,tx);
539             fiy1             = _mm256_add_pd(fiy1,ty);
540             fiz1             = _mm256_add_pd(fiz1,tz);
541
542             fjx1             = _mm256_add_pd(fjx1,tx);
543             fjy1             = _mm256_add_pd(fjy1,ty);
544             fjz1             = _mm256_add_pd(fjz1,tz);
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             r12              = _mm256_mul_pd(rsq12,rinv12);
551
552             /* EWALD ELECTROSTATICS */
553
554             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
555             ewrt             = _mm256_mul_pd(r12,ewtabscale);
556             ewitab           = _mm256_cvttpd_epi32(ewrt);
557             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
558             ewitab           = _mm_slli_epi32(ewitab,2);
559             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
560             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
561             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
562             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
563             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
564             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
565             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
566             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(rinv12,velec));
567             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
568
569             /* Update potential sum for this i atom from the interaction with this j atom. */
570             velecsum         = _mm256_add_pd(velecsum,velec);
571
572             fscal            = felec;
573
574             /* Calculate temporary vectorial force */
575             tx               = _mm256_mul_pd(fscal,dx12);
576             ty               = _mm256_mul_pd(fscal,dy12);
577             tz               = _mm256_mul_pd(fscal,dz12);
578
579             /* Update vectorial force */
580             fix1             = _mm256_add_pd(fix1,tx);
581             fiy1             = _mm256_add_pd(fiy1,ty);
582             fiz1             = _mm256_add_pd(fiz1,tz);
583
584             fjx2             = _mm256_add_pd(fjx2,tx);
585             fjy2             = _mm256_add_pd(fjy2,ty);
586             fjz2             = _mm256_add_pd(fjz2,tz);
587
588             /**************************
589              * CALCULATE INTERACTIONS *
590              **************************/
591
592             r20              = _mm256_mul_pd(rsq20,rinv20);
593
594             /* EWALD ELECTROSTATICS */
595
596             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
597             ewrt             = _mm256_mul_pd(r20,ewtabscale);
598             ewitab           = _mm256_cvttpd_epi32(ewrt);
599             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
600             ewitab           = _mm_slli_epi32(ewitab,2);
601             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
602             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
603             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
604             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
605             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
606             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
607             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
608             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
609             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
610
611             /* Update potential sum for this i atom from the interaction with this j atom. */
612             velecsum         = _mm256_add_pd(velecsum,velec);
613
614             fscal            = felec;
615
616             /* Calculate temporary vectorial force */
617             tx               = _mm256_mul_pd(fscal,dx20);
618             ty               = _mm256_mul_pd(fscal,dy20);
619             tz               = _mm256_mul_pd(fscal,dz20);
620
621             /* Update vectorial force */
622             fix2             = _mm256_add_pd(fix2,tx);
623             fiy2             = _mm256_add_pd(fiy2,ty);
624             fiz2             = _mm256_add_pd(fiz2,tz);
625
626             fjx0             = _mm256_add_pd(fjx0,tx);
627             fjy0             = _mm256_add_pd(fjy0,ty);
628             fjz0             = _mm256_add_pd(fjz0,tz);
629
630             /**************************
631              * CALCULATE INTERACTIONS *
632              **************************/
633
634             r21              = _mm256_mul_pd(rsq21,rinv21);
635
636             /* EWALD ELECTROSTATICS */
637
638             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
639             ewrt             = _mm256_mul_pd(r21,ewtabscale);
640             ewitab           = _mm256_cvttpd_epi32(ewrt);
641             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
642             ewitab           = _mm_slli_epi32(ewitab,2);
643             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
644             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
645             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
646             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
647             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
648             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
649             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
650             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(rinv21,velec));
651             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
652
653             /* Update potential sum for this i atom from the interaction with this j atom. */
654             velecsum         = _mm256_add_pd(velecsum,velec);
655
656             fscal            = felec;
657
658             /* Calculate temporary vectorial force */
659             tx               = _mm256_mul_pd(fscal,dx21);
660             ty               = _mm256_mul_pd(fscal,dy21);
661             tz               = _mm256_mul_pd(fscal,dz21);
662
663             /* Update vectorial force */
664             fix2             = _mm256_add_pd(fix2,tx);
665             fiy2             = _mm256_add_pd(fiy2,ty);
666             fiz2             = _mm256_add_pd(fiz2,tz);
667
668             fjx1             = _mm256_add_pd(fjx1,tx);
669             fjy1             = _mm256_add_pd(fjy1,ty);
670             fjz1             = _mm256_add_pd(fjz1,tz);
671
672             /**************************
673              * CALCULATE INTERACTIONS *
674              **************************/
675
676             r22              = _mm256_mul_pd(rsq22,rinv22);
677
678             /* EWALD ELECTROSTATICS */
679
680             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
681             ewrt             = _mm256_mul_pd(r22,ewtabscale);
682             ewitab           = _mm256_cvttpd_epi32(ewrt);
683             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
684             ewitab           = _mm_slli_epi32(ewitab,2);
685             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
686             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
687             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
688             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
689             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
690             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
691             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
692             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(rinv22,velec));
693             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
694
695             /* Update potential sum for this i atom from the interaction with this j atom. */
696             velecsum         = _mm256_add_pd(velecsum,velec);
697
698             fscal            = felec;
699
700             /* Calculate temporary vectorial force */
701             tx               = _mm256_mul_pd(fscal,dx22);
702             ty               = _mm256_mul_pd(fscal,dy22);
703             tz               = _mm256_mul_pd(fscal,dz22);
704
705             /* Update vectorial force */
706             fix2             = _mm256_add_pd(fix2,tx);
707             fiy2             = _mm256_add_pd(fiy2,ty);
708             fiz2             = _mm256_add_pd(fiz2,tz);
709
710             fjx2             = _mm256_add_pd(fjx2,tx);
711             fjy2             = _mm256_add_pd(fjy2,ty);
712             fjz2             = _mm256_add_pd(fjz2,tz);
713
714             fjptrA             = f+j_coord_offsetA;
715             fjptrB             = f+j_coord_offsetB;
716             fjptrC             = f+j_coord_offsetC;
717             fjptrD             = f+j_coord_offsetD;
718
719             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
720                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
721
722             /* Inner loop uses 403 flops */
723         }
724
725         if(jidx<j_index_end)
726         {
727
728             /* Get j neighbor index, and coordinate index */
729             jnrlistA         = jjnr[jidx];
730             jnrlistB         = jjnr[jidx+1];
731             jnrlistC         = jjnr[jidx+2];
732             jnrlistD         = jjnr[jidx+3];
733             /* Sign of each element will be negative for non-real atoms.
734              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
735              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
736              */
737             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
738
739             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
740             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
741             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
742
743             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
744             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
745             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
746             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
747             j_coord_offsetA  = DIM*jnrA;
748             j_coord_offsetB  = DIM*jnrB;
749             j_coord_offsetC  = DIM*jnrC;
750             j_coord_offsetD  = DIM*jnrD;
751
752             /* load j atom coordinates */
753             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
754                                                  x+j_coord_offsetC,x+j_coord_offsetD,
755                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
756
757             /* Calculate displacement vector */
758             dx00             = _mm256_sub_pd(ix0,jx0);
759             dy00             = _mm256_sub_pd(iy0,jy0);
760             dz00             = _mm256_sub_pd(iz0,jz0);
761             dx01             = _mm256_sub_pd(ix0,jx1);
762             dy01             = _mm256_sub_pd(iy0,jy1);
763             dz01             = _mm256_sub_pd(iz0,jz1);
764             dx02             = _mm256_sub_pd(ix0,jx2);
765             dy02             = _mm256_sub_pd(iy0,jy2);
766             dz02             = _mm256_sub_pd(iz0,jz2);
767             dx10             = _mm256_sub_pd(ix1,jx0);
768             dy10             = _mm256_sub_pd(iy1,jy0);
769             dz10             = _mm256_sub_pd(iz1,jz0);
770             dx11             = _mm256_sub_pd(ix1,jx1);
771             dy11             = _mm256_sub_pd(iy1,jy1);
772             dz11             = _mm256_sub_pd(iz1,jz1);
773             dx12             = _mm256_sub_pd(ix1,jx2);
774             dy12             = _mm256_sub_pd(iy1,jy2);
775             dz12             = _mm256_sub_pd(iz1,jz2);
776             dx20             = _mm256_sub_pd(ix2,jx0);
777             dy20             = _mm256_sub_pd(iy2,jy0);
778             dz20             = _mm256_sub_pd(iz2,jz0);
779             dx21             = _mm256_sub_pd(ix2,jx1);
780             dy21             = _mm256_sub_pd(iy2,jy1);
781             dz21             = _mm256_sub_pd(iz2,jz1);
782             dx22             = _mm256_sub_pd(ix2,jx2);
783             dy22             = _mm256_sub_pd(iy2,jy2);
784             dz22             = _mm256_sub_pd(iz2,jz2);
785
786             /* Calculate squared distance and things based on it */
787             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
788             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
789             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
790             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
791             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
792             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
793             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
794             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
795             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
796
797             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
798             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
799             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
800             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
801             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
802             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
803             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
804             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
805             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
806
807             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
808             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
809             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
810             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
811             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
812             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
813             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
814             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
815             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
816
817             fjx0             = _mm256_setzero_pd();
818             fjy0             = _mm256_setzero_pd();
819             fjz0             = _mm256_setzero_pd();
820             fjx1             = _mm256_setzero_pd();
821             fjy1             = _mm256_setzero_pd();
822             fjz1             = _mm256_setzero_pd();
823             fjx2             = _mm256_setzero_pd();
824             fjy2             = _mm256_setzero_pd();
825             fjz2             = _mm256_setzero_pd();
826
827             /**************************
828              * CALCULATE INTERACTIONS *
829              **************************/
830
831             r00              = _mm256_mul_pd(rsq00,rinv00);
832             r00              = _mm256_andnot_pd(dummy_mask,r00);
833
834             /* Calculate table index by multiplying r with table scale and truncate to integer */
835             rt               = _mm256_mul_pd(r00,vftabscale);
836             vfitab           = _mm256_cvttpd_epi32(rt);
837             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
838             vfitab           = _mm_slli_epi32(vfitab,3);
839
840             /* EWALD ELECTROSTATICS */
841
842             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
843             ewrt             = _mm256_mul_pd(r00,ewtabscale);
844             ewitab           = _mm256_cvttpd_epi32(ewrt);
845             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
846             ewitab           = _mm_slli_epi32(ewitab,2);
847             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
848             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
849             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
850             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
851             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
852             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
853             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
854             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
855             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
856
857             /* CUBIC SPLINE TABLE DISPERSION */
858             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
859             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
860             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
861             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
862             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
863             Heps             = _mm256_mul_pd(vfeps,H);
864             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
865             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
866             vvdw6            = _mm256_mul_pd(c6_00,VV);
867             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
868             fvdw6            = _mm256_mul_pd(c6_00,FF);
869
870             /* CUBIC SPLINE TABLE REPULSION */
871             vfitab           = _mm_add_epi32(vfitab,ifour);
872             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
873             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
874             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
875             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
876             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
877             Heps             = _mm256_mul_pd(vfeps,H);
878             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
879             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
880             vvdw12           = _mm256_mul_pd(c12_00,VV);
881             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
882             fvdw12           = _mm256_mul_pd(c12_00,FF);
883             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
884             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
885
886             /* Update potential sum for this i atom from the interaction with this j atom. */
887             velec            = _mm256_andnot_pd(dummy_mask,velec);
888             velecsum         = _mm256_add_pd(velecsum,velec);
889             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
890             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
891
892             fscal            = _mm256_add_pd(felec,fvdw);
893
894             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
895
896             /* Calculate temporary vectorial force */
897             tx               = _mm256_mul_pd(fscal,dx00);
898             ty               = _mm256_mul_pd(fscal,dy00);
899             tz               = _mm256_mul_pd(fscal,dz00);
900
901             /* Update vectorial force */
902             fix0             = _mm256_add_pd(fix0,tx);
903             fiy0             = _mm256_add_pd(fiy0,ty);
904             fiz0             = _mm256_add_pd(fiz0,tz);
905
906             fjx0             = _mm256_add_pd(fjx0,tx);
907             fjy0             = _mm256_add_pd(fjy0,ty);
908             fjz0             = _mm256_add_pd(fjz0,tz);
909
910             /**************************
911              * CALCULATE INTERACTIONS *
912              **************************/
913
914             r01              = _mm256_mul_pd(rsq01,rinv01);
915             r01              = _mm256_andnot_pd(dummy_mask,r01);
916
917             /* EWALD ELECTROSTATICS */
918
919             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
920             ewrt             = _mm256_mul_pd(r01,ewtabscale);
921             ewitab           = _mm256_cvttpd_epi32(ewrt);
922             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
923             ewitab           = _mm_slli_epi32(ewitab,2);
924             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
925             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
926             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
927             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
928             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
929             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
930             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
931             velec            = _mm256_mul_pd(qq01,_mm256_sub_pd(rinv01,velec));
932             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
933
934             /* Update potential sum for this i atom from the interaction with this j atom. */
935             velec            = _mm256_andnot_pd(dummy_mask,velec);
936             velecsum         = _mm256_add_pd(velecsum,velec);
937
938             fscal            = felec;
939
940             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
941
942             /* Calculate temporary vectorial force */
943             tx               = _mm256_mul_pd(fscal,dx01);
944             ty               = _mm256_mul_pd(fscal,dy01);
945             tz               = _mm256_mul_pd(fscal,dz01);
946
947             /* Update vectorial force */
948             fix0             = _mm256_add_pd(fix0,tx);
949             fiy0             = _mm256_add_pd(fiy0,ty);
950             fiz0             = _mm256_add_pd(fiz0,tz);
951
952             fjx1             = _mm256_add_pd(fjx1,tx);
953             fjy1             = _mm256_add_pd(fjy1,ty);
954             fjz1             = _mm256_add_pd(fjz1,tz);
955
956             /**************************
957              * CALCULATE INTERACTIONS *
958              **************************/
959
960             r02              = _mm256_mul_pd(rsq02,rinv02);
961             r02              = _mm256_andnot_pd(dummy_mask,r02);
962
963             /* EWALD ELECTROSTATICS */
964
965             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
966             ewrt             = _mm256_mul_pd(r02,ewtabscale);
967             ewitab           = _mm256_cvttpd_epi32(ewrt);
968             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
969             ewitab           = _mm_slli_epi32(ewitab,2);
970             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
971             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
972             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
973             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
974             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
975             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
976             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
977             velec            = _mm256_mul_pd(qq02,_mm256_sub_pd(rinv02,velec));
978             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
979
980             /* Update potential sum for this i atom from the interaction with this j atom. */
981             velec            = _mm256_andnot_pd(dummy_mask,velec);
982             velecsum         = _mm256_add_pd(velecsum,velec);
983
984             fscal            = felec;
985
986             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
987
988             /* Calculate temporary vectorial force */
989             tx               = _mm256_mul_pd(fscal,dx02);
990             ty               = _mm256_mul_pd(fscal,dy02);
991             tz               = _mm256_mul_pd(fscal,dz02);
992
993             /* Update vectorial force */
994             fix0             = _mm256_add_pd(fix0,tx);
995             fiy0             = _mm256_add_pd(fiy0,ty);
996             fiz0             = _mm256_add_pd(fiz0,tz);
997
998             fjx2             = _mm256_add_pd(fjx2,tx);
999             fjy2             = _mm256_add_pd(fjy2,ty);
1000             fjz2             = _mm256_add_pd(fjz2,tz);
1001
1002             /**************************
1003              * CALCULATE INTERACTIONS *
1004              **************************/
1005
1006             r10              = _mm256_mul_pd(rsq10,rinv10);
1007             r10              = _mm256_andnot_pd(dummy_mask,r10);
1008
1009             /* EWALD ELECTROSTATICS */
1010
1011             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1012             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1013             ewitab           = _mm256_cvttpd_epi32(ewrt);
1014             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1015             ewitab           = _mm_slli_epi32(ewitab,2);
1016             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1017             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1018             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1019             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1020             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1021             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1022             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1023             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
1024             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1025
1026             /* Update potential sum for this i atom from the interaction with this j atom. */
1027             velec            = _mm256_andnot_pd(dummy_mask,velec);
1028             velecsum         = _mm256_add_pd(velecsum,velec);
1029
1030             fscal            = felec;
1031
1032             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1033
1034             /* Calculate temporary vectorial force */
1035             tx               = _mm256_mul_pd(fscal,dx10);
1036             ty               = _mm256_mul_pd(fscal,dy10);
1037             tz               = _mm256_mul_pd(fscal,dz10);
1038
1039             /* Update vectorial force */
1040             fix1             = _mm256_add_pd(fix1,tx);
1041             fiy1             = _mm256_add_pd(fiy1,ty);
1042             fiz1             = _mm256_add_pd(fiz1,tz);
1043
1044             fjx0             = _mm256_add_pd(fjx0,tx);
1045             fjy0             = _mm256_add_pd(fjy0,ty);
1046             fjz0             = _mm256_add_pd(fjz0,tz);
1047
1048             /**************************
1049              * CALCULATE INTERACTIONS *
1050              **************************/
1051
1052             r11              = _mm256_mul_pd(rsq11,rinv11);
1053             r11              = _mm256_andnot_pd(dummy_mask,r11);
1054
1055             /* EWALD ELECTROSTATICS */
1056
1057             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1058             ewrt             = _mm256_mul_pd(r11,ewtabscale);
1059             ewitab           = _mm256_cvttpd_epi32(ewrt);
1060             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1061             ewitab           = _mm_slli_epi32(ewitab,2);
1062             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1063             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1064             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1065             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1066             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1067             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1068             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1069             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(rinv11,velec));
1070             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1071
1072             /* Update potential sum for this i atom from the interaction with this j atom. */
1073             velec            = _mm256_andnot_pd(dummy_mask,velec);
1074             velecsum         = _mm256_add_pd(velecsum,velec);
1075
1076             fscal            = felec;
1077
1078             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1079
1080             /* Calculate temporary vectorial force */
1081             tx               = _mm256_mul_pd(fscal,dx11);
1082             ty               = _mm256_mul_pd(fscal,dy11);
1083             tz               = _mm256_mul_pd(fscal,dz11);
1084
1085             /* Update vectorial force */
1086             fix1             = _mm256_add_pd(fix1,tx);
1087             fiy1             = _mm256_add_pd(fiy1,ty);
1088             fiz1             = _mm256_add_pd(fiz1,tz);
1089
1090             fjx1             = _mm256_add_pd(fjx1,tx);
1091             fjy1             = _mm256_add_pd(fjy1,ty);
1092             fjz1             = _mm256_add_pd(fjz1,tz);
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             r12              = _mm256_mul_pd(rsq12,rinv12);
1099             r12              = _mm256_andnot_pd(dummy_mask,r12);
1100
1101             /* EWALD ELECTROSTATICS */
1102
1103             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1104             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1105             ewitab           = _mm256_cvttpd_epi32(ewrt);
1106             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1107             ewitab           = _mm_slli_epi32(ewitab,2);
1108             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1109             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1110             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1111             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1112             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1113             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1114             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1115             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(rinv12,velec));
1116             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1117
1118             /* Update potential sum for this i atom from the interaction with this j atom. */
1119             velec            = _mm256_andnot_pd(dummy_mask,velec);
1120             velecsum         = _mm256_add_pd(velecsum,velec);
1121
1122             fscal            = felec;
1123
1124             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1125
1126             /* Calculate temporary vectorial force */
1127             tx               = _mm256_mul_pd(fscal,dx12);
1128             ty               = _mm256_mul_pd(fscal,dy12);
1129             tz               = _mm256_mul_pd(fscal,dz12);
1130
1131             /* Update vectorial force */
1132             fix1             = _mm256_add_pd(fix1,tx);
1133             fiy1             = _mm256_add_pd(fiy1,ty);
1134             fiz1             = _mm256_add_pd(fiz1,tz);
1135
1136             fjx2             = _mm256_add_pd(fjx2,tx);
1137             fjy2             = _mm256_add_pd(fjy2,ty);
1138             fjz2             = _mm256_add_pd(fjz2,tz);
1139
1140             /**************************
1141              * CALCULATE INTERACTIONS *
1142              **************************/
1143
1144             r20              = _mm256_mul_pd(rsq20,rinv20);
1145             r20              = _mm256_andnot_pd(dummy_mask,r20);
1146
1147             /* EWALD ELECTROSTATICS */
1148
1149             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1150             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1151             ewitab           = _mm256_cvttpd_epi32(ewrt);
1152             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1153             ewitab           = _mm_slli_epi32(ewitab,2);
1154             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1155             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1156             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1157             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1158             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1159             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1160             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1161             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
1162             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1163
1164             /* Update potential sum for this i atom from the interaction with this j atom. */
1165             velec            = _mm256_andnot_pd(dummy_mask,velec);
1166             velecsum         = _mm256_add_pd(velecsum,velec);
1167
1168             fscal            = felec;
1169
1170             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1171
1172             /* Calculate temporary vectorial force */
1173             tx               = _mm256_mul_pd(fscal,dx20);
1174             ty               = _mm256_mul_pd(fscal,dy20);
1175             tz               = _mm256_mul_pd(fscal,dz20);
1176
1177             /* Update vectorial force */
1178             fix2             = _mm256_add_pd(fix2,tx);
1179             fiy2             = _mm256_add_pd(fiy2,ty);
1180             fiz2             = _mm256_add_pd(fiz2,tz);
1181
1182             fjx0             = _mm256_add_pd(fjx0,tx);
1183             fjy0             = _mm256_add_pd(fjy0,ty);
1184             fjz0             = _mm256_add_pd(fjz0,tz);
1185
1186             /**************************
1187              * CALCULATE INTERACTIONS *
1188              **************************/
1189
1190             r21              = _mm256_mul_pd(rsq21,rinv21);
1191             r21              = _mm256_andnot_pd(dummy_mask,r21);
1192
1193             /* EWALD ELECTROSTATICS */
1194
1195             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1196             ewrt             = _mm256_mul_pd(r21,ewtabscale);
1197             ewitab           = _mm256_cvttpd_epi32(ewrt);
1198             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1199             ewitab           = _mm_slli_epi32(ewitab,2);
1200             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1201             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1202             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1203             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1204             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1205             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1206             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1207             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(rinv21,velec));
1208             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
1209
1210             /* Update potential sum for this i atom from the interaction with this j atom. */
1211             velec            = _mm256_andnot_pd(dummy_mask,velec);
1212             velecsum         = _mm256_add_pd(velecsum,velec);
1213
1214             fscal            = felec;
1215
1216             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1217
1218             /* Calculate temporary vectorial force */
1219             tx               = _mm256_mul_pd(fscal,dx21);
1220             ty               = _mm256_mul_pd(fscal,dy21);
1221             tz               = _mm256_mul_pd(fscal,dz21);
1222
1223             /* Update vectorial force */
1224             fix2             = _mm256_add_pd(fix2,tx);
1225             fiy2             = _mm256_add_pd(fiy2,ty);
1226             fiz2             = _mm256_add_pd(fiz2,tz);
1227
1228             fjx1             = _mm256_add_pd(fjx1,tx);
1229             fjy1             = _mm256_add_pd(fjy1,ty);
1230             fjz1             = _mm256_add_pd(fjz1,tz);
1231
1232             /**************************
1233              * CALCULATE INTERACTIONS *
1234              **************************/
1235
1236             r22              = _mm256_mul_pd(rsq22,rinv22);
1237             r22              = _mm256_andnot_pd(dummy_mask,r22);
1238
1239             /* EWALD ELECTROSTATICS */
1240
1241             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1242             ewrt             = _mm256_mul_pd(r22,ewtabscale);
1243             ewitab           = _mm256_cvttpd_epi32(ewrt);
1244             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1245             ewitab           = _mm_slli_epi32(ewitab,2);
1246             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1247             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1248             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1249             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1250             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1251             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1252             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1253             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(rinv22,velec));
1254             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
1255
1256             /* Update potential sum for this i atom from the interaction with this j atom. */
1257             velec            = _mm256_andnot_pd(dummy_mask,velec);
1258             velecsum         = _mm256_add_pd(velecsum,velec);
1259
1260             fscal            = felec;
1261
1262             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1263
1264             /* Calculate temporary vectorial force */
1265             tx               = _mm256_mul_pd(fscal,dx22);
1266             ty               = _mm256_mul_pd(fscal,dy22);
1267             tz               = _mm256_mul_pd(fscal,dz22);
1268
1269             /* Update vectorial force */
1270             fix2             = _mm256_add_pd(fix2,tx);
1271             fiy2             = _mm256_add_pd(fiy2,ty);
1272             fiz2             = _mm256_add_pd(fiz2,tz);
1273
1274             fjx2             = _mm256_add_pd(fjx2,tx);
1275             fjy2             = _mm256_add_pd(fjy2,ty);
1276             fjz2             = _mm256_add_pd(fjz2,tz);
1277
1278             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1279             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1280             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1281             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1282
1283             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
1284                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1285
1286             /* Inner loop uses 412 flops */
1287         }
1288
1289         /* End of innermost loop */
1290
1291         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1292                                                  f+i_coord_offset,fshift+i_shift_offset);
1293
1294         ggid                        = gid[iidx];
1295         /* Update potential energies */
1296         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1297         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1298
1299         /* Increment number of inner iterations */
1300         inneriter                  += j_index_end - j_index_start;
1301
1302         /* Outer loop uses 20 flops */
1303     }
1304
1305     /* Increment number of outer iterations */
1306     outeriter        += nri;
1307
1308     /* Update outer/inner flops */
1309
1310     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*412);
1311 }
1312 /*
1313  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_avx_256_double
1314  * Electrostatics interaction: Ewald
1315  * VdW interaction:            CubicSplineTable
1316  * Geometry:                   Water3-Water3
1317  * Calculate force/pot:        Force
1318  */
1319 void
1320 nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_avx_256_double
1321                     (t_nblist * gmx_restrict                nlist,
1322                      rvec * gmx_restrict                    xx,
1323                      rvec * gmx_restrict                    ff,
1324                      t_forcerec * gmx_restrict              fr,
1325                      t_mdatoms * gmx_restrict               mdatoms,
1326                      nb_kernel_data_t * gmx_restrict        kernel_data,
1327                      t_nrnb * gmx_restrict                  nrnb)
1328 {
1329     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1330      * just 0 for non-waters.
1331      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
1332      * jnr indices corresponding to data put in the four positions in the SIMD register.
1333      */
1334     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1335     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1336     int              jnrA,jnrB,jnrC,jnrD;
1337     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1338     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
1339     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1340     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1341     real             rcutoff_scalar;
1342     real             *shiftvec,*fshift,*x,*f;
1343     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1344     real             scratch[4*DIM];
1345     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1346     real *           vdwioffsetptr0;
1347     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1348     real *           vdwioffsetptr1;
1349     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1350     real *           vdwioffsetptr2;
1351     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1352     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
1353     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1354     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1355     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1356     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1357     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1358     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1359     __m256d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1360     __m256d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1361     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1362     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1363     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1364     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1365     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1366     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1367     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
1368     real             *charge;
1369     int              nvdwtype;
1370     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1371     int              *vdwtype;
1372     real             *vdwparam;
1373     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
1374     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
1375     __m128i          vfitab;
1376     __m128i          ifour       = _mm_set1_epi32(4);
1377     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
1378     real             *vftab;
1379     __m128i          ewitab;
1380     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1381     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
1382     real             *ewtab;
1383     __m256d          dummy_mask,cutoff_mask;
1384     __m128           tmpmask0,tmpmask1;
1385     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
1386     __m256d          one     = _mm256_set1_pd(1.0);
1387     __m256d          two     = _mm256_set1_pd(2.0);
1388     x                = xx[0];
1389     f                = ff[0];
1390
1391     nri              = nlist->nri;
1392     iinr             = nlist->iinr;
1393     jindex           = nlist->jindex;
1394     jjnr             = nlist->jjnr;
1395     shiftidx         = nlist->shift;
1396     gid              = nlist->gid;
1397     shiftvec         = fr->shift_vec[0];
1398     fshift           = fr->fshift[0];
1399     facel            = _mm256_set1_pd(fr->epsfac);
1400     charge           = mdatoms->chargeA;
1401     nvdwtype         = fr->ntype;
1402     vdwparam         = fr->nbfp;
1403     vdwtype          = mdatoms->typeA;
1404
1405     vftab            = kernel_data->table_vdw->data;
1406     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
1407
1408     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
1409     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
1410     beta2            = _mm256_mul_pd(beta,beta);
1411     beta3            = _mm256_mul_pd(beta,beta2);
1412
1413     ewtab            = fr->ic->tabq_coul_F;
1414     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
1415     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
1416
1417     /* Setup water-specific parameters */
1418     inr              = nlist->iinr[0];
1419     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
1420     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
1421     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
1422     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
1423
1424     jq0              = _mm256_set1_pd(charge[inr+0]);
1425     jq1              = _mm256_set1_pd(charge[inr+1]);
1426     jq2              = _mm256_set1_pd(charge[inr+2]);
1427     vdwjidx0A        = 2*vdwtype[inr+0];
1428     qq00             = _mm256_mul_pd(iq0,jq0);
1429     c6_00            = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A]);
1430     c12_00           = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A+1]);
1431     qq01             = _mm256_mul_pd(iq0,jq1);
1432     qq02             = _mm256_mul_pd(iq0,jq2);
1433     qq10             = _mm256_mul_pd(iq1,jq0);
1434     qq11             = _mm256_mul_pd(iq1,jq1);
1435     qq12             = _mm256_mul_pd(iq1,jq2);
1436     qq20             = _mm256_mul_pd(iq2,jq0);
1437     qq21             = _mm256_mul_pd(iq2,jq1);
1438     qq22             = _mm256_mul_pd(iq2,jq2);
1439
1440     /* Avoid stupid compiler warnings */
1441     jnrA = jnrB = jnrC = jnrD = 0;
1442     j_coord_offsetA = 0;
1443     j_coord_offsetB = 0;
1444     j_coord_offsetC = 0;
1445     j_coord_offsetD = 0;
1446
1447     outeriter        = 0;
1448     inneriter        = 0;
1449
1450     for(iidx=0;iidx<4*DIM;iidx++)
1451     {
1452         scratch[iidx] = 0.0;
1453     }
1454
1455     /* Start outer loop over neighborlists */
1456     for(iidx=0; iidx<nri; iidx++)
1457     {
1458         /* Load shift vector for this list */
1459         i_shift_offset   = DIM*shiftidx[iidx];
1460
1461         /* Load limits for loop over neighbors */
1462         j_index_start    = jindex[iidx];
1463         j_index_end      = jindex[iidx+1];
1464
1465         /* Get outer coordinate index */
1466         inr              = iinr[iidx];
1467         i_coord_offset   = DIM*inr;
1468
1469         /* Load i particle coords and add shift vector */
1470         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1471                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1472
1473         fix0             = _mm256_setzero_pd();
1474         fiy0             = _mm256_setzero_pd();
1475         fiz0             = _mm256_setzero_pd();
1476         fix1             = _mm256_setzero_pd();
1477         fiy1             = _mm256_setzero_pd();
1478         fiz1             = _mm256_setzero_pd();
1479         fix2             = _mm256_setzero_pd();
1480         fiy2             = _mm256_setzero_pd();
1481         fiz2             = _mm256_setzero_pd();
1482
1483         /* Start inner kernel loop */
1484         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1485         {
1486
1487             /* Get j neighbor index, and coordinate index */
1488             jnrA             = jjnr[jidx];
1489             jnrB             = jjnr[jidx+1];
1490             jnrC             = jjnr[jidx+2];
1491             jnrD             = jjnr[jidx+3];
1492             j_coord_offsetA  = DIM*jnrA;
1493             j_coord_offsetB  = DIM*jnrB;
1494             j_coord_offsetC  = DIM*jnrC;
1495             j_coord_offsetD  = DIM*jnrD;
1496
1497             /* load j atom coordinates */
1498             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1499                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1500                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1501
1502             /* Calculate displacement vector */
1503             dx00             = _mm256_sub_pd(ix0,jx0);
1504             dy00             = _mm256_sub_pd(iy0,jy0);
1505             dz00             = _mm256_sub_pd(iz0,jz0);
1506             dx01             = _mm256_sub_pd(ix0,jx1);
1507             dy01             = _mm256_sub_pd(iy0,jy1);
1508             dz01             = _mm256_sub_pd(iz0,jz1);
1509             dx02             = _mm256_sub_pd(ix0,jx2);
1510             dy02             = _mm256_sub_pd(iy0,jy2);
1511             dz02             = _mm256_sub_pd(iz0,jz2);
1512             dx10             = _mm256_sub_pd(ix1,jx0);
1513             dy10             = _mm256_sub_pd(iy1,jy0);
1514             dz10             = _mm256_sub_pd(iz1,jz0);
1515             dx11             = _mm256_sub_pd(ix1,jx1);
1516             dy11             = _mm256_sub_pd(iy1,jy1);
1517             dz11             = _mm256_sub_pd(iz1,jz1);
1518             dx12             = _mm256_sub_pd(ix1,jx2);
1519             dy12             = _mm256_sub_pd(iy1,jy2);
1520             dz12             = _mm256_sub_pd(iz1,jz2);
1521             dx20             = _mm256_sub_pd(ix2,jx0);
1522             dy20             = _mm256_sub_pd(iy2,jy0);
1523             dz20             = _mm256_sub_pd(iz2,jz0);
1524             dx21             = _mm256_sub_pd(ix2,jx1);
1525             dy21             = _mm256_sub_pd(iy2,jy1);
1526             dz21             = _mm256_sub_pd(iz2,jz1);
1527             dx22             = _mm256_sub_pd(ix2,jx2);
1528             dy22             = _mm256_sub_pd(iy2,jy2);
1529             dz22             = _mm256_sub_pd(iz2,jz2);
1530
1531             /* Calculate squared distance and things based on it */
1532             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1533             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
1534             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
1535             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1536             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
1537             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
1538             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1539             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
1540             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
1541
1542             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1543             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
1544             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
1545             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1546             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
1547             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
1548             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1549             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
1550             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
1551
1552             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1553             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
1554             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
1555             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1556             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
1557             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
1558             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1559             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
1560             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
1561
1562             fjx0             = _mm256_setzero_pd();
1563             fjy0             = _mm256_setzero_pd();
1564             fjz0             = _mm256_setzero_pd();
1565             fjx1             = _mm256_setzero_pd();
1566             fjy1             = _mm256_setzero_pd();
1567             fjz1             = _mm256_setzero_pd();
1568             fjx2             = _mm256_setzero_pd();
1569             fjy2             = _mm256_setzero_pd();
1570             fjz2             = _mm256_setzero_pd();
1571
1572             /**************************
1573              * CALCULATE INTERACTIONS *
1574              **************************/
1575
1576             r00              = _mm256_mul_pd(rsq00,rinv00);
1577
1578             /* Calculate table index by multiplying r with table scale and truncate to integer */
1579             rt               = _mm256_mul_pd(r00,vftabscale);
1580             vfitab           = _mm256_cvttpd_epi32(rt);
1581             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1582             vfitab           = _mm_slli_epi32(vfitab,3);
1583
1584             /* EWALD ELECTROSTATICS */
1585
1586             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1587             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1588             ewitab           = _mm256_cvttpd_epi32(ewrt);
1589             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1590             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1591                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1592                                             &ewtabF,&ewtabFn);
1593             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1594             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1595
1596             /* CUBIC SPLINE TABLE DISPERSION */
1597             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1598             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1599             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1600             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1601             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1602             Heps             = _mm256_mul_pd(vfeps,H);
1603             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1604             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1605             fvdw6            = _mm256_mul_pd(c6_00,FF);
1606
1607             /* CUBIC SPLINE TABLE REPULSION */
1608             vfitab           = _mm_add_epi32(vfitab,ifour);
1609             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1610             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1611             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1612             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1613             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1614             Heps             = _mm256_mul_pd(vfeps,H);
1615             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1616             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1617             fvdw12           = _mm256_mul_pd(c12_00,FF);
1618             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1619
1620             fscal            = _mm256_add_pd(felec,fvdw);
1621
1622             /* Calculate temporary vectorial force */
1623             tx               = _mm256_mul_pd(fscal,dx00);
1624             ty               = _mm256_mul_pd(fscal,dy00);
1625             tz               = _mm256_mul_pd(fscal,dz00);
1626
1627             /* Update vectorial force */
1628             fix0             = _mm256_add_pd(fix0,tx);
1629             fiy0             = _mm256_add_pd(fiy0,ty);
1630             fiz0             = _mm256_add_pd(fiz0,tz);
1631
1632             fjx0             = _mm256_add_pd(fjx0,tx);
1633             fjy0             = _mm256_add_pd(fjy0,ty);
1634             fjz0             = _mm256_add_pd(fjz0,tz);
1635
1636             /**************************
1637              * CALCULATE INTERACTIONS *
1638              **************************/
1639
1640             r01              = _mm256_mul_pd(rsq01,rinv01);
1641
1642             /* EWALD ELECTROSTATICS */
1643
1644             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1645             ewrt             = _mm256_mul_pd(r01,ewtabscale);
1646             ewitab           = _mm256_cvttpd_epi32(ewrt);
1647             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1648             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1649                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1650                                             &ewtabF,&ewtabFn);
1651             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1652             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
1653
1654             fscal            = felec;
1655
1656             /* Calculate temporary vectorial force */
1657             tx               = _mm256_mul_pd(fscal,dx01);
1658             ty               = _mm256_mul_pd(fscal,dy01);
1659             tz               = _mm256_mul_pd(fscal,dz01);
1660
1661             /* Update vectorial force */
1662             fix0             = _mm256_add_pd(fix0,tx);
1663             fiy0             = _mm256_add_pd(fiy0,ty);
1664             fiz0             = _mm256_add_pd(fiz0,tz);
1665
1666             fjx1             = _mm256_add_pd(fjx1,tx);
1667             fjy1             = _mm256_add_pd(fjy1,ty);
1668             fjz1             = _mm256_add_pd(fjz1,tz);
1669
1670             /**************************
1671              * CALCULATE INTERACTIONS *
1672              **************************/
1673
1674             r02              = _mm256_mul_pd(rsq02,rinv02);
1675
1676             /* EWALD ELECTROSTATICS */
1677
1678             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1679             ewrt             = _mm256_mul_pd(r02,ewtabscale);
1680             ewitab           = _mm256_cvttpd_epi32(ewrt);
1681             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1682             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1683                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1684                                             &ewtabF,&ewtabFn);
1685             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1686             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
1687
1688             fscal            = felec;
1689
1690             /* Calculate temporary vectorial force */
1691             tx               = _mm256_mul_pd(fscal,dx02);
1692             ty               = _mm256_mul_pd(fscal,dy02);
1693             tz               = _mm256_mul_pd(fscal,dz02);
1694
1695             /* Update vectorial force */
1696             fix0             = _mm256_add_pd(fix0,tx);
1697             fiy0             = _mm256_add_pd(fiy0,ty);
1698             fiz0             = _mm256_add_pd(fiz0,tz);
1699
1700             fjx2             = _mm256_add_pd(fjx2,tx);
1701             fjy2             = _mm256_add_pd(fjy2,ty);
1702             fjz2             = _mm256_add_pd(fjz2,tz);
1703
1704             /**************************
1705              * CALCULATE INTERACTIONS *
1706              **************************/
1707
1708             r10              = _mm256_mul_pd(rsq10,rinv10);
1709
1710             /* EWALD ELECTROSTATICS */
1711
1712             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1713             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1714             ewitab           = _mm256_cvttpd_epi32(ewrt);
1715             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1716             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1717                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1718                                             &ewtabF,&ewtabFn);
1719             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1720             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1721
1722             fscal            = felec;
1723
1724             /* Calculate temporary vectorial force */
1725             tx               = _mm256_mul_pd(fscal,dx10);
1726             ty               = _mm256_mul_pd(fscal,dy10);
1727             tz               = _mm256_mul_pd(fscal,dz10);
1728
1729             /* Update vectorial force */
1730             fix1             = _mm256_add_pd(fix1,tx);
1731             fiy1             = _mm256_add_pd(fiy1,ty);
1732             fiz1             = _mm256_add_pd(fiz1,tz);
1733
1734             fjx0             = _mm256_add_pd(fjx0,tx);
1735             fjy0             = _mm256_add_pd(fjy0,ty);
1736             fjz0             = _mm256_add_pd(fjz0,tz);
1737
1738             /**************************
1739              * CALCULATE INTERACTIONS *
1740              **************************/
1741
1742             r11              = _mm256_mul_pd(rsq11,rinv11);
1743
1744             /* EWALD ELECTROSTATICS */
1745
1746             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1747             ewrt             = _mm256_mul_pd(r11,ewtabscale);
1748             ewitab           = _mm256_cvttpd_epi32(ewrt);
1749             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1750             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1751                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1752                                             &ewtabF,&ewtabFn);
1753             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1754             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1755
1756             fscal            = felec;
1757
1758             /* Calculate temporary vectorial force */
1759             tx               = _mm256_mul_pd(fscal,dx11);
1760             ty               = _mm256_mul_pd(fscal,dy11);
1761             tz               = _mm256_mul_pd(fscal,dz11);
1762
1763             /* Update vectorial force */
1764             fix1             = _mm256_add_pd(fix1,tx);
1765             fiy1             = _mm256_add_pd(fiy1,ty);
1766             fiz1             = _mm256_add_pd(fiz1,tz);
1767
1768             fjx1             = _mm256_add_pd(fjx1,tx);
1769             fjy1             = _mm256_add_pd(fjy1,ty);
1770             fjz1             = _mm256_add_pd(fjz1,tz);
1771
1772             /**************************
1773              * CALCULATE INTERACTIONS *
1774              **************************/
1775
1776             r12              = _mm256_mul_pd(rsq12,rinv12);
1777
1778             /* EWALD ELECTROSTATICS */
1779
1780             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1781             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1782             ewitab           = _mm256_cvttpd_epi32(ewrt);
1783             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1784             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1785                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1786                                             &ewtabF,&ewtabFn);
1787             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1788             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1789
1790             fscal            = felec;
1791
1792             /* Calculate temporary vectorial force */
1793             tx               = _mm256_mul_pd(fscal,dx12);
1794             ty               = _mm256_mul_pd(fscal,dy12);
1795             tz               = _mm256_mul_pd(fscal,dz12);
1796
1797             /* Update vectorial force */
1798             fix1             = _mm256_add_pd(fix1,tx);
1799             fiy1             = _mm256_add_pd(fiy1,ty);
1800             fiz1             = _mm256_add_pd(fiz1,tz);
1801
1802             fjx2             = _mm256_add_pd(fjx2,tx);
1803             fjy2             = _mm256_add_pd(fjy2,ty);
1804             fjz2             = _mm256_add_pd(fjz2,tz);
1805
1806             /**************************
1807              * CALCULATE INTERACTIONS *
1808              **************************/
1809
1810             r20              = _mm256_mul_pd(rsq20,rinv20);
1811
1812             /* EWALD ELECTROSTATICS */
1813
1814             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1815             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1816             ewitab           = _mm256_cvttpd_epi32(ewrt);
1817             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1818             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1819                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1820                                             &ewtabF,&ewtabFn);
1821             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1822             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1823
1824             fscal            = felec;
1825
1826             /* Calculate temporary vectorial force */
1827             tx               = _mm256_mul_pd(fscal,dx20);
1828             ty               = _mm256_mul_pd(fscal,dy20);
1829             tz               = _mm256_mul_pd(fscal,dz20);
1830
1831             /* Update vectorial force */
1832             fix2             = _mm256_add_pd(fix2,tx);
1833             fiy2             = _mm256_add_pd(fiy2,ty);
1834             fiz2             = _mm256_add_pd(fiz2,tz);
1835
1836             fjx0             = _mm256_add_pd(fjx0,tx);
1837             fjy0             = _mm256_add_pd(fjy0,ty);
1838             fjz0             = _mm256_add_pd(fjz0,tz);
1839
1840             /**************************
1841              * CALCULATE INTERACTIONS *
1842              **************************/
1843
1844             r21              = _mm256_mul_pd(rsq21,rinv21);
1845
1846             /* EWALD ELECTROSTATICS */
1847
1848             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1849             ewrt             = _mm256_mul_pd(r21,ewtabscale);
1850             ewitab           = _mm256_cvttpd_epi32(ewrt);
1851             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1852             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1853                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1854                                             &ewtabF,&ewtabFn);
1855             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1856             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
1857
1858             fscal            = felec;
1859
1860             /* Calculate temporary vectorial force */
1861             tx               = _mm256_mul_pd(fscal,dx21);
1862             ty               = _mm256_mul_pd(fscal,dy21);
1863             tz               = _mm256_mul_pd(fscal,dz21);
1864
1865             /* Update vectorial force */
1866             fix2             = _mm256_add_pd(fix2,tx);
1867             fiy2             = _mm256_add_pd(fiy2,ty);
1868             fiz2             = _mm256_add_pd(fiz2,tz);
1869
1870             fjx1             = _mm256_add_pd(fjx1,tx);
1871             fjy1             = _mm256_add_pd(fjy1,ty);
1872             fjz1             = _mm256_add_pd(fjz1,tz);
1873
1874             /**************************
1875              * CALCULATE INTERACTIONS *
1876              **************************/
1877
1878             r22              = _mm256_mul_pd(rsq22,rinv22);
1879
1880             /* EWALD ELECTROSTATICS */
1881
1882             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1883             ewrt             = _mm256_mul_pd(r22,ewtabscale);
1884             ewitab           = _mm256_cvttpd_epi32(ewrt);
1885             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1886             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1887                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1888                                             &ewtabF,&ewtabFn);
1889             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1890             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
1891
1892             fscal            = felec;
1893
1894             /* Calculate temporary vectorial force */
1895             tx               = _mm256_mul_pd(fscal,dx22);
1896             ty               = _mm256_mul_pd(fscal,dy22);
1897             tz               = _mm256_mul_pd(fscal,dz22);
1898
1899             /* Update vectorial force */
1900             fix2             = _mm256_add_pd(fix2,tx);
1901             fiy2             = _mm256_add_pd(fiy2,ty);
1902             fiz2             = _mm256_add_pd(fiz2,tz);
1903
1904             fjx2             = _mm256_add_pd(fjx2,tx);
1905             fjy2             = _mm256_add_pd(fjy2,ty);
1906             fjz2             = _mm256_add_pd(fjz2,tz);
1907
1908             fjptrA             = f+j_coord_offsetA;
1909             fjptrB             = f+j_coord_offsetB;
1910             fjptrC             = f+j_coord_offsetC;
1911             fjptrD             = f+j_coord_offsetD;
1912
1913             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
1914                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1915
1916             /* Inner loop uses 350 flops */
1917         }
1918
1919         if(jidx<j_index_end)
1920         {
1921
1922             /* Get j neighbor index, and coordinate index */
1923             jnrlistA         = jjnr[jidx];
1924             jnrlistB         = jjnr[jidx+1];
1925             jnrlistC         = jjnr[jidx+2];
1926             jnrlistD         = jjnr[jidx+3];
1927             /* Sign of each element will be negative for non-real atoms.
1928              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1929              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1930              */
1931             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1932
1933             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1934             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1935             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1936
1937             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1938             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1939             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1940             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1941             j_coord_offsetA  = DIM*jnrA;
1942             j_coord_offsetB  = DIM*jnrB;
1943             j_coord_offsetC  = DIM*jnrC;
1944             j_coord_offsetD  = DIM*jnrD;
1945
1946             /* load j atom coordinates */
1947             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1948                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1949                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1950
1951             /* Calculate displacement vector */
1952             dx00             = _mm256_sub_pd(ix0,jx0);
1953             dy00             = _mm256_sub_pd(iy0,jy0);
1954             dz00             = _mm256_sub_pd(iz0,jz0);
1955             dx01             = _mm256_sub_pd(ix0,jx1);
1956             dy01             = _mm256_sub_pd(iy0,jy1);
1957             dz01             = _mm256_sub_pd(iz0,jz1);
1958             dx02             = _mm256_sub_pd(ix0,jx2);
1959             dy02             = _mm256_sub_pd(iy0,jy2);
1960             dz02             = _mm256_sub_pd(iz0,jz2);
1961             dx10             = _mm256_sub_pd(ix1,jx0);
1962             dy10             = _mm256_sub_pd(iy1,jy0);
1963             dz10             = _mm256_sub_pd(iz1,jz0);
1964             dx11             = _mm256_sub_pd(ix1,jx1);
1965             dy11             = _mm256_sub_pd(iy1,jy1);
1966             dz11             = _mm256_sub_pd(iz1,jz1);
1967             dx12             = _mm256_sub_pd(ix1,jx2);
1968             dy12             = _mm256_sub_pd(iy1,jy2);
1969             dz12             = _mm256_sub_pd(iz1,jz2);
1970             dx20             = _mm256_sub_pd(ix2,jx0);
1971             dy20             = _mm256_sub_pd(iy2,jy0);
1972             dz20             = _mm256_sub_pd(iz2,jz0);
1973             dx21             = _mm256_sub_pd(ix2,jx1);
1974             dy21             = _mm256_sub_pd(iy2,jy1);
1975             dz21             = _mm256_sub_pd(iz2,jz1);
1976             dx22             = _mm256_sub_pd(ix2,jx2);
1977             dy22             = _mm256_sub_pd(iy2,jy2);
1978             dz22             = _mm256_sub_pd(iz2,jz2);
1979
1980             /* Calculate squared distance and things based on it */
1981             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1982             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
1983             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
1984             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1985             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
1986             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
1987             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1988             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
1989             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
1990
1991             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1992             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
1993             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
1994             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1995             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
1996             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
1997             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1998             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
1999             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
2000
2001             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
2002             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
2003             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
2004             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
2005             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
2006             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
2007             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
2008             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
2009             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
2010
2011             fjx0             = _mm256_setzero_pd();
2012             fjy0             = _mm256_setzero_pd();
2013             fjz0             = _mm256_setzero_pd();
2014             fjx1             = _mm256_setzero_pd();
2015             fjy1             = _mm256_setzero_pd();
2016             fjz1             = _mm256_setzero_pd();
2017             fjx2             = _mm256_setzero_pd();
2018             fjy2             = _mm256_setzero_pd();
2019             fjz2             = _mm256_setzero_pd();
2020
2021             /**************************
2022              * CALCULATE INTERACTIONS *
2023              **************************/
2024
2025             r00              = _mm256_mul_pd(rsq00,rinv00);
2026             r00              = _mm256_andnot_pd(dummy_mask,r00);
2027
2028             /* Calculate table index by multiplying r with table scale and truncate to integer */
2029             rt               = _mm256_mul_pd(r00,vftabscale);
2030             vfitab           = _mm256_cvttpd_epi32(rt);
2031             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
2032             vfitab           = _mm_slli_epi32(vfitab,3);
2033
2034             /* EWALD ELECTROSTATICS */
2035
2036             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2037             ewrt             = _mm256_mul_pd(r00,ewtabscale);
2038             ewitab           = _mm256_cvttpd_epi32(ewrt);
2039             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2040             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2041                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2042                                             &ewtabF,&ewtabFn);
2043             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2044             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
2045
2046             /* CUBIC SPLINE TABLE DISPERSION */
2047             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
2048             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
2049             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
2050             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
2051             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
2052             Heps             = _mm256_mul_pd(vfeps,H);
2053             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
2054             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
2055             fvdw6            = _mm256_mul_pd(c6_00,FF);
2056
2057             /* CUBIC SPLINE TABLE REPULSION */
2058             vfitab           = _mm_add_epi32(vfitab,ifour);
2059             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
2060             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
2061             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
2062             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
2063             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
2064             Heps             = _mm256_mul_pd(vfeps,H);
2065             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
2066             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
2067             fvdw12           = _mm256_mul_pd(c12_00,FF);
2068             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
2069
2070             fscal            = _mm256_add_pd(felec,fvdw);
2071
2072             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2073
2074             /* Calculate temporary vectorial force */
2075             tx               = _mm256_mul_pd(fscal,dx00);
2076             ty               = _mm256_mul_pd(fscal,dy00);
2077             tz               = _mm256_mul_pd(fscal,dz00);
2078
2079             /* Update vectorial force */
2080             fix0             = _mm256_add_pd(fix0,tx);
2081             fiy0             = _mm256_add_pd(fiy0,ty);
2082             fiz0             = _mm256_add_pd(fiz0,tz);
2083
2084             fjx0             = _mm256_add_pd(fjx0,tx);
2085             fjy0             = _mm256_add_pd(fjy0,ty);
2086             fjz0             = _mm256_add_pd(fjz0,tz);
2087
2088             /**************************
2089              * CALCULATE INTERACTIONS *
2090              **************************/
2091
2092             r01              = _mm256_mul_pd(rsq01,rinv01);
2093             r01              = _mm256_andnot_pd(dummy_mask,r01);
2094
2095             /* EWALD ELECTROSTATICS */
2096
2097             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2098             ewrt             = _mm256_mul_pd(r01,ewtabscale);
2099             ewitab           = _mm256_cvttpd_epi32(ewrt);
2100             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2101             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2102                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2103                                             &ewtabF,&ewtabFn);
2104             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2105             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
2106
2107             fscal            = felec;
2108
2109             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2110
2111             /* Calculate temporary vectorial force */
2112             tx               = _mm256_mul_pd(fscal,dx01);
2113             ty               = _mm256_mul_pd(fscal,dy01);
2114             tz               = _mm256_mul_pd(fscal,dz01);
2115
2116             /* Update vectorial force */
2117             fix0             = _mm256_add_pd(fix0,tx);
2118             fiy0             = _mm256_add_pd(fiy0,ty);
2119             fiz0             = _mm256_add_pd(fiz0,tz);
2120
2121             fjx1             = _mm256_add_pd(fjx1,tx);
2122             fjy1             = _mm256_add_pd(fjy1,ty);
2123             fjz1             = _mm256_add_pd(fjz1,tz);
2124
2125             /**************************
2126              * CALCULATE INTERACTIONS *
2127              **************************/
2128
2129             r02              = _mm256_mul_pd(rsq02,rinv02);
2130             r02              = _mm256_andnot_pd(dummy_mask,r02);
2131
2132             /* EWALD ELECTROSTATICS */
2133
2134             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2135             ewrt             = _mm256_mul_pd(r02,ewtabscale);
2136             ewitab           = _mm256_cvttpd_epi32(ewrt);
2137             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2138             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2139                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2140                                             &ewtabF,&ewtabFn);
2141             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2142             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
2143
2144             fscal            = felec;
2145
2146             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2147
2148             /* Calculate temporary vectorial force */
2149             tx               = _mm256_mul_pd(fscal,dx02);
2150             ty               = _mm256_mul_pd(fscal,dy02);
2151             tz               = _mm256_mul_pd(fscal,dz02);
2152
2153             /* Update vectorial force */
2154             fix0             = _mm256_add_pd(fix0,tx);
2155             fiy0             = _mm256_add_pd(fiy0,ty);
2156             fiz0             = _mm256_add_pd(fiz0,tz);
2157
2158             fjx2             = _mm256_add_pd(fjx2,tx);
2159             fjy2             = _mm256_add_pd(fjy2,ty);
2160             fjz2             = _mm256_add_pd(fjz2,tz);
2161
2162             /**************************
2163              * CALCULATE INTERACTIONS *
2164              **************************/
2165
2166             r10              = _mm256_mul_pd(rsq10,rinv10);
2167             r10              = _mm256_andnot_pd(dummy_mask,r10);
2168
2169             /* EWALD ELECTROSTATICS */
2170
2171             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2172             ewrt             = _mm256_mul_pd(r10,ewtabscale);
2173             ewitab           = _mm256_cvttpd_epi32(ewrt);
2174             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2175             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2176                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2177                                             &ewtabF,&ewtabFn);
2178             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2179             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
2180
2181             fscal            = felec;
2182
2183             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2184
2185             /* Calculate temporary vectorial force */
2186             tx               = _mm256_mul_pd(fscal,dx10);
2187             ty               = _mm256_mul_pd(fscal,dy10);
2188             tz               = _mm256_mul_pd(fscal,dz10);
2189
2190             /* Update vectorial force */
2191             fix1             = _mm256_add_pd(fix1,tx);
2192             fiy1             = _mm256_add_pd(fiy1,ty);
2193             fiz1             = _mm256_add_pd(fiz1,tz);
2194
2195             fjx0             = _mm256_add_pd(fjx0,tx);
2196             fjy0             = _mm256_add_pd(fjy0,ty);
2197             fjz0             = _mm256_add_pd(fjz0,tz);
2198
2199             /**************************
2200              * CALCULATE INTERACTIONS *
2201              **************************/
2202
2203             r11              = _mm256_mul_pd(rsq11,rinv11);
2204             r11              = _mm256_andnot_pd(dummy_mask,r11);
2205
2206             /* EWALD ELECTROSTATICS */
2207
2208             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2209             ewrt             = _mm256_mul_pd(r11,ewtabscale);
2210             ewitab           = _mm256_cvttpd_epi32(ewrt);
2211             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2212             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2213                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2214                                             &ewtabF,&ewtabFn);
2215             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2216             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
2217
2218             fscal            = felec;
2219
2220             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2221
2222             /* Calculate temporary vectorial force */
2223             tx               = _mm256_mul_pd(fscal,dx11);
2224             ty               = _mm256_mul_pd(fscal,dy11);
2225             tz               = _mm256_mul_pd(fscal,dz11);
2226
2227             /* Update vectorial force */
2228             fix1             = _mm256_add_pd(fix1,tx);
2229             fiy1             = _mm256_add_pd(fiy1,ty);
2230             fiz1             = _mm256_add_pd(fiz1,tz);
2231
2232             fjx1             = _mm256_add_pd(fjx1,tx);
2233             fjy1             = _mm256_add_pd(fjy1,ty);
2234             fjz1             = _mm256_add_pd(fjz1,tz);
2235
2236             /**************************
2237              * CALCULATE INTERACTIONS *
2238              **************************/
2239
2240             r12              = _mm256_mul_pd(rsq12,rinv12);
2241             r12              = _mm256_andnot_pd(dummy_mask,r12);
2242
2243             /* EWALD ELECTROSTATICS */
2244
2245             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2246             ewrt             = _mm256_mul_pd(r12,ewtabscale);
2247             ewitab           = _mm256_cvttpd_epi32(ewrt);
2248             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2249             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2250                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2251                                             &ewtabF,&ewtabFn);
2252             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2253             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
2254
2255             fscal            = felec;
2256
2257             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2258
2259             /* Calculate temporary vectorial force */
2260             tx               = _mm256_mul_pd(fscal,dx12);
2261             ty               = _mm256_mul_pd(fscal,dy12);
2262             tz               = _mm256_mul_pd(fscal,dz12);
2263
2264             /* Update vectorial force */
2265             fix1             = _mm256_add_pd(fix1,tx);
2266             fiy1             = _mm256_add_pd(fiy1,ty);
2267             fiz1             = _mm256_add_pd(fiz1,tz);
2268
2269             fjx2             = _mm256_add_pd(fjx2,tx);
2270             fjy2             = _mm256_add_pd(fjy2,ty);
2271             fjz2             = _mm256_add_pd(fjz2,tz);
2272
2273             /**************************
2274              * CALCULATE INTERACTIONS *
2275              **************************/
2276
2277             r20              = _mm256_mul_pd(rsq20,rinv20);
2278             r20              = _mm256_andnot_pd(dummy_mask,r20);
2279
2280             /* EWALD ELECTROSTATICS */
2281
2282             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2283             ewrt             = _mm256_mul_pd(r20,ewtabscale);
2284             ewitab           = _mm256_cvttpd_epi32(ewrt);
2285             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2286             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2287                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2288                                             &ewtabF,&ewtabFn);
2289             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2290             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
2291
2292             fscal            = felec;
2293
2294             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2295
2296             /* Calculate temporary vectorial force */
2297             tx               = _mm256_mul_pd(fscal,dx20);
2298             ty               = _mm256_mul_pd(fscal,dy20);
2299             tz               = _mm256_mul_pd(fscal,dz20);
2300
2301             /* Update vectorial force */
2302             fix2             = _mm256_add_pd(fix2,tx);
2303             fiy2             = _mm256_add_pd(fiy2,ty);
2304             fiz2             = _mm256_add_pd(fiz2,tz);
2305
2306             fjx0             = _mm256_add_pd(fjx0,tx);
2307             fjy0             = _mm256_add_pd(fjy0,ty);
2308             fjz0             = _mm256_add_pd(fjz0,tz);
2309
2310             /**************************
2311              * CALCULATE INTERACTIONS *
2312              **************************/
2313
2314             r21              = _mm256_mul_pd(rsq21,rinv21);
2315             r21              = _mm256_andnot_pd(dummy_mask,r21);
2316
2317             /* EWALD ELECTROSTATICS */
2318
2319             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2320             ewrt             = _mm256_mul_pd(r21,ewtabscale);
2321             ewitab           = _mm256_cvttpd_epi32(ewrt);
2322             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2323             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2324                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2325                                             &ewtabF,&ewtabFn);
2326             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2327             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
2328
2329             fscal            = felec;
2330
2331             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2332
2333             /* Calculate temporary vectorial force */
2334             tx               = _mm256_mul_pd(fscal,dx21);
2335             ty               = _mm256_mul_pd(fscal,dy21);
2336             tz               = _mm256_mul_pd(fscal,dz21);
2337
2338             /* Update vectorial force */
2339             fix2             = _mm256_add_pd(fix2,tx);
2340             fiy2             = _mm256_add_pd(fiy2,ty);
2341             fiz2             = _mm256_add_pd(fiz2,tz);
2342
2343             fjx1             = _mm256_add_pd(fjx1,tx);
2344             fjy1             = _mm256_add_pd(fjy1,ty);
2345             fjz1             = _mm256_add_pd(fjz1,tz);
2346
2347             /**************************
2348              * CALCULATE INTERACTIONS *
2349              **************************/
2350
2351             r22              = _mm256_mul_pd(rsq22,rinv22);
2352             r22              = _mm256_andnot_pd(dummy_mask,r22);
2353
2354             /* EWALD ELECTROSTATICS */
2355
2356             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2357             ewrt             = _mm256_mul_pd(r22,ewtabscale);
2358             ewitab           = _mm256_cvttpd_epi32(ewrt);
2359             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2360             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2361                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2362                                             &ewtabF,&ewtabFn);
2363             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2364             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
2365
2366             fscal            = felec;
2367
2368             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2369
2370             /* Calculate temporary vectorial force */
2371             tx               = _mm256_mul_pd(fscal,dx22);
2372             ty               = _mm256_mul_pd(fscal,dy22);
2373             tz               = _mm256_mul_pd(fscal,dz22);
2374
2375             /* Update vectorial force */
2376             fix2             = _mm256_add_pd(fix2,tx);
2377             fiy2             = _mm256_add_pd(fiy2,ty);
2378             fiz2             = _mm256_add_pd(fiz2,tz);
2379
2380             fjx2             = _mm256_add_pd(fjx2,tx);
2381             fjy2             = _mm256_add_pd(fjy2,ty);
2382             fjz2             = _mm256_add_pd(fjz2,tz);
2383
2384             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2385             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2386             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2387             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2388
2389             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
2390                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2391
2392             /* Inner loop uses 359 flops */
2393         }
2394
2395         /* End of innermost loop */
2396
2397         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2398                                                  f+i_coord_offset,fshift+i_shift_offset);
2399
2400         /* Increment number of inner iterations */
2401         inneriter                  += j_index_end - j_index_start;
2402
2403         /* Outer loop uses 18 flops */
2404     }
2405
2406     /* Increment number of outer iterations */
2407     outeriter        += nri;
2408
2409     /* Update outer/inner flops */
2410
2411     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*359);
2412 }