Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     int              nvdwtype;
84     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
85     int              *vdwtype;
86     real             *vdwparam;
87     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
88     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
89     __m128i          vfitab;
90     __m128i          ifour       = _mm_set1_epi32(4);
91     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
92     real             *vftab;
93     __m128i          ewitab;
94     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
96     real             *ewtab;
97     __m256d          dummy_mask,cutoff_mask;
98     __m128           tmpmask0,tmpmask1;
99     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
100     __m256d          one     = _mm256_set1_pd(1.0);
101     __m256d          two     = _mm256_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm256_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     vftab            = kernel_data->table_vdw->data;
120     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
121
122     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
123     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
124     beta2            = _mm256_mul_pd(beta,beta);
125     beta3            = _mm256_mul_pd(beta,beta2);
126
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
134     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
135     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
136     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
170
171         fix0             = _mm256_setzero_pd();
172         fiy0             = _mm256_setzero_pd();
173         fiz0             = _mm256_setzero_pd();
174         fix1             = _mm256_setzero_pd();
175         fiy1             = _mm256_setzero_pd();
176         fiz1             = _mm256_setzero_pd();
177         fix2             = _mm256_setzero_pd();
178         fiy2             = _mm256_setzero_pd();
179         fiz2             = _mm256_setzero_pd();
180
181         /* Reset potential sums */
182         velecsum         = _mm256_setzero_pd();
183         vvdwsum          = _mm256_setzero_pd();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             jnrC             = jjnr[jidx+2];
193             jnrD             = jjnr[jidx+3];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198
199             /* load j atom coordinates */
200             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
201                                                  x+j_coord_offsetC,x+j_coord_offsetD,
202                                                  &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm256_sub_pd(ix0,jx0);
206             dy00             = _mm256_sub_pd(iy0,jy0);
207             dz00             = _mm256_sub_pd(iz0,jz0);
208             dx10             = _mm256_sub_pd(ix1,jx0);
209             dy10             = _mm256_sub_pd(iy1,jy0);
210             dz10             = _mm256_sub_pd(iz1,jz0);
211             dx20             = _mm256_sub_pd(ix2,jx0);
212             dy20             = _mm256_sub_pd(iy2,jy0);
213             dz20             = _mm256_sub_pd(iz2,jz0);
214
215             /* Calculate squared distance and things based on it */
216             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
217             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
218             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
219
220             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
221             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
222             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
223
224             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
225             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
226             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
227
228             /* Load parameters for j particles */
229             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
230                                                                  charge+jnrC+0,charge+jnrD+0);
231             vdwjidx0A        = 2*vdwtype[jnrA+0];
232             vdwjidx0B        = 2*vdwtype[jnrB+0];
233             vdwjidx0C        = 2*vdwtype[jnrC+0];
234             vdwjidx0D        = 2*vdwtype[jnrD+0];
235
236             fjx0             = _mm256_setzero_pd();
237             fjy0             = _mm256_setzero_pd();
238             fjz0             = _mm256_setzero_pd();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             r00              = _mm256_mul_pd(rsq00,rinv00);
245
246             /* Compute parameters for interactions between i and j atoms */
247             qq00             = _mm256_mul_pd(iq0,jq0);
248             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
249                                             vdwioffsetptr0+vdwjidx0B,
250                                             vdwioffsetptr0+vdwjidx0C,
251                                             vdwioffsetptr0+vdwjidx0D,
252                                             &c6_00,&c12_00);
253
254             /* Calculate table index by multiplying r with table scale and truncate to integer */
255             rt               = _mm256_mul_pd(r00,vftabscale);
256             vfitab           = _mm256_cvttpd_epi32(rt);
257             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
258             vfitab           = _mm_slli_epi32(vfitab,3);
259
260             /* EWALD ELECTROSTATICS */
261
262             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
263             ewrt             = _mm256_mul_pd(r00,ewtabscale);
264             ewitab           = _mm256_cvttpd_epi32(ewrt);
265             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
266             ewitab           = _mm_slli_epi32(ewitab,2);
267             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
268             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
269             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
270             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
271             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
272             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
273             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
274             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
275             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
276
277             /* CUBIC SPLINE TABLE DISPERSION */
278             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
279             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
280             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
281             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
282             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
283             Heps             = _mm256_mul_pd(vfeps,H);
284             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
285             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
286             vvdw6            = _mm256_mul_pd(c6_00,VV);
287             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
288             fvdw6            = _mm256_mul_pd(c6_00,FF);
289
290             /* CUBIC SPLINE TABLE REPULSION */
291             vfitab           = _mm_add_epi32(vfitab,ifour);
292             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
293             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
294             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
295             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
296             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
297             Heps             = _mm256_mul_pd(vfeps,H);
298             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
299             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
300             vvdw12           = _mm256_mul_pd(c12_00,VV);
301             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
302             fvdw12           = _mm256_mul_pd(c12_00,FF);
303             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
304             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             velecsum         = _mm256_add_pd(velecsum,velec);
308             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
309
310             fscal            = _mm256_add_pd(felec,fvdw);
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm256_mul_pd(fscal,dx00);
314             ty               = _mm256_mul_pd(fscal,dy00);
315             tz               = _mm256_mul_pd(fscal,dz00);
316
317             /* Update vectorial force */
318             fix0             = _mm256_add_pd(fix0,tx);
319             fiy0             = _mm256_add_pd(fiy0,ty);
320             fiz0             = _mm256_add_pd(fiz0,tz);
321
322             fjx0             = _mm256_add_pd(fjx0,tx);
323             fjy0             = _mm256_add_pd(fjy0,ty);
324             fjz0             = _mm256_add_pd(fjz0,tz);
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             r10              = _mm256_mul_pd(rsq10,rinv10);
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq10             = _mm256_mul_pd(iq1,jq0);
334
335             /* EWALD ELECTROSTATICS */
336
337             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
338             ewrt             = _mm256_mul_pd(r10,ewtabscale);
339             ewitab           = _mm256_cvttpd_epi32(ewrt);
340             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
341             ewitab           = _mm_slli_epi32(ewitab,2);
342             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
343             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
344             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
345             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
346             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
347             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
348             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
349             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
350             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
351
352             /* Update potential sum for this i atom from the interaction with this j atom. */
353             velecsum         = _mm256_add_pd(velecsum,velec);
354
355             fscal            = felec;
356
357             /* Calculate temporary vectorial force */
358             tx               = _mm256_mul_pd(fscal,dx10);
359             ty               = _mm256_mul_pd(fscal,dy10);
360             tz               = _mm256_mul_pd(fscal,dz10);
361
362             /* Update vectorial force */
363             fix1             = _mm256_add_pd(fix1,tx);
364             fiy1             = _mm256_add_pd(fiy1,ty);
365             fiz1             = _mm256_add_pd(fiz1,tz);
366
367             fjx0             = _mm256_add_pd(fjx0,tx);
368             fjy0             = _mm256_add_pd(fjy0,ty);
369             fjz0             = _mm256_add_pd(fjz0,tz);
370
371             /**************************
372              * CALCULATE INTERACTIONS *
373              **************************/
374
375             r20              = _mm256_mul_pd(rsq20,rinv20);
376
377             /* Compute parameters for interactions between i and j atoms */
378             qq20             = _mm256_mul_pd(iq2,jq0);
379
380             /* EWALD ELECTROSTATICS */
381
382             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
383             ewrt             = _mm256_mul_pd(r20,ewtabscale);
384             ewitab           = _mm256_cvttpd_epi32(ewrt);
385             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
386             ewitab           = _mm_slli_epi32(ewitab,2);
387             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
388             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
389             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
390             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
391             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
392             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
393             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
394             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
395             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
396
397             /* Update potential sum for this i atom from the interaction with this j atom. */
398             velecsum         = _mm256_add_pd(velecsum,velec);
399
400             fscal            = felec;
401
402             /* Calculate temporary vectorial force */
403             tx               = _mm256_mul_pd(fscal,dx20);
404             ty               = _mm256_mul_pd(fscal,dy20);
405             tz               = _mm256_mul_pd(fscal,dz20);
406
407             /* Update vectorial force */
408             fix2             = _mm256_add_pd(fix2,tx);
409             fiy2             = _mm256_add_pd(fiy2,ty);
410             fiz2             = _mm256_add_pd(fiz2,tz);
411
412             fjx0             = _mm256_add_pd(fjx0,tx);
413             fjy0             = _mm256_add_pd(fjy0,ty);
414             fjz0             = _mm256_add_pd(fjz0,tz);
415
416             fjptrA             = f+j_coord_offsetA;
417             fjptrB             = f+j_coord_offsetB;
418             fjptrC             = f+j_coord_offsetC;
419             fjptrD             = f+j_coord_offsetD;
420
421             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
422
423             /* Inner loop uses 160 flops */
424         }
425
426         if(jidx<j_index_end)
427         {
428
429             /* Get j neighbor index, and coordinate index */
430             jnrlistA         = jjnr[jidx];
431             jnrlistB         = jjnr[jidx+1];
432             jnrlistC         = jjnr[jidx+2];
433             jnrlistD         = jjnr[jidx+3];
434             /* Sign of each element will be negative for non-real atoms.
435              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
436              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
437              */
438             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
439
440             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
441             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
442             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
443
444             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
445             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
446             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
447             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
448             j_coord_offsetA  = DIM*jnrA;
449             j_coord_offsetB  = DIM*jnrB;
450             j_coord_offsetC  = DIM*jnrC;
451             j_coord_offsetD  = DIM*jnrD;
452
453             /* load j atom coordinates */
454             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
455                                                  x+j_coord_offsetC,x+j_coord_offsetD,
456                                                  &jx0,&jy0,&jz0);
457
458             /* Calculate displacement vector */
459             dx00             = _mm256_sub_pd(ix0,jx0);
460             dy00             = _mm256_sub_pd(iy0,jy0);
461             dz00             = _mm256_sub_pd(iz0,jz0);
462             dx10             = _mm256_sub_pd(ix1,jx0);
463             dy10             = _mm256_sub_pd(iy1,jy0);
464             dz10             = _mm256_sub_pd(iz1,jz0);
465             dx20             = _mm256_sub_pd(ix2,jx0);
466             dy20             = _mm256_sub_pd(iy2,jy0);
467             dz20             = _mm256_sub_pd(iz2,jz0);
468
469             /* Calculate squared distance and things based on it */
470             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
471             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
472             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
473
474             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
475             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
476             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
477
478             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
479             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
480             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
481
482             /* Load parameters for j particles */
483             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
484                                                                  charge+jnrC+0,charge+jnrD+0);
485             vdwjidx0A        = 2*vdwtype[jnrA+0];
486             vdwjidx0B        = 2*vdwtype[jnrB+0];
487             vdwjidx0C        = 2*vdwtype[jnrC+0];
488             vdwjidx0D        = 2*vdwtype[jnrD+0];
489
490             fjx0             = _mm256_setzero_pd();
491             fjy0             = _mm256_setzero_pd();
492             fjz0             = _mm256_setzero_pd();
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             r00              = _mm256_mul_pd(rsq00,rinv00);
499             r00              = _mm256_andnot_pd(dummy_mask,r00);
500
501             /* Compute parameters for interactions between i and j atoms */
502             qq00             = _mm256_mul_pd(iq0,jq0);
503             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
504                                             vdwioffsetptr0+vdwjidx0B,
505                                             vdwioffsetptr0+vdwjidx0C,
506                                             vdwioffsetptr0+vdwjidx0D,
507                                             &c6_00,&c12_00);
508
509             /* Calculate table index by multiplying r with table scale and truncate to integer */
510             rt               = _mm256_mul_pd(r00,vftabscale);
511             vfitab           = _mm256_cvttpd_epi32(rt);
512             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
513             vfitab           = _mm_slli_epi32(vfitab,3);
514
515             /* EWALD ELECTROSTATICS */
516
517             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
518             ewrt             = _mm256_mul_pd(r00,ewtabscale);
519             ewitab           = _mm256_cvttpd_epi32(ewrt);
520             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
521             ewitab           = _mm_slli_epi32(ewitab,2);
522             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
523             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
524             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
525             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
526             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
527             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
528             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
529             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
530             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
531
532             /* CUBIC SPLINE TABLE DISPERSION */
533             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
534             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
535             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
536             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
537             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
538             Heps             = _mm256_mul_pd(vfeps,H);
539             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
540             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
541             vvdw6            = _mm256_mul_pd(c6_00,VV);
542             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
543             fvdw6            = _mm256_mul_pd(c6_00,FF);
544
545             /* CUBIC SPLINE TABLE REPULSION */
546             vfitab           = _mm_add_epi32(vfitab,ifour);
547             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
548             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
549             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
550             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
551             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
552             Heps             = _mm256_mul_pd(vfeps,H);
553             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
554             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
555             vvdw12           = _mm256_mul_pd(c12_00,VV);
556             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
557             fvdw12           = _mm256_mul_pd(c12_00,FF);
558             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
559             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
560
561             /* Update potential sum for this i atom from the interaction with this j atom. */
562             velec            = _mm256_andnot_pd(dummy_mask,velec);
563             velecsum         = _mm256_add_pd(velecsum,velec);
564             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
565             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
566
567             fscal            = _mm256_add_pd(felec,fvdw);
568
569             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
570
571             /* Calculate temporary vectorial force */
572             tx               = _mm256_mul_pd(fscal,dx00);
573             ty               = _mm256_mul_pd(fscal,dy00);
574             tz               = _mm256_mul_pd(fscal,dz00);
575
576             /* Update vectorial force */
577             fix0             = _mm256_add_pd(fix0,tx);
578             fiy0             = _mm256_add_pd(fiy0,ty);
579             fiz0             = _mm256_add_pd(fiz0,tz);
580
581             fjx0             = _mm256_add_pd(fjx0,tx);
582             fjy0             = _mm256_add_pd(fjy0,ty);
583             fjz0             = _mm256_add_pd(fjz0,tz);
584
585             /**************************
586              * CALCULATE INTERACTIONS *
587              **************************/
588
589             r10              = _mm256_mul_pd(rsq10,rinv10);
590             r10              = _mm256_andnot_pd(dummy_mask,r10);
591
592             /* Compute parameters for interactions between i and j atoms */
593             qq10             = _mm256_mul_pd(iq1,jq0);
594
595             /* EWALD ELECTROSTATICS */
596
597             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
598             ewrt             = _mm256_mul_pd(r10,ewtabscale);
599             ewitab           = _mm256_cvttpd_epi32(ewrt);
600             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
601             ewitab           = _mm_slli_epi32(ewitab,2);
602             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
603             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
604             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
605             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
606             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
607             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
608             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
609             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
610             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
611
612             /* Update potential sum for this i atom from the interaction with this j atom. */
613             velec            = _mm256_andnot_pd(dummy_mask,velec);
614             velecsum         = _mm256_add_pd(velecsum,velec);
615
616             fscal            = felec;
617
618             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
619
620             /* Calculate temporary vectorial force */
621             tx               = _mm256_mul_pd(fscal,dx10);
622             ty               = _mm256_mul_pd(fscal,dy10);
623             tz               = _mm256_mul_pd(fscal,dz10);
624
625             /* Update vectorial force */
626             fix1             = _mm256_add_pd(fix1,tx);
627             fiy1             = _mm256_add_pd(fiy1,ty);
628             fiz1             = _mm256_add_pd(fiz1,tz);
629
630             fjx0             = _mm256_add_pd(fjx0,tx);
631             fjy0             = _mm256_add_pd(fjy0,ty);
632             fjz0             = _mm256_add_pd(fjz0,tz);
633
634             /**************************
635              * CALCULATE INTERACTIONS *
636              **************************/
637
638             r20              = _mm256_mul_pd(rsq20,rinv20);
639             r20              = _mm256_andnot_pd(dummy_mask,r20);
640
641             /* Compute parameters for interactions between i and j atoms */
642             qq20             = _mm256_mul_pd(iq2,jq0);
643
644             /* EWALD ELECTROSTATICS */
645
646             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
647             ewrt             = _mm256_mul_pd(r20,ewtabscale);
648             ewitab           = _mm256_cvttpd_epi32(ewrt);
649             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
650             ewitab           = _mm_slli_epi32(ewitab,2);
651             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
652             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
653             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
654             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
655             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
656             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
657             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
658             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
659             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
660
661             /* Update potential sum for this i atom from the interaction with this j atom. */
662             velec            = _mm256_andnot_pd(dummy_mask,velec);
663             velecsum         = _mm256_add_pd(velecsum,velec);
664
665             fscal            = felec;
666
667             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
668
669             /* Calculate temporary vectorial force */
670             tx               = _mm256_mul_pd(fscal,dx20);
671             ty               = _mm256_mul_pd(fscal,dy20);
672             tz               = _mm256_mul_pd(fscal,dz20);
673
674             /* Update vectorial force */
675             fix2             = _mm256_add_pd(fix2,tx);
676             fiy2             = _mm256_add_pd(fiy2,ty);
677             fiz2             = _mm256_add_pd(fiz2,tz);
678
679             fjx0             = _mm256_add_pd(fjx0,tx);
680             fjy0             = _mm256_add_pd(fjy0,ty);
681             fjz0             = _mm256_add_pd(fjz0,tz);
682
683             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
684             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
685             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
686             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
687
688             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
689
690             /* Inner loop uses 163 flops */
691         }
692
693         /* End of innermost loop */
694
695         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
696                                                  f+i_coord_offset,fshift+i_shift_offset);
697
698         ggid                        = gid[iidx];
699         /* Update potential energies */
700         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
701         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
702
703         /* Increment number of inner iterations */
704         inneriter                  += j_index_end - j_index_start;
705
706         /* Outer loop uses 20 flops */
707     }
708
709     /* Increment number of outer iterations */
710     outeriter        += nri;
711
712     /* Update outer/inner flops */
713
714     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*163);
715 }
716 /*
717  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_256_double
718  * Electrostatics interaction: Ewald
719  * VdW interaction:            CubicSplineTable
720  * Geometry:                   Water3-Particle
721  * Calculate force/pot:        Force
722  */
723 void
724 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_256_double
725                     (t_nblist * gmx_restrict                nlist,
726                      rvec * gmx_restrict                    xx,
727                      rvec * gmx_restrict                    ff,
728                      t_forcerec * gmx_restrict              fr,
729                      t_mdatoms * gmx_restrict               mdatoms,
730                      nb_kernel_data_t * gmx_restrict        kernel_data,
731                      t_nrnb * gmx_restrict                  nrnb)
732 {
733     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
734      * just 0 for non-waters.
735      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
736      * jnr indices corresponding to data put in the four positions in the SIMD register.
737      */
738     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
739     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
740     int              jnrA,jnrB,jnrC,jnrD;
741     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
742     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
743     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
744     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
745     real             rcutoff_scalar;
746     real             *shiftvec,*fshift,*x,*f;
747     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
748     real             scratch[4*DIM];
749     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
750     real *           vdwioffsetptr0;
751     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
752     real *           vdwioffsetptr1;
753     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
754     real *           vdwioffsetptr2;
755     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
756     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
757     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
758     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
759     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
760     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
761     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
762     real             *charge;
763     int              nvdwtype;
764     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
765     int              *vdwtype;
766     real             *vdwparam;
767     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
768     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
769     __m128i          vfitab;
770     __m128i          ifour       = _mm_set1_epi32(4);
771     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
772     real             *vftab;
773     __m128i          ewitab;
774     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
775     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
776     real             *ewtab;
777     __m256d          dummy_mask,cutoff_mask;
778     __m128           tmpmask0,tmpmask1;
779     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
780     __m256d          one     = _mm256_set1_pd(1.0);
781     __m256d          two     = _mm256_set1_pd(2.0);
782     x                = xx[0];
783     f                = ff[0];
784
785     nri              = nlist->nri;
786     iinr             = nlist->iinr;
787     jindex           = nlist->jindex;
788     jjnr             = nlist->jjnr;
789     shiftidx         = nlist->shift;
790     gid              = nlist->gid;
791     shiftvec         = fr->shift_vec[0];
792     fshift           = fr->fshift[0];
793     facel            = _mm256_set1_pd(fr->epsfac);
794     charge           = mdatoms->chargeA;
795     nvdwtype         = fr->ntype;
796     vdwparam         = fr->nbfp;
797     vdwtype          = mdatoms->typeA;
798
799     vftab            = kernel_data->table_vdw->data;
800     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
801
802     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
803     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
804     beta2            = _mm256_mul_pd(beta,beta);
805     beta3            = _mm256_mul_pd(beta,beta2);
806
807     ewtab            = fr->ic->tabq_coul_F;
808     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
809     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
810
811     /* Setup water-specific parameters */
812     inr              = nlist->iinr[0];
813     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
814     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
815     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
816     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
817
818     /* Avoid stupid compiler warnings */
819     jnrA = jnrB = jnrC = jnrD = 0;
820     j_coord_offsetA = 0;
821     j_coord_offsetB = 0;
822     j_coord_offsetC = 0;
823     j_coord_offsetD = 0;
824
825     outeriter        = 0;
826     inneriter        = 0;
827
828     for(iidx=0;iidx<4*DIM;iidx++)
829     {
830         scratch[iidx] = 0.0;
831     }
832
833     /* Start outer loop over neighborlists */
834     for(iidx=0; iidx<nri; iidx++)
835     {
836         /* Load shift vector for this list */
837         i_shift_offset   = DIM*shiftidx[iidx];
838
839         /* Load limits for loop over neighbors */
840         j_index_start    = jindex[iidx];
841         j_index_end      = jindex[iidx+1];
842
843         /* Get outer coordinate index */
844         inr              = iinr[iidx];
845         i_coord_offset   = DIM*inr;
846
847         /* Load i particle coords and add shift vector */
848         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
849                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
850
851         fix0             = _mm256_setzero_pd();
852         fiy0             = _mm256_setzero_pd();
853         fiz0             = _mm256_setzero_pd();
854         fix1             = _mm256_setzero_pd();
855         fiy1             = _mm256_setzero_pd();
856         fiz1             = _mm256_setzero_pd();
857         fix2             = _mm256_setzero_pd();
858         fiy2             = _mm256_setzero_pd();
859         fiz2             = _mm256_setzero_pd();
860
861         /* Start inner kernel loop */
862         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
863         {
864
865             /* Get j neighbor index, and coordinate index */
866             jnrA             = jjnr[jidx];
867             jnrB             = jjnr[jidx+1];
868             jnrC             = jjnr[jidx+2];
869             jnrD             = jjnr[jidx+3];
870             j_coord_offsetA  = DIM*jnrA;
871             j_coord_offsetB  = DIM*jnrB;
872             j_coord_offsetC  = DIM*jnrC;
873             j_coord_offsetD  = DIM*jnrD;
874
875             /* load j atom coordinates */
876             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
877                                                  x+j_coord_offsetC,x+j_coord_offsetD,
878                                                  &jx0,&jy0,&jz0);
879
880             /* Calculate displacement vector */
881             dx00             = _mm256_sub_pd(ix0,jx0);
882             dy00             = _mm256_sub_pd(iy0,jy0);
883             dz00             = _mm256_sub_pd(iz0,jz0);
884             dx10             = _mm256_sub_pd(ix1,jx0);
885             dy10             = _mm256_sub_pd(iy1,jy0);
886             dz10             = _mm256_sub_pd(iz1,jz0);
887             dx20             = _mm256_sub_pd(ix2,jx0);
888             dy20             = _mm256_sub_pd(iy2,jy0);
889             dz20             = _mm256_sub_pd(iz2,jz0);
890
891             /* Calculate squared distance and things based on it */
892             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
893             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
894             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
895
896             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
897             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
898             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
899
900             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
901             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
902             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
903
904             /* Load parameters for j particles */
905             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
906                                                                  charge+jnrC+0,charge+jnrD+0);
907             vdwjidx0A        = 2*vdwtype[jnrA+0];
908             vdwjidx0B        = 2*vdwtype[jnrB+0];
909             vdwjidx0C        = 2*vdwtype[jnrC+0];
910             vdwjidx0D        = 2*vdwtype[jnrD+0];
911
912             fjx0             = _mm256_setzero_pd();
913             fjy0             = _mm256_setzero_pd();
914             fjz0             = _mm256_setzero_pd();
915
916             /**************************
917              * CALCULATE INTERACTIONS *
918              **************************/
919
920             r00              = _mm256_mul_pd(rsq00,rinv00);
921
922             /* Compute parameters for interactions between i and j atoms */
923             qq00             = _mm256_mul_pd(iq0,jq0);
924             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
925                                             vdwioffsetptr0+vdwjidx0B,
926                                             vdwioffsetptr0+vdwjidx0C,
927                                             vdwioffsetptr0+vdwjidx0D,
928                                             &c6_00,&c12_00);
929
930             /* Calculate table index by multiplying r with table scale and truncate to integer */
931             rt               = _mm256_mul_pd(r00,vftabscale);
932             vfitab           = _mm256_cvttpd_epi32(rt);
933             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
934             vfitab           = _mm_slli_epi32(vfitab,3);
935
936             /* EWALD ELECTROSTATICS */
937
938             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
939             ewrt             = _mm256_mul_pd(r00,ewtabscale);
940             ewitab           = _mm256_cvttpd_epi32(ewrt);
941             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
942             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
943                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
944                                             &ewtabF,&ewtabFn);
945             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
946             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
947
948             /* CUBIC SPLINE TABLE DISPERSION */
949             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
950             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
951             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
952             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
953             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
954             Heps             = _mm256_mul_pd(vfeps,H);
955             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
956             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
957             fvdw6            = _mm256_mul_pd(c6_00,FF);
958
959             /* CUBIC SPLINE TABLE REPULSION */
960             vfitab           = _mm_add_epi32(vfitab,ifour);
961             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
962             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
963             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
964             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
965             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
966             Heps             = _mm256_mul_pd(vfeps,H);
967             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
968             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
969             fvdw12           = _mm256_mul_pd(c12_00,FF);
970             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
971
972             fscal            = _mm256_add_pd(felec,fvdw);
973
974             /* Calculate temporary vectorial force */
975             tx               = _mm256_mul_pd(fscal,dx00);
976             ty               = _mm256_mul_pd(fscal,dy00);
977             tz               = _mm256_mul_pd(fscal,dz00);
978
979             /* Update vectorial force */
980             fix0             = _mm256_add_pd(fix0,tx);
981             fiy0             = _mm256_add_pd(fiy0,ty);
982             fiz0             = _mm256_add_pd(fiz0,tz);
983
984             fjx0             = _mm256_add_pd(fjx0,tx);
985             fjy0             = _mm256_add_pd(fjy0,ty);
986             fjz0             = _mm256_add_pd(fjz0,tz);
987
988             /**************************
989              * CALCULATE INTERACTIONS *
990              **************************/
991
992             r10              = _mm256_mul_pd(rsq10,rinv10);
993
994             /* Compute parameters for interactions between i and j atoms */
995             qq10             = _mm256_mul_pd(iq1,jq0);
996
997             /* EWALD ELECTROSTATICS */
998
999             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1000             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1001             ewitab           = _mm256_cvttpd_epi32(ewrt);
1002             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1003             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1004                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1005                                             &ewtabF,&ewtabFn);
1006             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1007             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1008
1009             fscal            = felec;
1010
1011             /* Calculate temporary vectorial force */
1012             tx               = _mm256_mul_pd(fscal,dx10);
1013             ty               = _mm256_mul_pd(fscal,dy10);
1014             tz               = _mm256_mul_pd(fscal,dz10);
1015
1016             /* Update vectorial force */
1017             fix1             = _mm256_add_pd(fix1,tx);
1018             fiy1             = _mm256_add_pd(fiy1,ty);
1019             fiz1             = _mm256_add_pd(fiz1,tz);
1020
1021             fjx0             = _mm256_add_pd(fjx0,tx);
1022             fjy0             = _mm256_add_pd(fjy0,ty);
1023             fjz0             = _mm256_add_pd(fjz0,tz);
1024
1025             /**************************
1026              * CALCULATE INTERACTIONS *
1027              **************************/
1028
1029             r20              = _mm256_mul_pd(rsq20,rinv20);
1030
1031             /* Compute parameters for interactions between i and j atoms */
1032             qq20             = _mm256_mul_pd(iq2,jq0);
1033
1034             /* EWALD ELECTROSTATICS */
1035
1036             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1037             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1038             ewitab           = _mm256_cvttpd_epi32(ewrt);
1039             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1040             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1041                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1042                                             &ewtabF,&ewtabFn);
1043             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1044             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1045
1046             fscal            = felec;
1047
1048             /* Calculate temporary vectorial force */
1049             tx               = _mm256_mul_pd(fscal,dx20);
1050             ty               = _mm256_mul_pd(fscal,dy20);
1051             tz               = _mm256_mul_pd(fscal,dz20);
1052
1053             /* Update vectorial force */
1054             fix2             = _mm256_add_pd(fix2,tx);
1055             fiy2             = _mm256_add_pd(fiy2,ty);
1056             fiz2             = _mm256_add_pd(fiz2,tz);
1057
1058             fjx0             = _mm256_add_pd(fjx0,tx);
1059             fjy0             = _mm256_add_pd(fjy0,ty);
1060             fjz0             = _mm256_add_pd(fjz0,tz);
1061
1062             fjptrA             = f+j_coord_offsetA;
1063             fjptrB             = f+j_coord_offsetB;
1064             fjptrC             = f+j_coord_offsetC;
1065             fjptrD             = f+j_coord_offsetD;
1066
1067             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1068
1069             /* Inner loop uses 137 flops */
1070         }
1071
1072         if(jidx<j_index_end)
1073         {
1074
1075             /* Get j neighbor index, and coordinate index */
1076             jnrlistA         = jjnr[jidx];
1077             jnrlistB         = jjnr[jidx+1];
1078             jnrlistC         = jjnr[jidx+2];
1079             jnrlistD         = jjnr[jidx+3];
1080             /* Sign of each element will be negative for non-real atoms.
1081              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1082              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1083              */
1084             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1085
1086             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1087             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1088             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1089
1090             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1091             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1092             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1093             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1094             j_coord_offsetA  = DIM*jnrA;
1095             j_coord_offsetB  = DIM*jnrB;
1096             j_coord_offsetC  = DIM*jnrC;
1097             j_coord_offsetD  = DIM*jnrD;
1098
1099             /* load j atom coordinates */
1100             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1101                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1102                                                  &jx0,&jy0,&jz0);
1103
1104             /* Calculate displacement vector */
1105             dx00             = _mm256_sub_pd(ix0,jx0);
1106             dy00             = _mm256_sub_pd(iy0,jy0);
1107             dz00             = _mm256_sub_pd(iz0,jz0);
1108             dx10             = _mm256_sub_pd(ix1,jx0);
1109             dy10             = _mm256_sub_pd(iy1,jy0);
1110             dz10             = _mm256_sub_pd(iz1,jz0);
1111             dx20             = _mm256_sub_pd(ix2,jx0);
1112             dy20             = _mm256_sub_pd(iy2,jy0);
1113             dz20             = _mm256_sub_pd(iz2,jz0);
1114
1115             /* Calculate squared distance and things based on it */
1116             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1117             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1118             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1119
1120             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1121             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1122             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1123
1124             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1125             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1126             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1127
1128             /* Load parameters for j particles */
1129             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1130                                                                  charge+jnrC+0,charge+jnrD+0);
1131             vdwjidx0A        = 2*vdwtype[jnrA+0];
1132             vdwjidx0B        = 2*vdwtype[jnrB+0];
1133             vdwjidx0C        = 2*vdwtype[jnrC+0];
1134             vdwjidx0D        = 2*vdwtype[jnrD+0];
1135
1136             fjx0             = _mm256_setzero_pd();
1137             fjy0             = _mm256_setzero_pd();
1138             fjz0             = _mm256_setzero_pd();
1139
1140             /**************************
1141              * CALCULATE INTERACTIONS *
1142              **************************/
1143
1144             r00              = _mm256_mul_pd(rsq00,rinv00);
1145             r00              = _mm256_andnot_pd(dummy_mask,r00);
1146
1147             /* Compute parameters for interactions between i and j atoms */
1148             qq00             = _mm256_mul_pd(iq0,jq0);
1149             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1150                                             vdwioffsetptr0+vdwjidx0B,
1151                                             vdwioffsetptr0+vdwjidx0C,
1152                                             vdwioffsetptr0+vdwjidx0D,
1153                                             &c6_00,&c12_00);
1154
1155             /* Calculate table index by multiplying r with table scale and truncate to integer */
1156             rt               = _mm256_mul_pd(r00,vftabscale);
1157             vfitab           = _mm256_cvttpd_epi32(rt);
1158             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1159             vfitab           = _mm_slli_epi32(vfitab,3);
1160
1161             /* EWALD ELECTROSTATICS */
1162
1163             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1164             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1165             ewitab           = _mm256_cvttpd_epi32(ewrt);
1166             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1167             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1168                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1169                                             &ewtabF,&ewtabFn);
1170             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1171             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1172
1173             /* CUBIC SPLINE TABLE DISPERSION */
1174             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1175             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1176             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1177             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1178             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1179             Heps             = _mm256_mul_pd(vfeps,H);
1180             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1181             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1182             fvdw6            = _mm256_mul_pd(c6_00,FF);
1183
1184             /* CUBIC SPLINE TABLE REPULSION */
1185             vfitab           = _mm_add_epi32(vfitab,ifour);
1186             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1187             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1188             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1189             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1190             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1191             Heps             = _mm256_mul_pd(vfeps,H);
1192             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1193             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1194             fvdw12           = _mm256_mul_pd(c12_00,FF);
1195             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1196
1197             fscal            = _mm256_add_pd(felec,fvdw);
1198
1199             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1200
1201             /* Calculate temporary vectorial force */
1202             tx               = _mm256_mul_pd(fscal,dx00);
1203             ty               = _mm256_mul_pd(fscal,dy00);
1204             tz               = _mm256_mul_pd(fscal,dz00);
1205
1206             /* Update vectorial force */
1207             fix0             = _mm256_add_pd(fix0,tx);
1208             fiy0             = _mm256_add_pd(fiy0,ty);
1209             fiz0             = _mm256_add_pd(fiz0,tz);
1210
1211             fjx0             = _mm256_add_pd(fjx0,tx);
1212             fjy0             = _mm256_add_pd(fjy0,ty);
1213             fjz0             = _mm256_add_pd(fjz0,tz);
1214
1215             /**************************
1216              * CALCULATE INTERACTIONS *
1217              **************************/
1218
1219             r10              = _mm256_mul_pd(rsq10,rinv10);
1220             r10              = _mm256_andnot_pd(dummy_mask,r10);
1221
1222             /* Compute parameters for interactions between i and j atoms */
1223             qq10             = _mm256_mul_pd(iq1,jq0);
1224
1225             /* EWALD ELECTROSTATICS */
1226
1227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1228             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1229             ewitab           = _mm256_cvttpd_epi32(ewrt);
1230             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1231             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1232                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1233                                             &ewtabF,&ewtabFn);
1234             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1235             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1236
1237             fscal            = felec;
1238
1239             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1240
1241             /* Calculate temporary vectorial force */
1242             tx               = _mm256_mul_pd(fscal,dx10);
1243             ty               = _mm256_mul_pd(fscal,dy10);
1244             tz               = _mm256_mul_pd(fscal,dz10);
1245
1246             /* Update vectorial force */
1247             fix1             = _mm256_add_pd(fix1,tx);
1248             fiy1             = _mm256_add_pd(fiy1,ty);
1249             fiz1             = _mm256_add_pd(fiz1,tz);
1250
1251             fjx0             = _mm256_add_pd(fjx0,tx);
1252             fjy0             = _mm256_add_pd(fjy0,ty);
1253             fjz0             = _mm256_add_pd(fjz0,tz);
1254
1255             /**************************
1256              * CALCULATE INTERACTIONS *
1257              **************************/
1258
1259             r20              = _mm256_mul_pd(rsq20,rinv20);
1260             r20              = _mm256_andnot_pd(dummy_mask,r20);
1261
1262             /* Compute parameters for interactions between i and j atoms */
1263             qq20             = _mm256_mul_pd(iq2,jq0);
1264
1265             /* EWALD ELECTROSTATICS */
1266
1267             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1268             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1269             ewitab           = _mm256_cvttpd_epi32(ewrt);
1270             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1271             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1272                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1273                                             &ewtabF,&ewtabFn);
1274             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1275             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1276
1277             fscal            = felec;
1278
1279             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1280
1281             /* Calculate temporary vectorial force */
1282             tx               = _mm256_mul_pd(fscal,dx20);
1283             ty               = _mm256_mul_pd(fscal,dy20);
1284             tz               = _mm256_mul_pd(fscal,dz20);
1285
1286             /* Update vectorial force */
1287             fix2             = _mm256_add_pd(fix2,tx);
1288             fiy2             = _mm256_add_pd(fiy2,ty);
1289             fiz2             = _mm256_add_pd(fiz2,tz);
1290
1291             fjx0             = _mm256_add_pd(fjx0,tx);
1292             fjy0             = _mm256_add_pd(fjy0,ty);
1293             fjz0             = _mm256_add_pd(fjz0,tz);
1294
1295             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1296             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1297             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1298             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1299
1300             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1301
1302             /* Inner loop uses 140 flops */
1303         }
1304
1305         /* End of innermost loop */
1306
1307         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1308                                                  f+i_coord_offset,fshift+i_shift_offset);
1309
1310         /* Increment number of inner iterations */
1311         inneriter                  += j_index_end - j_index_start;
1312
1313         /* Outer loop uses 18 flops */
1314     }
1315
1316     /* Increment number of outer iterations */
1317     outeriter        += nri;
1318
1319     /* Update outer/inner flops */
1320
1321     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*140);
1322 }