Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_256_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     real *           vdwioffsetptr1;
86     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     real *           vdwioffsetptr2;
88     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
101     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m128i          ewitab;
107     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
109     real             *ewtab;
110     __m256d          dummy_mask,cutoff_mask;
111     __m128           tmpmask0,tmpmask1;
112     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
113     __m256d          one     = _mm256_set1_pd(1.0);
114     __m256d          two     = _mm256_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm256_set1_pd(fr->ic->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
134
135     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
136     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
137     beta2            = _mm256_mul_pd(beta,beta);
138     beta3            = _mm256_mul_pd(beta,beta2);
139
140     ewtab            = fr->ic->tabq_coul_FDV0;
141     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
142     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
143
144     /* Setup water-specific parameters */
145     inr              = nlist->iinr[0];
146     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
147     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
148     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
149     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
150
151     /* Avoid stupid compiler warnings */
152     jnrA = jnrB = jnrC = jnrD = 0;
153     j_coord_offsetA = 0;
154     j_coord_offsetB = 0;
155     j_coord_offsetC = 0;
156     j_coord_offsetD = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     for(iidx=0;iidx<4*DIM;iidx++)
162     {
163         scratch[iidx] = 0.0;
164     }
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
183
184         fix0             = _mm256_setzero_pd();
185         fiy0             = _mm256_setzero_pd();
186         fiz0             = _mm256_setzero_pd();
187         fix1             = _mm256_setzero_pd();
188         fiy1             = _mm256_setzero_pd();
189         fiz1             = _mm256_setzero_pd();
190         fix2             = _mm256_setzero_pd();
191         fiy2             = _mm256_setzero_pd();
192         fiz2             = _mm256_setzero_pd();
193
194         /* Reset potential sums */
195         velecsum         = _mm256_setzero_pd();
196         vvdwsum          = _mm256_setzero_pd();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211
212             /* load j atom coordinates */
213             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
214                                                  x+j_coord_offsetC,x+j_coord_offsetD,
215                                                  &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _mm256_sub_pd(ix0,jx0);
219             dy00             = _mm256_sub_pd(iy0,jy0);
220             dz00             = _mm256_sub_pd(iz0,jz0);
221             dx10             = _mm256_sub_pd(ix1,jx0);
222             dy10             = _mm256_sub_pd(iy1,jy0);
223             dz10             = _mm256_sub_pd(iz1,jz0);
224             dx20             = _mm256_sub_pd(ix2,jx0);
225             dy20             = _mm256_sub_pd(iy2,jy0);
226             dz20             = _mm256_sub_pd(iz2,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
230             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
231             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
232
233             rinv00           = avx256_invsqrt_d(rsq00);
234             rinv10           = avx256_invsqrt_d(rsq10);
235             rinv20           = avx256_invsqrt_d(rsq20);
236
237             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
238             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
239             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
240
241             /* Load parameters for j particles */
242             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
243                                                                  charge+jnrC+0,charge+jnrD+0);
244             vdwjidx0A        = 2*vdwtype[jnrA+0];
245             vdwjidx0B        = 2*vdwtype[jnrB+0];
246             vdwjidx0C        = 2*vdwtype[jnrC+0];
247             vdwjidx0D        = 2*vdwtype[jnrD+0];
248
249             fjx0             = _mm256_setzero_pd();
250             fjy0             = _mm256_setzero_pd();
251             fjz0             = _mm256_setzero_pd();
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             r00              = _mm256_mul_pd(rsq00,rinv00);
258
259             /* Compute parameters for interactions between i and j atoms */
260             qq00             = _mm256_mul_pd(iq0,jq0);
261             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
262                                             vdwioffsetptr0+vdwjidx0B,
263                                             vdwioffsetptr0+vdwjidx0C,
264                                             vdwioffsetptr0+vdwjidx0D,
265                                             &c6_00,&c12_00);
266
267             /* Calculate table index by multiplying r with table scale and truncate to integer */
268             rt               = _mm256_mul_pd(r00,vftabscale);
269             vfitab           = _mm256_cvttpd_epi32(rt);
270             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
271             vfitab           = _mm_slli_epi32(vfitab,3);
272
273             /* EWALD ELECTROSTATICS */
274
275             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
276             ewrt             = _mm256_mul_pd(r00,ewtabscale);
277             ewitab           = _mm256_cvttpd_epi32(ewrt);
278             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
279             ewitab           = _mm_slli_epi32(ewitab,2);
280             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
281             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
282             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
283             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
284             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
285             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
286             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
287             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
288             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
289
290             /* CUBIC SPLINE TABLE DISPERSION */
291             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
292             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
293             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
294             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
295             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
296             Heps             = _mm256_mul_pd(vfeps,H);
297             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
298             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
299             vvdw6            = _mm256_mul_pd(c6_00,VV);
300             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
301             fvdw6            = _mm256_mul_pd(c6_00,FF);
302
303             /* CUBIC SPLINE TABLE REPULSION */
304             vfitab           = _mm_add_epi32(vfitab,ifour);
305             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
306             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
307             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
308             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
309             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
310             Heps             = _mm256_mul_pd(vfeps,H);
311             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
312             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
313             vvdw12           = _mm256_mul_pd(c12_00,VV);
314             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
315             fvdw12           = _mm256_mul_pd(c12_00,FF);
316             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
317             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velecsum         = _mm256_add_pd(velecsum,velec);
321             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
322
323             fscal            = _mm256_add_pd(felec,fvdw);
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm256_mul_pd(fscal,dx00);
327             ty               = _mm256_mul_pd(fscal,dy00);
328             tz               = _mm256_mul_pd(fscal,dz00);
329
330             /* Update vectorial force */
331             fix0             = _mm256_add_pd(fix0,tx);
332             fiy0             = _mm256_add_pd(fiy0,ty);
333             fiz0             = _mm256_add_pd(fiz0,tz);
334
335             fjx0             = _mm256_add_pd(fjx0,tx);
336             fjy0             = _mm256_add_pd(fjy0,ty);
337             fjz0             = _mm256_add_pd(fjz0,tz);
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             r10              = _mm256_mul_pd(rsq10,rinv10);
344
345             /* Compute parameters for interactions between i and j atoms */
346             qq10             = _mm256_mul_pd(iq1,jq0);
347
348             /* EWALD ELECTROSTATICS */
349
350             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
351             ewrt             = _mm256_mul_pd(r10,ewtabscale);
352             ewitab           = _mm256_cvttpd_epi32(ewrt);
353             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
354             ewitab           = _mm_slli_epi32(ewitab,2);
355             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
356             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
357             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
358             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
359             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
360             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
361             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
362             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
363             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             velecsum         = _mm256_add_pd(velecsum,velec);
367
368             fscal            = felec;
369
370             /* Calculate temporary vectorial force */
371             tx               = _mm256_mul_pd(fscal,dx10);
372             ty               = _mm256_mul_pd(fscal,dy10);
373             tz               = _mm256_mul_pd(fscal,dz10);
374
375             /* Update vectorial force */
376             fix1             = _mm256_add_pd(fix1,tx);
377             fiy1             = _mm256_add_pd(fiy1,ty);
378             fiz1             = _mm256_add_pd(fiz1,tz);
379
380             fjx0             = _mm256_add_pd(fjx0,tx);
381             fjy0             = _mm256_add_pd(fjy0,ty);
382             fjz0             = _mm256_add_pd(fjz0,tz);
383
384             /**************************
385              * CALCULATE INTERACTIONS *
386              **************************/
387
388             r20              = _mm256_mul_pd(rsq20,rinv20);
389
390             /* Compute parameters for interactions between i and j atoms */
391             qq20             = _mm256_mul_pd(iq2,jq0);
392
393             /* EWALD ELECTROSTATICS */
394
395             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
396             ewrt             = _mm256_mul_pd(r20,ewtabscale);
397             ewitab           = _mm256_cvttpd_epi32(ewrt);
398             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
399             ewitab           = _mm_slli_epi32(ewitab,2);
400             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
401             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
402             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
403             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
404             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
405             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
406             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
407             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
408             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
409
410             /* Update potential sum for this i atom from the interaction with this j atom. */
411             velecsum         = _mm256_add_pd(velecsum,velec);
412
413             fscal            = felec;
414
415             /* Calculate temporary vectorial force */
416             tx               = _mm256_mul_pd(fscal,dx20);
417             ty               = _mm256_mul_pd(fscal,dy20);
418             tz               = _mm256_mul_pd(fscal,dz20);
419
420             /* Update vectorial force */
421             fix2             = _mm256_add_pd(fix2,tx);
422             fiy2             = _mm256_add_pd(fiy2,ty);
423             fiz2             = _mm256_add_pd(fiz2,tz);
424
425             fjx0             = _mm256_add_pd(fjx0,tx);
426             fjy0             = _mm256_add_pd(fjy0,ty);
427             fjz0             = _mm256_add_pd(fjz0,tz);
428
429             fjptrA             = f+j_coord_offsetA;
430             fjptrB             = f+j_coord_offsetB;
431             fjptrC             = f+j_coord_offsetC;
432             fjptrD             = f+j_coord_offsetD;
433
434             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
435
436             /* Inner loop uses 160 flops */
437         }
438
439         if(jidx<j_index_end)
440         {
441
442             /* Get j neighbor index, and coordinate index */
443             jnrlistA         = jjnr[jidx];
444             jnrlistB         = jjnr[jidx+1];
445             jnrlistC         = jjnr[jidx+2];
446             jnrlistD         = jjnr[jidx+3];
447             /* Sign of each element will be negative for non-real atoms.
448              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
449              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
450              */
451             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
452
453             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
454             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
455             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
456
457             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
458             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
459             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
460             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
461             j_coord_offsetA  = DIM*jnrA;
462             j_coord_offsetB  = DIM*jnrB;
463             j_coord_offsetC  = DIM*jnrC;
464             j_coord_offsetD  = DIM*jnrD;
465
466             /* load j atom coordinates */
467             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
468                                                  x+j_coord_offsetC,x+j_coord_offsetD,
469                                                  &jx0,&jy0,&jz0);
470
471             /* Calculate displacement vector */
472             dx00             = _mm256_sub_pd(ix0,jx0);
473             dy00             = _mm256_sub_pd(iy0,jy0);
474             dz00             = _mm256_sub_pd(iz0,jz0);
475             dx10             = _mm256_sub_pd(ix1,jx0);
476             dy10             = _mm256_sub_pd(iy1,jy0);
477             dz10             = _mm256_sub_pd(iz1,jz0);
478             dx20             = _mm256_sub_pd(ix2,jx0);
479             dy20             = _mm256_sub_pd(iy2,jy0);
480             dz20             = _mm256_sub_pd(iz2,jz0);
481
482             /* Calculate squared distance and things based on it */
483             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
484             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
485             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
486
487             rinv00           = avx256_invsqrt_d(rsq00);
488             rinv10           = avx256_invsqrt_d(rsq10);
489             rinv20           = avx256_invsqrt_d(rsq20);
490
491             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
492             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
493             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
494
495             /* Load parameters for j particles */
496             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
497                                                                  charge+jnrC+0,charge+jnrD+0);
498             vdwjidx0A        = 2*vdwtype[jnrA+0];
499             vdwjidx0B        = 2*vdwtype[jnrB+0];
500             vdwjidx0C        = 2*vdwtype[jnrC+0];
501             vdwjidx0D        = 2*vdwtype[jnrD+0];
502
503             fjx0             = _mm256_setzero_pd();
504             fjy0             = _mm256_setzero_pd();
505             fjz0             = _mm256_setzero_pd();
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             r00              = _mm256_mul_pd(rsq00,rinv00);
512             r00              = _mm256_andnot_pd(dummy_mask,r00);
513
514             /* Compute parameters for interactions between i and j atoms */
515             qq00             = _mm256_mul_pd(iq0,jq0);
516             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
517                                             vdwioffsetptr0+vdwjidx0B,
518                                             vdwioffsetptr0+vdwjidx0C,
519                                             vdwioffsetptr0+vdwjidx0D,
520                                             &c6_00,&c12_00);
521
522             /* Calculate table index by multiplying r with table scale and truncate to integer */
523             rt               = _mm256_mul_pd(r00,vftabscale);
524             vfitab           = _mm256_cvttpd_epi32(rt);
525             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
526             vfitab           = _mm_slli_epi32(vfitab,3);
527
528             /* EWALD ELECTROSTATICS */
529
530             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
531             ewrt             = _mm256_mul_pd(r00,ewtabscale);
532             ewitab           = _mm256_cvttpd_epi32(ewrt);
533             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
534             ewitab           = _mm_slli_epi32(ewitab,2);
535             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
536             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
537             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
538             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
539             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
540             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
541             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
542             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
543             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
544
545             /* CUBIC SPLINE TABLE DISPERSION */
546             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
547             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
548             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
549             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
550             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
551             Heps             = _mm256_mul_pd(vfeps,H);
552             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
553             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
554             vvdw6            = _mm256_mul_pd(c6_00,VV);
555             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
556             fvdw6            = _mm256_mul_pd(c6_00,FF);
557
558             /* CUBIC SPLINE TABLE REPULSION */
559             vfitab           = _mm_add_epi32(vfitab,ifour);
560             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
561             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
562             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
563             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
564             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
565             Heps             = _mm256_mul_pd(vfeps,H);
566             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
567             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
568             vvdw12           = _mm256_mul_pd(c12_00,VV);
569             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
570             fvdw12           = _mm256_mul_pd(c12_00,FF);
571             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
572             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
573
574             /* Update potential sum for this i atom from the interaction with this j atom. */
575             velec            = _mm256_andnot_pd(dummy_mask,velec);
576             velecsum         = _mm256_add_pd(velecsum,velec);
577             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
578             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
579
580             fscal            = _mm256_add_pd(felec,fvdw);
581
582             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
583
584             /* Calculate temporary vectorial force */
585             tx               = _mm256_mul_pd(fscal,dx00);
586             ty               = _mm256_mul_pd(fscal,dy00);
587             tz               = _mm256_mul_pd(fscal,dz00);
588
589             /* Update vectorial force */
590             fix0             = _mm256_add_pd(fix0,tx);
591             fiy0             = _mm256_add_pd(fiy0,ty);
592             fiz0             = _mm256_add_pd(fiz0,tz);
593
594             fjx0             = _mm256_add_pd(fjx0,tx);
595             fjy0             = _mm256_add_pd(fjy0,ty);
596             fjz0             = _mm256_add_pd(fjz0,tz);
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             r10              = _mm256_mul_pd(rsq10,rinv10);
603             r10              = _mm256_andnot_pd(dummy_mask,r10);
604
605             /* Compute parameters for interactions between i and j atoms */
606             qq10             = _mm256_mul_pd(iq1,jq0);
607
608             /* EWALD ELECTROSTATICS */
609
610             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
611             ewrt             = _mm256_mul_pd(r10,ewtabscale);
612             ewitab           = _mm256_cvttpd_epi32(ewrt);
613             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
614             ewitab           = _mm_slli_epi32(ewitab,2);
615             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
616             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
617             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
618             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
619             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
620             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
621             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
622             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
623             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
624
625             /* Update potential sum for this i atom from the interaction with this j atom. */
626             velec            = _mm256_andnot_pd(dummy_mask,velec);
627             velecsum         = _mm256_add_pd(velecsum,velec);
628
629             fscal            = felec;
630
631             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
632
633             /* Calculate temporary vectorial force */
634             tx               = _mm256_mul_pd(fscal,dx10);
635             ty               = _mm256_mul_pd(fscal,dy10);
636             tz               = _mm256_mul_pd(fscal,dz10);
637
638             /* Update vectorial force */
639             fix1             = _mm256_add_pd(fix1,tx);
640             fiy1             = _mm256_add_pd(fiy1,ty);
641             fiz1             = _mm256_add_pd(fiz1,tz);
642
643             fjx0             = _mm256_add_pd(fjx0,tx);
644             fjy0             = _mm256_add_pd(fjy0,ty);
645             fjz0             = _mm256_add_pd(fjz0,tz);
646
647             /**************************
648              * CALCULATE INTERACTIONS *
649              **************************/
650
651             r20              = _mm256_mul_pd(rsq20,rinv20);
652             r20              = _mm256_andnot_pd(dummy_mask,r20);
653
654             /* Compute parameters for interactions between i and j atoms */
655             qq20             = _mm256_mul_pd(iq2,jq0);
656
657             /* EWALD ELECTROSTATICS */
658
659             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
660             ewrt             = _mm256_mul_pd(r20,ewtabscale);
661             ewitab           = _mm256_cvttpd_epi32(ewrt);
662             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
663             ewitab           = _mm_slli_epi32(ewitab,2);
664             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
665             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
666             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
667             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
668             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
669             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
670             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
671             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
672             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
673
674             /* Update potential sum for this i atom from the interaction with this j atom. */
675             velec            = _mm256_andnot_pd(dummy_mask,velec);
676             velecsum         = _mm256_add_pd(velecsum,velec);
677
678             fscal            = felec;
679
680             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
681
682             /* Calculate temporary vectorial force */
683             tx               = _mm256_mul_pd(fscal,dx20);
684             ty               = _mm256_mul_pd(fscal,dy20);
685             tz               = _mm256_mul_pd(fscal,dz20);
686
687             /* Update vectorial force */
688             fix2             = _mm256_add_pd(fix2,tx);
689             fiy2             = _mm256_add_pd(fiy2,ty);
690             fiz2             = _mm256_add_pd(fiz2,tz);
691
692             fjx0             = _mm256_add_pd(fjx0,tx);
693             fjy0             = _mm256_add_pd(fjy0,ty);
694             fjz0             = _mm256_add_pd(fjz0,tz);
695
696             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
697             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
698             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
699             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
700
701             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
702
703             /* Inner loop uses 163 flops */
704         }
705
706         /* End of innermost loop */
707
708         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
709                                                  f+i_coord_offset,fshift+i_shift_offset);
710
711         ggid                        = gid[iidx];
712         /* Update potential energies */
713         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
714         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
715
716         /* Increment number of inner iterations */
717         inneriter                  += j_index_end - j_index_start;
718
719         /* Outer loop uses 20 flops */
720     }
721
722     /* Increment number of outer iterations */
723     outeriter        += nri;
724
725     /* Update outer/inner flops */
726
727     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*163);
728 }
729 /*
730  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_256_double
731  * Electrostatics interaction: Ewald
732  * VdW interaction:            CubicSplineTable
733  * Geometry:                   Water3-Particle
734  * Calculate force/pot:        Force
735  */
736 void
737 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_256_double
738                     (t_nblist                    * gmx_restrict       nlist,
739                      rvec                        * gmx_restrict          xx,
740                      rvec                        * gmx_restrict          ff,
741                      struct t_forcerec           * gmx_restrict          fr,
742                      t_mdatoms                   * gmx_restrict     mdatoms,
743                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
744                      t_nrnb                      * gmx_restrict        nrnb)
745 {
746     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
747      * just 0 for non-waters.
748      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
749      * jnr indices corresponding to data put in the four positions in the SIMD register.
750      */
751     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
752     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
753     int              jnrA,jnrB,jnrC,jnrD;
754     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
755     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
756     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
757     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
758     real             rcutoff_scalar;
759     real             *shiftvec,*fshift,*x,*f;
760     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
761     real             scratch[4*DIM];
762     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
763     real *           vdwioffsetptr0;
764     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
765     real *           vdwioffsetptr1;
766     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
767     real *           vdwioffsetptr2;
768     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
769     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
770     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
771     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
772     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
773     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
774     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
775     real             *charge;
776     int              nvdwtype;
777     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
778     int              *vdwtype;
779     real             *vdwparam;
780     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
781     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
782     __m128i          vfitab;
783     __m128i          ifour       = _mm_set1_epi32(4);
784     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
785     real             *vftab;
786     __m128i          ewitab;
787     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
788     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
789     real             *ewtab;
790     __m256d          dummy_mask,cutoff_mask;
791     __m128           tmpmask0,tmpmask1;
792     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
793     __m256d          one     = _mm256_set1_pd(1.0);
794     __m256d          two     = _mm256_set1_pd(2.0);
795     x                = xx[0];
796     f                = ff[0];
797
798     nri              = nlist->nri;
799     iinr             = nlist->iinr;
800     jindex           = nlist->jindex;
801     jjnr             = nlist->jjnr;
802     shiftidx         = nlist->shift;
803     gid              = nlist->gid;
804     shiftvec         = fr->shift_vec[0];
805     fshift           = fr->fshift[0];
806     facel            = _mm256_set1_pd(fr->ic->epsfac);
807     charge           = mdatoms->chargeA;
808     nvdwtype         = fr->ntype;
809     vdwparam         = fr->nbfp;
810     vdwtype          = mdatoms->typeA;
811
812     vftab            = kernel_data->table_vdw->data;
813     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
814
815     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
816     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
817     beta2            = _mm256_mul_pd(beta,beta);
818     beta3            = _mm256_mul_pd(beta,beta2);
819
820     ewtab            = fr->ic->tabq_coul_F;
821     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
822     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
823
824     /* Setup water-specific parameters */
825     inr              = nlist->iinr[0];
826     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
827     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
828     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
829     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
830
831     /* Avoid stupid compiler warnings */
832     jnrA = jnrB = jnrC = jnrD = 0;
833     j_coord_offsetA = 0;
834     j_coord_offsetB = 0;
835     j_coord_offsetC = 0;
836     j_coord_offsetD = 0;
837
838     outeriter        = 0;
839     inneriter        = 0;
840
841     for(iidx=0;iidx<4*DIM;iidx++)
842     {
843         scratch[iidx] = 0.0;
844     }
845
846     /* Start outer loop over neighborlists */
847     for(iidx=0; iidx<nri; iidx++)
848     {
849         /* Load shift vector for this list */
850         i_shift_offset   = DIM*shiftidx[iidx];
851
852         /* Load limits for loop over neighbors */
853         j_index_start    = jindex[iidx];
854         j_index_end      = jindex[iidx+1];
855
856         /* Get outer coordinate index */
857         inr              = iinr[iidx];
858         i_coord_offset   = DIM*inr;
859
860         /* Load i particle coords and add shift vector */
861         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
862                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
863
864         fix0             = _mm256_setzero_pd();
865         fiy0             = _mm256_setzero_pd();
866         fiz0             = _mm256_setzero_pd();
867         fix1             = _mm256_setzero_pd();
868         fiy1             = _mm256_setzero_pd();
869         fiz1             = _mm256_setzero_pd();
870         fix2             = _mm256_setzero_pd();
871         fiy2             = _mm256_setzero_pd();
872         fiz2             = _mm256_setzero_pd();
873
874         /* Start inner kernel loop */
875         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
876         {
877
878             /* Get j neighbor index, and coordinate index */
879             jnrA             = jjnr[jidx];
880             jnrB             = jjnr[jidx+1];
881             jnrC             = jjnr[jidx+2];
882             jnrD             = jjnr[jidx+3];
883             j_coord_offsetA  = DIM*jnrA;
884             j_coord_offsetB  = DIM*jnrB;
885             j_coord_offsetC  = DIM*jnrC;
886             j_coord_offsetD  = DIM*jnrD;
887
888             /* load j atom coordinates */
889             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
890                                                  x+j_coord_offsetC,x+j_coord_offsetD,
891                                                  &jx0,&jy0,&jz0);
892
893             /* Calculate displacement vector */
894             dx00             = _mm256_sub_pd(ix0,jx0);
895             dy00             = _mm256_sub_pd(iy0,jy0);
896             dz00             = _mm256_sub_pd(iz0,jz0);
897             dx10             = _mm256_sub_pd(ix1,jx0);
898             dy10             = _mm256_sub_pd(iy1,jy0);
899             dz10             = _mm256_sub_pd(iz1,jz0);
900             dx20             = _mm256_sub_pd(ix2,jx0);
901             dy20             = _mm256_sub_pd(iy2,jy0);
902             dz20             = _mm256_sub_pd(iz2,jz0);
903
904             /* Calculate squared distance and things based on it */
905             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
906             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
907             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
908
909             rinv00           = avx256_invsqrt_d(rsq00);
910             rinv10           = avx256_invsqrt_d(rsq10);
911             rinv20           = avx256_invsqrt_d(rsq20);
912
913             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
914             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
915             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
916
917             /* Load parameters for j particles */
918             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
919                                                                  charge+jnrC+0,charge+jnrD+0);
920             vdwjidx0A        = 2*vdwtype[jnrA+0];
921             vdwjidx0B        = 2*vdwtype[jnrB+0];
922             vdwjidx0C        = 2*vdwtype[jnrC+0];
923             vdwjidx0D        = 2*vdwtype[jnrD+0];
924
925             fjx0             = _mm256_setzero_pd();
926             fjy0             = _mm256_setzero_pd();
927             fjz0             = _mm256_setzero_pd();
928
929             /**************************
930              * CALCULATE INTERACTIONS *
931              **************************/
932
933             r00              = _mm256_mul_pd(rsq00,rinv00);
934
935             /* Compute parameters for interactions between i and j atoms */
936             qq00             = _mm256_mul_pd(iq0,jq0);
937             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
938                                             vdwioffsetptr0+vdwjidx0B,
939                                             vdwioffsetptr0+vdwjidx0C,
940                                             vdwioffsetptr0+vdwjidx0D,
941                                             &c6_00,&c12_00);
942
943             /* Calculate table index by multiplying r with table scale and truncate to integer */
944             rt               = _mm256_mul_pd(r00,vftabscale);
945             vfitab           = _mm256_cvttpd_epi32(rt);
946             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
947             vfitab           = _mm_slli_epi32(vfitab,3);
948
949             /* EWALD ELECTROSTATICS */
950
951             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
952             ewrt             = _mm256_mul_pd(r00,ewtabscale);
953             ewitab           = _mm256_cvttpd_epi32(ewrt);
954             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
955             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
956                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
957                                             &ewtabF,&ewtabFn);
958             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
959             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
960
961             /* CUBIC SPLINE TABLE DISPERSION */
962             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
963             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
964             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
965             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
966             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
967             Heps             = _mm256_mul_pd(vfeps,H);
968             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
969             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
970             fvdw6            = _mm256_mul_pd(c6_00,FF);
971
972             /* CUBIC SPLINE TABLE REPULSION */
973             vfitab           = _mm_add_epi32(vfitab,ifour);
974             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
975             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
976             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
977             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
978             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
979             Heps             = _mm256_mul_pd(vfeps,H);
980             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
981             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
982             fvdw12           = _mm256_mul_pd(c12_00,FF);
983             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
984
985             fscal            = _mm256_add_pd(felec,fvdw);
986
987             /* Calculate temporary vectorial force */
988             tx               = _mm256_mul_pd(fscal,dx00);
989             ty               = _mm256_mul_pd(fscal,dy00);
990             tz               = _mm256_mul_pd(fscal,dz00);
991
992             /* Update vectorial force */
993             fix0             = _mm256_add_pd(fix0,tx);
994             fiy0             = _mm256_add_pd(fiy0,ty);
995             fiz0             = _mm256_add_pd(fiz0,tz);
996
997             fjx0             = _mm256_add_pd(fjx0,tx);
998             fjy0             = _mm256_add_pd(fjy0,ty);
999             fjz0             = _mm256_add_pd(fjz0,tz);
1000
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             r10              = _mm256_mul_pd(rsq10,rinv10);
1006
1007             /* Compute parameters for interactions between i and j atoms */
1008             qq10             = _mm256_mul_pd(iq1,jq0);
1009
1010             /* EWALD ELECTROSTATICS */
1011
1012             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1013             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1014             ewitab           = _mm256_cvttpd_epi32(ewrt);
1015             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1016             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1017                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1018                                             &ewtabF,&ewtabFn);
1019             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1020             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1021
1022             fscal            = felec;
1023
1024             /* Calculate temporary vectorial force */
1025             tx               = _mm256_mul_pd(fscal,dx10);
1026             ty               = _mm256_mul_pd(fscal,dy10);
1027             tz               = _mm256_mul_pd(fscal,dz10);
1028
1029             /* Update vectorial force */
1030             fix1             = _mm256_add_pd(fix1,tx);
1031             fiy1             = _mm256_add_pd(fiy1,ty);
1032             fiz1             = _mm256_add_pd(fiz1,tz);
1033
1034             fjx0             = _mm256_add_pd(fjx0,tx);
1035             fjy0             = _mm256_add_pd(fjy0,ty);
1036             fjz0             = _mm256_add_pd(fjz0,tz);
1037
1038             /**************************
1039              * CALCULATE INTERACTIONS *
1040              **************************/
1041
1042             r20              = _mm256_mul_pd(rsq20,rinv20);
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             qq20             = _mm256_mul_pd(iq2,jq0);
1046
1047             /* EWALD ELECTROSTATICS */
1048
1049             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1050             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1051             ewitab           = _mm256_cvttpd_epi32(ewrt);
1052             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1053             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1054                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1055                                             &ewtabF,&ewtabFn);
1056             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1057             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1058
1059             fscal            = felec;
1060
1061             /* Calculate temporary vectorial force */
1062             tx               = _mm256_mul_pd(fscal,dx20);
1063             ty               = _mm256_mul_pd(fscal,dy20);
1064             tz               = _mm256_mul_pd(fscal,dz20);
1065
1066             /* Update vectorial force */
1067             fix2             = _mm256_add_pd(fix2,tx);
1068             fiy2             = _mm256_add_pd(fiy2,ty);
1069             fiz2             = _mm256_add_pd(fiz2,tz);
1070
1071             fjx0             = _mm256_add_pd(fjx0,tx);
1072             fjy0             = _mm256_add_pd(fjy0,ty);
1073             fjz0             = _mm256_add_pd(fjz0,tz);
1074
1075             fjptrA             = f+j_coord_offsetA;
1076             fjptrB             = f+j_coord_offsetB;
1077             fjptrC             = f+j_coord_offsetC;
1078             fjptrD             = f+j_coord_offsetD;
1079
1080             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1081
1082             /* Inner loop uses 137 flops */
1083         }
1084
1085         if(jidx<j_index_end)
1086         {
1087
1088             /* Get j neighbor index, and coordinate index */
1089             jnrlistA         = jjnr[jidx];
1090             jnrlistB         = jjnr[jidx+1];
1091             jnrlistC         = jjnr[jidx+2];
1092             jnrlistD         = jjnr[jidx+3];
1093             /* Sign of each element will be negative for non-real atoms.
1094              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1095              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1096              */
1097             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1098
1099             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1100             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1101             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1102
1103             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1104             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1105             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1106             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1107             j_coord_offsetA  = DIM*jnrA;
1108             j_coord_offsetB  = DIM*jnrB;
1109             j_coord_offsetC  = DIM*jnrC;
1110             j_coord_offsetD  = DIM*jnrD;
1111
1112             /* load j atom coordinates */
1113             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1114                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1115                                                  &jx0,&jy0,&jz0);
1116
1117             /* Calculate displacement vector */
1118             dx00             = _mm256_sub_pd(ix0,jx0);
1119             dy00             = _mm256_sub_pd(iy0,jy0);
1120             dz00             = _mm256_sub_pd(iz0,jz0);
1121             dx10             = _mm256_sub_pd(ix1,jx0);
1122             dy10             = _mm256_sub_pd(iy1,jy0);
1123             dz10             = _mm256_sub_pd(iz1,jz0);
1124             dx20             = _mm256_sub_pd(ix2,jx0);
1125             dy20             = _mm256_sub_pd(iy2,jy0);
1126             dz20             = _mm256_sub_pd(iz2,jz0);
1127
1128             /* Calculate squared distance and things based on it */
1129             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1130             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1131             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1132
1133             rinv00           = avx256_invsqrt_d(rsq00);
1134             rinv10           = avx256_invsqrt_d(rsq10);
1135             rinv20           = avx256_invsqrt_d(rsq20);
1136
1137             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1138             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1139             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1140
1141             /* Load parameters for j particles */
1142             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1143                                                                  charge+jnrC+0,charge+jnrD+0);
1144             vdwjidx0A        = 2*vdwtype[jnrA+0];
1145             vdwjidx0B        = 2*vdwtype[jnrB+0];
1146             vdwjidx0C        = 2*vdwtype[jnrC+0];
1147             vdwjidx0D        = 2*vdwtype[jnrD+0];
1148
1149             fjx0             = _mm256_setzero_pd();
1150             fjy0             = _mm256_setzero_pd();
1151             fjz0             = _mm256_setzero_pd();
1152
1153             /**************************
1154              * CALCULATE INTERACTIONS *
1155              **************************/
1156
1157             r00              = _mm256_mul_pd(rsq00,rinv00);
1158             r00              = _mm256_andnot_pd(dummy_mask,r00);
1159
1160             /* Compute parameters for interactions between i and j atoms */
1161             qq00             = _mm256_mul_pd(iq0,jq0);
1162             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1163                                             vdwioffsetptr0+vdwjidx0B,
1164                                             vdwioffsetptr0+vdwjidx0C,
1165                                             vdwioffsetptr0+vdwjidx0D,
1166                                             &c6_00,&c12_00);
1167
1168             /* Calculate table index by multiplying r with table scale and truncate to integer */
1169             rt               = _mm256_mul_pd(r00,vftabscale);
1170             vfitab           = _mm256_cvttpd_epi32(rt);
1171             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1172             vfitab           = _mm_slli_epi32(vfitab,3);
1173
1174             /* EWALD ELECTROSTATICS */
1175
1176             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1177             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1178             ewitab           = _mm256_cvttpd_epi32(ewrt);
1179             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1180             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1181                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1182                                             &ewtabF,&ewtabFn);
1183             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1184             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1185
1186             /* CUBIC SPLINE TABLE DISPERSION */
1187             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1188             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1189             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1190             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1191             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1192             Heps             = _mm256_mul_pd(vfeps,H);
1193             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1194             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1195             fvdw6            = _mm256_mul_pd(c6_00,FF);
1196
1197             /* CUBIC SPLINE TABLE REPULSION */
1198             vfitab           = _mm_add_epi32(vfitab,ifour);
1199             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1200             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1201             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1202             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1203             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1204             Heps             = _mm256_mul_pd(vfeps,H);
1205             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1206             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1207             fvdw12           = _mm256_mul_pd(c12_00,FF);
1208             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1209
1210             fscal            = _mm256_add_pd(felec,fvdw);
1211
1212             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1213
1214             /* Calculate temporary vectorial force */
1215             tx               = _mm256_mul_pd(fscal,dx00);
1216             ty               = _mm256_mul_pd(fscal,dy00);
1217             tz               = _mm256_mul_pd(fscal,dz00);
1218
1219             /* Update vectorial force */
1220             fix0             = _mm256_add_pd(fix0,tx);
1221             fiy0             = _mm256_add_pd(fiy0,ty);
1222             fiz0             = _mm256_add_pd(fiz0,tz);
1223
1224             fjx0             = _mm256_add_pd(fjx0,tx);
1225             fjy0             = _mm256_add_pd(fjy0,ty);
1226             fjz0             = _mm256_add_pd(fjz0,tz);
1227
1228             /**************************
1229              * CALCULATE INTERACTIONS *
1230              **************************/
1231
1232             r10              = _mm256_mul_pd(rsq10,rinv10);
1233             r10              = _mm256_andnot_pd(dummy_mask,r10);
1234
1235             /* Compute parameters for interactions between i and j atoms */
1236             qq10             = _mm256_mul_pd(iq1,jq0);
1237
1238             /* EWALD ELECTROSTATICS */
1239
1240             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1241             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1242             ewitab           = _mm256_cvttpd_epi32(ewrt);
1243             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1244             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1245                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1246                                             &ewtabF,&ewtabFn);
1247             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1248             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1249
1250             fscal            = felec;
1251
1252             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1253
1254             /* Calculate temporary vectorial force */
1255             tx               = _mm256_mul_pd(fscal,dx10);
1256             ty               = _mm256_mul_pd(fscal,dy10);
1257             tz               = _mm256_mul_pd(fscal,dz10);
1258
1259             /* Update vectorial force */
1260             fix1             = _mm256_add_pd(fix1,tx);
1261             fiy1             = _mm256_add_pd(fiy1,ty);
1262             fiz1             = _mm256_add_pd(fiz1,tz);
1263
1264             fjx0             = _mm256_add_pd(fjx0,tx);
1265             fjy0             = _mm256_add_pd(fjy0,ty);
1266             fjz0             = _mm256_add_pd(fjz0,tz);
1267
1268             /**************************
1269              * CALCULATE INTERACTIONS *
1270              **************************/
1271
1272             r20              = _mm256_mul_pd(rsq20,rinv20);
1273             r20              = _mm256_andnot_pd(dummy_mask,r20);
1274
1275             /* Compute parameters for interactions between i and j atoms */
1276             qq20             = _mm256_mul_pd(iq2,jq0);
1277
1278             /* EWALD ELECTROSTATICS */
1279
1280             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1281             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1282             ewitab           = _mm256_cvttpd_epi32(ewrt);
1283             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1284             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1285                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1286                                             &ewtabF,&ewtabFn);
1287             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1288             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1289
1290             fscal            = felec;
1291
1292             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1293
1294             /* Calculate temporary vectorial force */
1295             tx               = _mm256_mul_pd(fscal,dx20);
1296             ty               = _mm256_mul_pd(fscal,dy20);
1297             tz               = _mm256_mul_pd(fscal,dz20);
1298
1299             /* Update vectorial force */
1300             fix2             = _mm256_add_pd(fix2,tx);
1301             fiy2             = _mm256_add_pd(fiy2,ty);
1302             fiz2             = _mm256_add_pd(fiz2,tz);
1303
1304             fjx0             = _mm256_add_pd(fjx0,tx);
1305             fjy0             = _mm256_add_pd(fjy0,ty);
1306             fjz0             = _mm256_add_pd(fjz0,tz);
1307
1308             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1309             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1310             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1311             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1312
1313             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1314
1315             /* Inner loop uses 140 flops */
1316         }
1317
1318         /* End of innermost loop */
1319
1320         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1321                                                  f+i_coord_offset,fshift+i_shift_offset);
1322
1323         /* Increment number of inner iterations */
1324         inneriter                  += j_index_end - j_index_start;
1325
1326         /* Outer loop uses 18 flops */
1327     }
1328
1329     /* Increment number of outer iterations */
1330     outeriter        += nri;
1331
1332     /* Update outer/inner flops */
1333
1334     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*140);
1335 }