Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m128i          ewitab;
110     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
112     real             *ewtab;
113     __m256d          dummy_mask,cutoff_mask;
114     __m128           tmpmask0,tmpmask1;
115     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
116     __m256d          one     = _mm256_set1_pd(1.0);
117     __m256d          two     = _mm256_set1_pd(2.0);
118     x                = xx[0];
119     f                = ff[0];
120
121     nri              = nlist->nri;
122     iinr             = nlist->iinr;
123     jindex           = nlist->jindex;
124     jjnr             = nlist->jjnr;
125     shiftidx         = nlist->shift;
126     gid              = nlist->gid;
127     shiftvec         = fr->shift_vec[0];
128     fshift           = fr->fshift[0];
129     facel            = _mm256_set1_pd(fr->epsfac);
130     charge           = mdatoms->chargeA;
131     nvdwtype         = fr->ntype;
132     vdwparam         = fr->nbfp;
133     vdwtype          = mdatoms->typeA;
134
135     vftab            = kernel_data->table_vdw->data;
136     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
137
138     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
139     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
140     beta2            = _mm256_mul_pd(beta,beta);
141     beta3            = _mm256_mul_pd(beta,beta2);
142
143     ewtab            = fr->ic->tabq_coul_FDV0;
144     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
145     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
146
147     /* Setup water-specific parameters */
148     inr              = nlist->iinr[0];
149     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
150     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
151     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
152     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
153
154     /* Avoid stupid compiler warnings */
155     jnrA = jnrB = jnrC = jnrD = 0;
156     j_coord_offsetA = 0;
157     j_coord_offsetB = 0;
158     j_coord_offsetC = 0;
159     j_coord_offsetD = 0;
160
161     outeriter        = 0;
162     inneriter        = 0;
163
164     for(iidx=0;iidx<4*DIM;iidx++)
165     {
166         scratch[iidx] = 0.0;
167     }
168
169     /* Start outer loop over neighborlists */
170     for(iidx=0; iidx<nri; iidx++)
171     {
172         /* Load shift vector for this list */
173         i_shift_offset   = DIM*shiftidx[iidx];
174
175         /* Load limits for loop over neighbors */
176         j_index_start    = jindex[iidx];
177         j_index_end      = jindex[iidx+1];
178
179         /* Get outer coordinate index */
180         inr              = iinr[iidx];
181         i_coord_offset   = DIM*inr;
182
183         /* Load i particle coords and add shift vector */
184         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
185                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
186
187         fix0             = _mm256_setzero_pd();
188         fiy0             = _mm256_setzero_pd();
189         fiz0             = _mm256_setzero_pd();
190         fix1             = _mm256_setzero_pd();
191         fiy1             = _mm256_setzero_pd();
192         fiz1             = _mm256_setzero_pd();
193         fix2             = _mm256_setzero_pd();
194         fiy2             = _mm256_setzero_pd();
195         fiz2             = _mm256_setzero_pd();
196
197         /* Reset potential sums */
198         velecsum         = _mm256_setzero_pd();
199         vvdwsum          = _mm256_setzero_pd();
200
201         /* Start inner kernel loop */
202         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
203         {
204
205             /* Get j neighbor index, and coordinate index */
206             jnrA             = jjnr[jidx];
207             jnrB             = jjnr[jidx+1];
208             jnrC             = jjnr[jidx+2];
209             jnrD             = jjnr[jidx+3];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212             j_coord_offsetC  = DIM*jnrC;
213             j_coord_offsetD  = DIM*jnrD;
214
215             /* load j atom coordinates */
216             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
217                                                  x+j_coord_offsetC,x+j_coord_offsetD,
218                                                  &jx0,&jy0,&jz0);
219
220             /* Calculate displacement vector */
221             dx00             = _mm256_sub_pd(ix0,jx0);
222             dy00             = _mm256_sub_pd(iy0,jy0);
223             dz00             = _mm256_sub_pd(iz0,jz0);
224             dx10             = _mm256_sub_pd(ix1,jx0);
225             dy10             = _mm256_sub_pd(iy1,jy0);
226             dz10             = _mm256_sub_pd(iz1,jz0);
227             dx20             = _mm256_sub_pd(ix2,jx0);
228             dy20             = _mm256_sub_pd(iy2,jy0);
229             dz20             = _mm256_sub_pd(iz2,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
233             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
234             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
235
236             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
237             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
238             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
239
240             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
241             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
242             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
243
244             /* Load parameters for j particles */
245             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
246                                                                  charge+jnrC+0,charge+jnrD+0);
247             vdwjidx0A        = 2*vdwtype[jnrA+0];
248             vdwjidx0B        = 2*vdwtype[jnrB+0];
249             vdwjidx0C        = 2*vdwtype[jnrC+0];
250             vdwjidx0D        = 2*vdwtype[jnrD+0];
251
252             fjx0             = _mm256_setzero_pd();
253             fjy0             = _mm256_setzero_pd();
254             fjz0             = _mm256_setzero_pd();
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             r00              = _mm256_mul_pd(rsq00,rinv00);
261
262             /* Compute parameters for interactions between i and j atoms */
263             qq00             = _mm256_mul_pd(iq0,jq0);
264             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
265                                             vdwioffsetptr0+vdwjidx0B,
266                                             vdwioffsetptr0+vdwjidx0C,
267                                             vdwioffsetptr0+vdwjidx0D,
268                                             &c6_00,&c12_00);
269
270             /* Calculate table index by multiplying r with table scale and truncate to integer */
271             rt               = _mm256_mul_pd(r00,vftabscale);
272             vfitab           = _mm256_cvttpd_epi32(rt);
273             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
274             vfitab           = _mm_slli_epi32(vfitab,3);
275
276             /* EWALD ELECTROSTATICS */
277
278             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
279             ewrt             = _mm256_mul_pd(r00,ewtabscale);
280             ewitab           = _mm256_cvttpd_epi32(ewrt);
281             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
282             ewitab           = _mm_slli_epi32(ewitab,2);
283             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
284             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
285             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
286             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
287             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
288             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
289             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
290             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
291             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
292
293             /* CUBIC SPLINE TABLE DISPERSION */
294             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
295             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
296             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
297             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
298             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
299             Heps             = _mm256_mul_pd(vfeps,H);
300             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
301             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
302             vvdw6            = _mm256_mul_pd(c6_00,VV);
303             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
304             fvdw6            = _mm256_mul_pd(c6_00,FF);
305
306             /* CUBIC SPLINE TABLE REPULSION */
307             vfitab           = _mm_add_epi32(vfitab,ifour);
308             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
309             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
310             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
311             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
312             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
313             Heps             = _mm256_mul_pd(vfeps,H);
314             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
315             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
316             vvdw12           = _mm256_mul_pd(c12_00,VV);
317             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
318             fvdw12           = _mm256_mul_pd(c12_00,FF);
319             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
320             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
321
322             /* Update potential sum for this i atom from the interaction with this j atom. */
323             velecsum         = _mm256_add_pd(velecsum,velec);
324             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
325
326             fscal            = _mm256_add_pd(felec,fvdw);
327
328             /* Calculate temporary vectorial force */
329             tx               = _mm256_mul_pd(fscal,dx00);
330             ty               = _mm256_mul_pd(fscal,dy00);
331             tz               = _mm256_mul_pd(fscal,dz00);
332
333             /* Update vectorial force */
334             fix0             = _mm256_add_pd(fix0,tx);
335             fiy0             = _mm256_add_pd(fiy0,ty);
336             fiz0             = _mm256_add_pd(fiz0,tz);
337
338             fjx0             = _mm256_add_pd(fjx0,tx);
339             fjy0             = _mm256_add_pd(fjy0,ty);
340             fjz0             = _mm256_add_pd(fjz0,tz);
341
342             /**************************
343              * CALCULATE INTERACTIONS *
344              **************************/
345
346             r10              = _mm256_mul_pd(rsq10,rinv10);
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq10             = _mm256_mul_pd(iq1,jq0);
350
351             /* EWALD ELECTROSTATICS */
352
353             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
354             ewrt             = _mm256_mul_pd(r10,ewtabscale);
355             ewitab           = _mm256_cvttpd_epi32(ewrt);
356             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
357             ewitab           = _mm_slli_epi32(ewitab,2);
358             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
359             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
360             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
361             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
362             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
363             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
364             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
365             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
366             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             velecsum         = _mm256_add_pd(velecsum,velec);
370
371             fscal            = felec;
372
373             /* Calculate temporary vectorial force */
374             tx               = _mm256_mul_pd(fscal,dx10);
375             ty               = _mm256_mul_pd(fscal,dy10);
376             tz               = _mm256_mul_pd(fscal,dz10);
377
378             /* Update vectorial force */
379             fix1             = _mm256_add_pd(fix1,tx);
380             fiy1             = _mm256_add_pd(fiy1,ty);
381             fiz1             = _mm256_add_pd(fiz1,tz);
382
383             fjx0             = _mm256_add_pd(fjx0,tx);
384             fjy0             = _mm256_add_pd(fjy0,ty);
385             fjz0             = _mm256_add_pd(fjz0,tz);
386
387             /**************************
388              * CALCULATE INTERACTIONS *
389              **************************/
390
391             r20              = _mm256_mul_pd(rsq20,rinv20);
392
393             /* Compute parameters for interactions between i and j atoms */
394             qq20             = _mm256_mul_pd(iq2,jq0);
395
396             /* EWALD ELECTROSTATICS */
397
398             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
399             ewrt             = _mm256_mul_pd(r20,ewtabscale);
400             ewitab           = _mm256_cvttpd_epi32(ewrt);
401             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
402             ewitab           = _mm_slli_epi32(ewitab,2);
403             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
404             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
405             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
406             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
407             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
408             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
409             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
410             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
411             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
412
413             /* Update potential sum for this i atom from the interaction with this j atom. */
414             velecsum         = _mm256_add_pd(velecsum,velec);
415
416             fscal            = felec;
417
418             /* Calculate temporary vectorial force */
419             tx               = _mm256_mul_pd(fscal,dx20);
420             ty               = _mm256_mul_pd(fscal,dy20);
421             tz               = _mm256_mul_pd(fscal,dz20);
422
423             /* Update vectorial force */
424             fix2             = _mm256_add_pd(fix2,tx);
425             fiy2             = _mm256_add_pd(fiy2,ty);
426             fiz2             = _mm256_add_pd(fiz2,tz);
427
428             fjx0             = _mm256_add_pd(fjx0,tx);
429             fjy0             = _mm256_add_pd(fjy0,ty);
430             fjz0             = _mm256_add_pd(fjz0,tz);
431
432             fjptrA             = f+j_coord_offsetA;
433             fjptrB             = f+j_coord_offsetB;
434             fjptrC             = f+j_coord_offsetC;
435             fjptrD             = f+j_coord_offsetD;
436
437             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
438
439             /* Inner loop uses 160 flops */
440         }
441
442         if(jidx<j_index_end)
443         {
444
445             /* Get j neighbor index, and coordinate index */
446             jnrlistA         = jjnr[jidx];
447             jnrlistB         = jjnr[jidx+1];
448             jnrlistC         = jjnr[jidx+2];
449             jnrlistD         = jjnr[jidx+3];
450             /* Sign of each element will be negative for non-real atoms.
451              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
452              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
453              */
454             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
455
456             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
457             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
458             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
459
460             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
461             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
462             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
463             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
464             j_coord_offsetA  = DIM*jnrA;
465             j_coord_offsetB  = DIM*jnrB;
466             j_coord_offsetC  = DIM*jnrC;
467             j_coord_offsetD  = DIM*jnrD;
468
469             /* load j atom coordinates */
470             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
471                                                  x+j_coord_offsetC,x+j_coord_offsetD,
472                                                  &jx0,&jy0,&jz0);
473
474             /* Calculate displacement vector */
475             dx00             = _mm256_sub_pd(ix0,jx0);
476             dy00             = _mm256_sub_pd(iy0,jy0);
477             dz00             = _mm256_sub_pd(iz0,jz0);
478             dx10             = _mm256_sub_pd(ix1,jx0);
479             dy10             = _mm256_sub_pd(iy1,jy0);
480             dz10             = _mm256_sub_pd(iz1,jz0);
481             dx20             = _mm256_sub_pd(ix2,jx0);
482             dy20             = _mm256_sub_pd(iy2,jy0);
483             dz20             = _mm256_sub_pd(iz2,jz0);
484
485             /* Calculate squared distance and things based on it */
486             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
487             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
488             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
489
490             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
491             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
492             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
493
494             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
495             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
496             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
497
498             /* Load parameters for j particles */
499             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
500                                                                  charge+jnrC+0,charge+jnrD+0);
501             vdwjidx0A        = 2*vdwtype[jnrA+0];
502             vdwjidx0B        = 2*vdwtype[jnrB+0];
503             vdwjidx0C        = 2*vdwtype[jnrC+0];
504             vdwjidx0D        = 2*vdwtype[jnrD+0];
505
506             fjx0             = _mm256_setzero_pd();
507             fjy0             = _mm256_setzero_pd();
508             fjz0             = _mm256_setzero_pd();
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             r00              = _mm256_mul_pd(rsq00,rinv00);
515             r00              = _mm256_andnot_pd(dummy_mask,r00);
516
517             /* Compute parameters for interactions between i and j atoms */
518             qq00             = _mm256_mul_pd(iq0,jq0);
519             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
520                                             vdwioffsetptr0+vdwjidx0B,
521                                             vdwioffsetptr0+vdwjidx0C,
522                                             vdwioffsetptr0+vdwjidx0D,
523                                             &c6_00,&c12_00);
524
525             /* Calculate table index by multiplying r with table scale and truncate to integer */
526             rt               = _mm256_mul_pd(r00,vftabscale);
527             vfitab           = _mm256_cvttpd_epi32(rt);
528             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
529             vfitab           = _mm_slli_epi32(vfitab,3);
530
531             /* EWALD ELECTROSTATICS */
532
533             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
534             ewrt             = _mm256_mul_pd(r00,ewtabscale);
535             ewitab           = _mm256_cvttpd_epi32(ewrt);
536             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
537             ewitab           = _mm_slli_epi32(ewitab,2);
538             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
539             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
540             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
541             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
542             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
543             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
544             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
545             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
546             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
547
548             /* CUBIC SPLINE TABLE DISPERSION */
549             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
550             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
551             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
552             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
553             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
554             Heps             = _mm256_mul_pd(vfeps,H);
555             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
556             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
557             vvdw6            = _mm256_mul_pd(c6_00,VV);
558             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
559             fvdw6            = _mm256_mul_pd(c6_00,FF);
560
561             /* CUBIC SPLINE TABLE REPULSION */
562             vfitab           = _mm_add_epi32(vfitab,ifour);
563             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
564             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
565             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
566             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
567             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
568             Heps             = _mm256_mul_pd(vfeps,H);
569             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
570             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
571             vvdw12           = _mm256_mul_pd(c12_00,VV);
572             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
573             fvdw12           = _mm256_mul_pd(c12_00,FF);
574             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
575             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velec            = _mm256_andnot_pd(dummy_mask,velec);
579             velecsum         = _mm256_add_pd(velecsum,velec);
580             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
581             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
582
583             fscal            = _mm256_add_pd(felec,fvdw);
584
585             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
586
587             /* Calculate temporary vectorial force */
588             tx               = _mm256_mul_pd(fscal,dx00);
589             ty               = _mm256_mul_pd(fscal,dy00);
590             tz               = _mm256_mul_pd(fscal,dz00);
591
592             /* Update vectorial force */
593             fix0             = _mm256_add_pd(fix0,tx);
594             fiy0             = _mm256_add_pd(fiy0,ty);
595             fiz0             = _mm256_add_pd(fiz0,tz);
596
597             fjx0             = _mm256_add_pd(fjx0,tx);
598             fjy0             = _mm256_add_pd(fjy0,ty);
599             fjz0             = _mm256_add_pd(fjz0,tz);
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             r10              = _mm256_mul_pd(rsq10,rinv10);
606             r10              = _mm256_andnot_pd(dummy_mask,r10);
607
608             /* Compute parameters for interactions between i and j atoms */
609             qq10             = _mm256_mul_pd(iq1,jq0);
610
611             /* EWALD ELECTROSTATICS */
612
613             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
614             ewrt             = _mm256_mul_pd(r10,ewtabscale);
615             ewitab           = _mm256_cvttpd_epi32(ewrt);
616             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
617             ewitab           = _mm_slli_epi32(ewitab,2);
618             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
619             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
620             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
621             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
622             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
623             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
624             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
625             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
626             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
627
628             /* Update potential sum for this i atom from the interaction with this j atom. */
629             velec            = _mm256_andnot_pd(dummy_mask,velec);
630             velecsum         = _mm256_add_pd(velecsum,velec);
631
632             fscal            = felec;
633
634             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
635
636             /* Calculate temporary vectorial force */
637             tx               = _mm256_mul_pd(fscal,dx10);
638             ty               = _mm256_mul_pd(fscal,dy10);
639             tz               = _mm256_mul_pd(fscal,dz10);
640
641             /* Update vectorial force */
642             fix1             = _mm256_add_pd(fix1,tx);
643             fiy1             = _mm256_add_pd(fiy1,ty);
644             fiz1             = _mm256_add_pd(fiz1,tz);
645
646             fjx0             = _mm256_add_pd(fjx0,tx);
647             fjy0             = _mm256_add_pd(fjy0,ty);
648             fjz0             = _mm256_add_pd(fjz0,tz);
649
650             /**************************
651              * CALCULATE INTERACTIONS *
652              **************************/
653
654             r20              = _mm256_mul_pd(rsq20,rinv20);
655             r20              = _mm256_andnot_pd(dummy_mask,r20);
656
657             /* Compute parameters for interactions between i and j atoms */
658             qq20             = _mm256_mul_pd(iq2,jq0);
659
660             /* EWALD ELECTROSTATICS */
661
662             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
663             ewrt             = _mm256_mul_pd(r20,ewtabscale);
664             ewitab           = _mm256_cvttpd_epi32(ewrt);
665             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
666             ewitab           = _mm_slli_epi32(ewitab,2);
667             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
668             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
669             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
670             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
671             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
672             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
673             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
674             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
675             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
676
677             /* Update potential sum for this i atom from the interaction with this j atom. */
678             velec            = _mm256_andnot_pd(dummy_mask,velec);
679             velecsum         = _mm256_add_pd(velecsum,velec);
680
681             fscal            = felec;
682
683             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
684
685             /* Calculate temporary vectorial force */
686             tx               = _mm256_mul_pd(fscal,dx20);
687             ty               = _mm256_mul_pd(fscal,dy20);
688             tz               = _mm256_mul_pd(fscal,dz20);
689
690             /* Update vectorial force */
691             fix2             = _mm256_add_pd(fix2,tx);
692             fiy2             = _mm256_add_pd(fiy2,ty);
693             fiz2             = _mm256_add_pd(fiz2,tz);
694
695             fjx0             = _mm256_add_pd(fjx0,tx);
696             fjy0             = _mm256_add_pd(fjy0,ty);
697             fjz0             = _mm256_add_pd(fjz0,tz);
698
699             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
700             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
701             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
702             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
703
704             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
705
706             /* Inner loop uses 163 flops */
707         }
708
709         /* End of innermost loop */
710
711         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
712                                                  f+i_coord_offset,fshift+i_shift_offset);
713
714         ggid                        = gid[iidx];
715         /* Update potential energies */
716         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
717         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
718
719         /* Increment number of inner iterations */
720         inneriter                  += j_index_end - j_index_start;
721
722         /* Outer loop uses 20 flops */
723     }
724
725     /* Increment number of outer iterations */
726     outeriter        += nri;
727
728     /* Update outer/inner flops */
729
730     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*163);
731 }
732 /*
733  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_256_double
734  * Electrostatics interaction: Ewald
735  * VdW interaction:            CubicSplineTable
736  * Geometry:                   Water3-Particle
737  * Calculate force/pot:        Force
738  */
739 void
740 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_256_double
741                     (t_nblist                    * gmx_restrict       nlist,
742                      rvec                        * gmx_restrict          xx,
743                      rvec                        * gmx_restrict          ff,
744                      t_forcerec                  * gmx_restrict          fr,
745                      t_mdatoms                   * gmx_restrict     mdatoms,
746                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
747                      t_nrnb                      * gmx_restrict        nrnb)
748 {
749     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
750      * just 0 for non-waters.
751      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
752      * jnr indices corresponding to data put in the four positions in the SIMD register.
753      */
754     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
755     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
756     int              jnrA,jnrB,jnrC,jnrD;
757     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
758     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
759     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
760     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
761     real             rcutoff_scalar;
762     real             *shiftvec,*fshift,*x,*f;
763     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
764     real             scratch[4*DIM];
765     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
766     real *           vdwioffsetptr0;
767     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
768     real *           vdwioffsetptr1;
769     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
770     real *           vdwioffsetptr2;
771     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
772     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
773     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
774     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
775     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
776     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
777     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
778     real             *charge;
779     int              nvdwtype;
780     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
781     int              *vdwtype;
782     real             *vdwparam;
783     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
784     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
785     __m128i          vfitab;
786     __m128i          ifour       = _mm_set1_epi32(4);
787     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
788     real             *vftab;
789     __m128i          ewitab;
790     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
791     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
792     real             *ewtab;
793     __m256d          dummy_mask,cutoff_mask;
794     __m128           tmpmask0,tmpmask1;
795     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
796     __m256d          one     = _mm256_set1_pd(1.0);
797     __m256d          two     = _mm256_set1_pd(2.0);
798     x                = xx[0];
799     f                = ff[0];
800
801     nri              = nlist->nri;
802     iinr             = nlist->iinr;
803     jindex           = nlist->jindex;
804     jjnr             = nlist->jjnr;
805     shiftidx         = nlist->shift;
806     gid              = nlist->gid;
807     shiftvec         = fr->shift_vec[0];
808     fshift           = fr->fshift[0];
809     facel            = _mm256_set1_pd(fr->epsfac);
810     charge           = mdatoms->chargeA;
811     nvdwtype         = fr->ntype;
812     vdwparam         = fr->nbfp;
813     vdwtype          = mdatoms->typeA;
814
815     vftab            = kernel_data->table_vdw->data;
816     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
817
818     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
819     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
820     beta2            = _mm256_mul_pd(beta,beta);
821     beta3            = _mm256_mul_pd(beta,beta2);
822
823     ewtab            = fr->ic->tabq_coul_F;
824     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
825     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
826
827     /* Setup water-specific parameters */
828     inr              = nlist->iinr[0];
829     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
830     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
831     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
832     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
833
834     /* Avoid stupid compiler warnings */
835     jnrA = jnrB = jnrC = jnrD = 0;
836     j_coord_offsetA = 0;
837     j_coord_offsetB = 0;
838     j_coord_offsetC = 0;
839     j_coord_offsetD = 0;
840
841     outeriter        = 0;
842     inneriter        = 0;
843
844     for(iidx=0;iidx<4*DIM;iidx++)
845     {
846         scratch[iidx] = 0.0;
847     }
848
849     /* Start outer loop over neighborlists */
850     for(iidx=0; iidx<nri; iidx++)
851     {
852         /* Load shift vector for this list */
853         i_shift_offset   = DIM*shiftidx[iidx];
854
855         /* Load limits for loop over neighbors */
856         j_index_start    = jindex[iidx];
857         j_index_end      = jindex[iidx+1];
858
859         /* Get outer coordinate index */
860         inr              = iinr[iidx];
861         i_coord_offset   = DIM*inr;
862
863         /* Load i particle coords and add shift vector */
864         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
865                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
866
867         fix0             = _mm256_setzero_pd();
868         fiy0             = _mm256_setzero_pd();
869         fiz0             = _mm256_setzero_pd();
870         fix1             = _mm256_setzero_pd();
871         fiy1             = _mm256_setzero_pd();
872         fiz1             = _mm256_setzero_pd();
873         fix2             = _mm256_setzero_pd();
874         fiy2             = _mm256_setzero_pd();
875         fiz2             = _mm256_setzero_pd();
876
877         /* Start inner kernel loop */
878         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
879         {
880
881             /* Get j neighbor index, and coordinate index */
882             jnrA             = jjnr[jidx];
883             jnrB             = jjnr[jidx+1];
884             jnrC             = jjnr[jidx+2];
885             jnrD             = jjnr[jidx+3];
886             j_coord_offsetA  = DIM*jnrA;
887             j_coord_offsetB  = DIM*jnrB;
888             j_coord_offsetC  = DIM*jnrC;
889             j_coord_offsetD  = DIM*jnrD;
890
891             /* load j atom coordinates */
892             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
893                                                  x+j_coord_offsetC,x+j_coord_offsetD,
894                                                  &jx0,&jy0,&jz0);
895
896             /* Calculate displacement vector */
897             dx00             = _mm256_sub_pd(ix0,jx0);
898             dy00             = _mm256_sub_pd(iy0,jy0);
899             dz00             = _mm256_sub_pd(iz0,jz0);
900             dx10             = _mm256_sub_pd(ix1,jx0);
901             dy10             = _mm256_sub_pd(iy1,jy0);
902             dz10             = _mm256_sub_pd(iz1,jz0);
903             dx20             = _mm256_sub_pd(ix2,jx0);
904             dy20             = _mm256_sub_pd(iy2,jy0);
905             dz20             = _mm256_sub_pd(iz2,jz0);
906
907             /* Calculate squared distance and things based on it */
908             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
909             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
910             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
911
912             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
913             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
914             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
915
916             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
917             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
918             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
919
920             /* Load parameters for j particles */
921             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
922                                                                  charge+jnrC+0,charge+jnrD+0);
923             vdwjidx0A        = 2*vdwtype[jnrA+0];
924             vdwjidx0B        = 2*vdwtype[jnrB+0];
925             vdwjidx0C        = 2*vdwtype[jnrC+0];
926             vdwjidx0D        = 2*vdwtype[jnrD+0];
927
928             fjx0             = _mm256_setzero_pd();
929             fjy0             = _mm256_setzero_pd();
930             fjz0             = _mm256_setzero_pd();
931
932             /**************************
933              * CALCULATE INTERACTIONS *
934              **************************/
935
936             r00              = _mm256_mul_pd(rsq00,rinv00);
937
938             /* Compute parameters for interactions between i and j atoms */
939             qq00             = _mm256_mul_pd(iq0,jq0);
940             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
941                                             vdwioffsetptr0+vdwjidx0B,
942                                             vdwioffsetptr0+vdwjidx0C,
943                                             vdwioffsetptr0+vdwjidx0D,
944                                             &c6_00,&c12_00);
945
946             /* Calculate table index by multiplying r with table scale and truncate to integer */
947             rt               = _mm256_mul_pd(r00,vftabscale);
948             vfitab           = _mm256_cvttpd_epi32(rt);
949             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
950             vfitab           = _mm_slli_epi32(vfitab,3);
951
952             /* EWALD ELECTROSTATICS */
953
954             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
955             ewrt             = _mm256_mul_pd(r00,ewtabscale);
956             ewitab           = _mm256_cvttpd_epi32(ewrt);
957             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
958             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
959                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
960                                             &ewtabF,&ewtabFn);
961             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
962             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
963
964             /* CUBIC SPLINE TABLE DISPERSION */
965             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
966             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
967             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
968             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
969             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
970             Heps             = _mm256_mul_pd(vfeps,H);
971             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
972             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
973             fvdw6            = _mm256_mul_pd(c6_00,FF);
974
975             /* CUBIC SPLINE TABLE REPULSION */
976             vfitab           = _mm_add_epi32(vfitab,ifour);
977             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
978             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
979             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
980             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
981             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
982             Heps             = _mm256_mul_pd(vfeps,H);
983             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
984             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
985             fvdw12           = _mm256_mul_pd(c12_00,FF);
986             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
987
988             fscal            = _mm256_add_pd(felec,fvdw);
989
990             /* Calculate temporary vectorial force */
991             tx               = _mm256_mul_pd(fscal,dx00);
992             ty               = _mm256_mul_pd(fscal,dy00);
993             tz               = _mm256_mul_pd(fscal,dz00);
994
995             /* Update vectorial force */
996             fix0             = _mm256_add_pd(fix0,tx);
997             fiy0             = _mm256_add_pd(fiy0,ty);
998             fiz0             = _mm256_add_pd(fiz0,tz);
999
1000             fjx0             = _mm256_add_pd(fjx0,tx);
1001             fjy0             = _mm256_add_pd(fjy0,ty);
1002             fjz0             = _mm256_add_pd(fjz0,tz);
1003
1004             /**************************
1005              * CALCULATE INTERACTIONS *
1006              **************************/
1007
1008             r10              = _mm256_mul_pd(rsq10,rinv10);
1009
1010             /* Compute parameters for interactions between i and j atoms */
1011             qq10             = _mm256_mul_pd(iq1,jq0);
1012
1013             /* EWALD ELECTROSTATICS */
1014
1015             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1016             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1017             ewitab           = _mm256_cvttpd_epi32(ewrt);
1018             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1019             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1020                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1021                                             &ewtabF,&ewtabFn);
1022             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1023             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1024
1025             fscal            = felec;
1026
1027             /* Calculate temporary vectorial force */
1028             tx               = _mm256_mul_pd(fscal,dx10);
1029             ty               = _mm256_mul_pd(fscal,dy10);
1030             tz               = _mm256_mul_pd(fscal,dz10);
1031
1032             /* Update vectorial force */
1033             fix1             = _mm256_add_pd(fix1,tx);
1034             fiy1             = _mm256_add_pd(fiy1,ty);
1035             fiz1             = _mm256_add_pd(fiz1,tz);
1036
1037             fjx0             = _mm256_add_pd(fjx0,tx);
1038             fjy0             = _mm256_add_pd(fjy0,ty);
1039             fjz0             = _mm256_add_pd(fjz0,tz);
1040
1041             /**************************
1042              * CALCULATE INTERACTIONS *
1043              **************************/
1044
1045             r20              = _mm256_mul_pd(rsq20,rinv20);
1046
1047             /* Compute parameters for interactions between i and j atoms */
1048             qq20             = _mm256_mul_pd(iq2,jq0);
1049
1050             /* EWALD ELECTROSTATICS */
1051
1052             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1053             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1054             ewitab           = _mm256_cvttpd_epi32(ewrt);
1055             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1056             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1057                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1058                                             &ewtabF,&ewtabFn);
1059             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1060             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1061
1062             fscal            = felec;
1063
1064             /* Calculate temporary vectorial force */
1065             tx               = _mm256_mul_pd(fscal,dx20);
1066             ty               = _mm256_mul_pd(fscal,dy20);
1067             tz               = _mm256_mul_pd(fscal,dz20);
1068
1069             /* Update vectorial force */
1070             fix2             = _mm256_add_pd(fix2,tx);
1071             fiy2             = _mm256_add_pd(fiy2,ty);
1072             fiz2             = _mm256_add_pd(fiz2,tz);
1073
1074             fjx0             = _mm256_add_pd(fjx0,tx);
1075             fjy0             = _mm256_add_pd(fjy0,ty);
1076             fjz0             = _mm256_add_pd(fjz0,tz);
1077
1078             fjptrA             = f+j_coord_offsetA;
1079             fjptrB             = f+j_coord_offsetB;
1080             fjptrC             = f+j_coord_offsetC;
1081             fjptrD             = f+j_coord_offsetD;
1082
1083             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1084
1085             /* Inner loop uses 137 flops */
1086         }
1087
1088         if(jidx<j_index_end)
1089         {
1090
1091             /* Get j neighbor index, and coordinate index */
1092             jnrlistA         = jjnr[jidx];
1093             jnrlistB         = jjnr[jidx+1];
1094             jnrlistC         = jjnr[jidx+2];
1095             jnrlistD         = jjnr[jidx+3];
1096             /* Sign of each element will be negative for non-real atoms.
1097              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1098              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1099              */
1100             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1101
1102             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1103             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1104             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1105
1106             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1107             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1108             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1109             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1110             j_coord_offsetA  = DIM*jnrA;
1111             j_coord_offsetB  = DIM*jnrB;
1112             j_coord_offsetC  = DIM*jnrC;
1113             j_coord_offsetD  = DIM*jnrD;
1114
1115             /* load j atom coordinates */
1116             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1117                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1118                                                  &jx0,&jy0,&jz0);
1119
1120             /* Calculate displacement vector */
1121             dx00             = _mm256_sub_pd(ix0,jx0);
1122             dy00             = _mm256_sub_pd(iy0,jy0);
1123             dz00             = _mm256_sub_pd(iz0,jz0);
1124             dx10             = _mm256_sub_pd(ix1,jx0);
1125             dy10             = _mm256_sub_pd(iy1,jy0);
1126             dz10             = _mm256_sub_pd(iz1,jz0);
1127             dx20             = _mm256_sub_pd(ix2,jx0);
1128             dy20             = _mm256_sub_pd(iy2,jy0);
1129             dz20             = _mm256_sub_pd(iz2,jz0);
1130
1131             /* Calculate squared distance and things based on it */
1132             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1133             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1134             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1135
1136             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1137             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1138             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1139
1140             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1141             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1142             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1143
1144             /* Load parameters for j particles */
1145             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1146                                                                  charge+jnrC+0,charge+jnrD+0);
1147             vdwjidx0A        = 2*vdwtype[jnrA+0];
1148             vdwjidx0B        = 2*vdwtype[jnrB+0];
1149             vdwjidx0C        = 2*vdwtype[jnrC+0];
1150             vdwjidx0D        = 2*vdwtype[jnrD+0];
1151
1152             fjx0             = _mm256_setzero_pd();
1153             fjy0             = _mm256_setzero_pd();
1154             fjz0             = _mm256_setzero_pd();
1155
1156             /**************************
1157              * CALCULATE INTERACTIONS *
1158              **************************/
1159
1160             r00              = _mm256_mul_pd(rsq00,rinv00);
1161             r00              = _mm256_andnot_pd(dummy_mask,r00);
1162
1163             /* Compute parameters for interactions between i and j atoms */
1164             qq00             = _mm256_mul_pd(iq0,jq0);
1165             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1166                                             vdwioffsetptr0+vdwjidx0B,
1167                                             vdwioffsetptr0+vdwjidx0C,
1168                                             vdwioffsetptr0+vdwjidx0D,
1169                                             &c6_00,&c12_00);
1170
1171             /* Calculate table index by multiplying r with table scale and truncate to integer */
1172             rt               = _mm256_mul_pd(r00,vftabscale);
1173             vfitab           = _mm256_cvttpd_epi32(rt);
1174             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1175             vfitab           = _mm_slli_epi32(vfitab,3);
1176
1177             /* EWALD ELECTROSTATICS */
1178
1179             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1180             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1181             ewitab           = _mm256_cvttpd_epi32(ewrt);
1182             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1183             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1184                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1185                                             &ewtabF,&ewtabFn);
1186             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1187             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1188
1189             /* CUBIC SPLINE TABLE DISPERSION */
1190             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1191             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1192             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1193             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1194             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1195             Heps             = _mm256_mul_pd(vfeps,H);
1196             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1197             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1198             fvdw6            = _mm256_mul_pd(c6_00,FF);
1199
1200             /* CUBIC SPLINE TABLE REPULSION */
1201             vfitab           = _mm_add_epi32(vfitab,ifour);
1202             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1203             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1204             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1205             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1206             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1207             Heps             = _mm256_mul_pd(vfeps,H);
1208             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1209             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1210             fvdw12           = _mm256_mul_pd(c12_00,FF);
1211             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1212
1213             fscal            = _mm256_add_pd(felec,fvdw);
1214
1215             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1216
1217             /* Calculate temporary vectorial force */
1218             tx               = _mm256_mul_pd(fscal,dx00);
1219             ty               = _mm256_mul_pd(fscal,dy00);
1220             tz               = _mm256_mul_pd(fscal,dz00);
1221
1222             /* Update vectorial force */
1223             fix0             = _mm256_add_pd(fix0,tx);
1224             fiy0             = _mm256_add_pd(fiy0,ty);
1225             fiz0             = _mm256_add_pd(fiz0,tz);
1226
1227             fjx0             = _mm256_add_pd(fjx0,tx);
1228             fjy0             = _mm256_add_pd(fjy0,ty);
1229             fjz0             = _mm256_add_pd(fjz0,tz);
1230
1231             /**************************
1232              * CALCULATE INTERACTIONS *
1233              **************************/
1234
1235             r10              = _mm256_mul_pd(rsq10,rinv10);
1236             r10              = _mm256_andnot_pd(dummy_mask,r10);
1237
1238             /* Compute parameters for interactions between i and j atoms */
1239             qq10             = _mm256_mul_pd(iq1,jq0);
1240
1241             /* EWALD ELECTROSTATICS */
1242
1243             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1244             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1245             ewitab           = _mm256_cvttpd_epi32(ewrt);
1246             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1247             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1248                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1249                                             &ewtabF,&ewtabFn);
1250             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1251             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1252
1253             fscal            = felec;
1254
1255             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1256
1257             /* Calculate temporary vectorial force */
1258             tx               = _mm256_mul_pd(fscal,dx10);
1259             ty               = _mm256_mul_pd(fscal,dy10);
1260             tz               = _mm256_mul_pd(fscal,dz10);
1261
1262             /* Update vectorial force */
1263             fix1             = _mm256_add_pd(fix1,tx);
1264             fiy1             = _mm256_add_pd(fiy1,ty);
1265             fiz1             = _mm256_add_pd(fiz1,tz);
1266
1267             fjx0             = _mm256_add_pd(fjx0,tx);
1268             fjy0             = _mm256_add_pd(fjy0,ty);
1269             fjz0             = _mm256_add_pd(fjz0,tz);
1270
1271             /**************************
1272              * CALCULATE INTERACTIONS *
1273              **************************/
1274
1275             r20              = _mm256_mul_pd(rsq20,rinv20);
1276             r20              = _mm256_andnot_pd(dummy_mask,r20);
1277
1278             /* Compute parameters for interactions between i and j atoms */
1279             qq20             = _mm256_mul_pd(iq2,jq0);
1280
1281             /* EWALD ELECTROSTATICS */
1282
1283             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1284             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1285             ewitab           = _mm256_cvttpd_epi32(ewrt);
1286             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1287             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1288                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1289                                             &ewtabF,&ewtabFn);
1290             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1291             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1292
1293             fscal            = felec;
1294
1295             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1296
1297             /* Calculate temporary vectorial force */
1298             tx               = _mm256_mul_pd(fscal,dx20);
1299             ty               = _mm256_mul_pd(fscal,dy20);
1300             tz               = _mm256_mul_pd(fscal,dz20);
1301
1302             /* Update vectorial force */
1303             fix2             = _mm256_add_pd(fix2,tx);
1304             fiy2             = _mm256_add_pd(fiy2,ty);
1305             fiz2             = _mm256_add_pd(fiz2,tz);
1306
1307             fjx0             = _mm256_add_pd(fjx0,tx);
1308             fjy0             = _mm256_add_pd(fjy0,ty);
1309             fjz0             = _mm256_add_pd(fjz0,tz);
1310
1311             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1312             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1313             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1314             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1315
1316             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1317
1318             /* Inner loop uses 140 flops */
1319         }
1320
1321         /* End of innermost loop */
1322
1323         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1324                                                  f+i_coord_offset,fshift+i_shift_offset);
1325
1326         /* Increment number of inner iterations */
1327         inneriter                  += j_index_end - j_index_start;
1328
1329         /* Outer loop uses 18 flops */
1330     }
1331
1332     /* Increment number of outer iterations */
1333     outeriter        += nri;
1334
1335     /* Update outer/inner flops */
1336
1337     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*140);
1338 }