Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_avx_256_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
95     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
99     real             *vftab;
100     __m128i          ewitab;
101     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
103     real             *ewtab;
104     __m256d          dummy_mask,cutoff_mask;
105     __m128           tmpmask0,tmpmask1;
106     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
107     __m256d          one     = _mm256_set1_pd(1.0);
108     __m256d          two     = _mm256_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm256_set1_pd(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
128
129     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
130     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
131     beta2            = _mm256_mul_pd(beta,beta);
132     beta3            = _mm256_mul_pd(beta,beta2);
133
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
169
170         fix0             = _mm256_setzero_pd();
171         fiy0             = _mm256_setzero_pd();
172         fiz0             = _mm256_setzero_pd();
173
174         /* Load parameters for i particles */
175         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
176         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
177
178         /* Reset potential sums */
179         velecsum         = _mm256_setzero_pd();
180         vvdwsum          = _mm256_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             jnrC             = jjnr[jidx+2];
190             jnrD             = jjnr[jidx+3];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195
196             /* load j atom coordinates */
197             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
198                                                  x+j_coord_offsetC,x+j_coord_offsetD,
199                                                  &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm256_sub_pd(ix0,jx0);
203             dy00             = _mm256_sub_pd(iy0,jy0);
204             dz00             = _mm256_sub_pd(iz0,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
208
209             rinv00           = avx256_invsqrt_d(rsq00);
210
211             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
215                                                                  charge+jnrC+0,charge+jnrD+0);
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217             vdwjidx0B        = 2*vdwtype[jnrB+0];
218             vdwjidx0C        = 2*vdwtype[jnrC+0];
219             vdwjidx0D        = 2*vdwtype[jnrD+0];
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             r00              = _mm256_mul_pd(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm256_mul_pd(iq0,jq0);
229             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
230                                             vdwioffsetptr0+vdwjidx0B,
231                                             vdwioffsetptr0+vdwjidx0C,
232                                             vdwioffsetptr0+vdwjidx0D,
233                                             &c6_00,&c12_00);
234
235             /* Calculate table index by multiplying r with table scale and truncate to integer */
236             rt               = _mm256_mul_pd(r00,vftabscale);
237             vfitab           = _mm256_cvttpd_epi32(rt);
238             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
239             vfitab           = _mm_slli_epi32(vfitab,3);
240
241             /* EWALD ELECTROSTATICS */
242
243             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
244             ewrt             = _mm256_mul_pd(r00,ewtabscale);
245             ewitab           = _mm256_cvttpd_epi32(ewrt);
246             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
247             ewitab           = _mm_slli_epi32(ewitab,2);
248             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
249             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
250             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
251             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
252             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
253             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
254             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
255             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
256             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
257
258             /* CUBIC SPLINE TABLE DISPERSION */
259             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
260             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
261             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
262             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
263             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
264             Heps             = _mm256_mul_pd(vfeps,H);
265             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
266             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
267             vvdw6            = _mm256_mul_pd(c6_00,VV);
268             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
269             fvdw6            = _mm256_mul_pd(c6_00,FF);
270
271             /* CUBIC SPLINE TABLE REPULSION */
272             vfitab           = _mm_add_epi32(vfitab,ifour);
273             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
274             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
275             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
276             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
277             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
278             Heps             = _mm256_mul_pd(vfeps,H);
279             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
280             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
281             vvdw12           = _mm256_mul_pd(c12_00,VV);
282             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
283             fvdw12           = _mm256_mul_pd(c12_00,FF);
284             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
285             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             velecsum         = _mm256_add_pd(velecsum,velec);
289             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
290
291             fscal            = _mm256_add_pd(felec,fvdw);
292
293             /* Calculate temporary vectorial force */
294             tx               = _mm256_mul_pd(fscal,dx00);
295             ty               = _mm256_mul_pd(fscal,dy00);
296             tz               = _mm256_mul_pd(fscal,dz00);
297
298             /* Update vectorial force */
299             fix0             = _mm256_add_pd(fix0,tx);
300             fiy0             = _mm256_add_pd(fiy0,ty);
301             fiz0             = _mm256_add_pd(fiz0,tz);
302
303             fjptrA             = f+j_coord_offsetA;
304             fjptrB             = f+j_coord_offsetB;
305             fjptrC             = f+j_coord_offsetC;
306             fjptrD             = f+j_coord_offsetD;
307             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
308
309             /* Inner loop uses 75 flops */
310         }
311
312         if(jidx<j_index_end)
313         {
314
315             /* Get j neighbor index, and coordinate index */
316             jnrlistA         = jjnr[jidx];
317             jnrlistB         = jjnr[jidx+1];
318             jnrlistC         = jjnr[jidx+2];
319             jnrlistD         = jjnr[jidx+3];
320             /* Sign of each element will be negative for non-real atoms.
321              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
322              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
323              */
324             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
325
326             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
327             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
328             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
329
330             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
331             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
332             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
333             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
334             j_coord_offsetA  = DIM*jnrA;
335             j_coord_offsetB  = DIM*jnrB;
336             j_coord_offsetC  = DIM*jnrC;
337             j_coord_offsetD  = DIM*jnrD;
338
339             /* load j atom coordinates */
340             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
341                                                  x+j_coord_offsetC,x+j_coord_offsetD,
342                                                  &jx0,&jy0,&jz0);
343
344             /* Calculate displacement vector */
345             dx00             = _mm256_sub_pd(ix0,jx0);
346             dy00             = _mm256_sub_pd(iy0,jy0);
347             dz00             = _mm256_sub_pd(iz0,jz0);
348
349             /* Calculate squared distance and things based on it */
350             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
351
352             rinv00           = avx256_invsqrt_d(rsq00);
353
354             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
355
356             /* Load parameters for j particles */
357             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
358                                                                  charge+jnrC+0,charge+jnrD+0);
359             vdwjidx0A        = 2*vdwtype[jnrA+0];
360             vdwjidx0B        = 2*vdwtype[jnrB+0];
361             vdwjidx0C        = 2*vdwtype[jnrC+0];
362             vdwjidx0D        = 2*vdwtype[jnrD+0];
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             r00              = _mm256_mul_pd(rsq00,rinv00);
369             r00              = _mm256_andnot_pd(dummy_mask,r00);
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq00             = _mm256_mul_pd(iq0,jq0);
373             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
374                                             vdwioffsetptr0+vdwjidx0B,
375                                             vdwioffsetptr0+vdwjidx0C,
376                                             vdwioffsetptr0+vdwjidx0D,
377                                             &c6_00,&c12_00);
378
379             /* Calculate table index by multiplying r with table scale and truncate to integer */
380             rt               = _mm256_mul_pd(r00,vftabscale);
381             vfitab           = _mm256_cvttpd_epi32(rt);
382             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
383             vfitab           = _mm_slli_epi32(vfitab,3);
384
385             /* EWALD ELECTROSTATICS */
386
387             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
388             ewrt             = _mm256_mul_pd(r00,ewtabscale);
389             ewitab           = _mm256_cvttpd_epi32(ewrt);
390             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
391             ewitab           = _mm_slli_epi32(ewitab,2);
392             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
393             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
394             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
395             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
396             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
397             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
398             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
399             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
400             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
401
402             /* CUBIC SPLINE TABLE DISPERSION */
403             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
404             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
405             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
406             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
407             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
408             Heps             = _mm256_mul_pd(vfeps,H);
409             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
410             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
411             vvdw6            = _mm256_mul_pd(c6_00,VV);
412             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
413             fvdw6            = _mm256_mul_pd(c6_00,FF);
414
415             /* CUBIC SPLINE TABLE REPULSION */
416             vfitab           = _mm_add_epi32(vfitab,ifour);
417             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
418             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
419             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
420             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
421             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
422             Heps             = _mm256_mul_pd(vfeps,H);
423             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
424             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
425             vvdw12           = _mm256_mul_pd(c12_00,VV);
426             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
427             fvdw12           = _mm256_mul_pd(c12_00,FF);
428             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
429             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
430
431             /* Update potential sum for this i atom from the interaction with this j atom. */
432             velec            = _mm256_andnot_pd(dummy_mask,velec);
433             velecsum         = _mm256_add_pd(velecsum,velec);
434             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
435             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
436
437             fscal            = _mm256_add_pd(felec,fvdw);
438
439             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
440
441             /* Calculate temporary vectorial force */
442             tx               = _mm256_mul_pd(fscal,dx00);
443             ty               = _mm256_mul_pd(fscal,dy00);
444             tz               = _mm256_mul_pd(fscal,dz00);
445
446             /* Update vectorial force */
447             fix0             = _mm256_add_pd(fix0,tx);
448             fiy0             = _mm256_add_pd(fiy0,ty);
449             fiz0             = _mm256_add_pd(fiz0,tz);
450
451             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
452             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
453             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
454             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
455             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
456
457             /* Inner loop uses 76 flops */
458         }
459
460         /* End of innermost loop */
461
462         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
463                                                  f+i_coord_offset,fshift+i_shift_offset);
464
465         ggid                        = gid[iidx];
466         /* Update potential energies */
467         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
468         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
469
470         /* Increment number of inner iterations */
471         inneriter                  += j_index_end - j_index_start;
472
473         /* Outer loop uses 9 flops */
474     }
475
476     /* Increment number of outer iterations */
477     outeriter        += nri;
478
479     /* Update outer/inner flops */
480
481     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*76);
482 }
483 /*
484  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_256_double
485  * Electrostatics interaction: Ewald
486  * VdW interaction:            CubicSplineTable
487  * Geometry:                   Particle-Particle
488  * Calculate force/pot:        Force
489  */
490 void
491 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_256_double
492                     (t_nblist                    * gmx_restrict       nlist,
493                      rvec                        * gmx_restrict          xx,
494                      rvec                        * gmx_restrict          ff,
495                      struct t_forcerec           * gmx_restrict          fr,
496                      t_mdatoms                   * gmx_restrict     mdatoms,
497                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
498                      t_nrnb                      * gmx_restrict        nrnb)
499 {
500     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
501      * just 0 for non-waters.
502      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
503      * jnr indices corresponding to data put in the four positions in the SIMD register.
504      */
505     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
506     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
507     int              jnrA,jnrB,jnrC,jnrD;
508     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
509     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
510     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
511     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
512     real             rcutoff_scalar;
513     real             *shiftvec,*fshift,*x,*f;
514     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
515     real             scratch[4*DIM];
516     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
517     real *           vdwioffsetptr0;
518     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
519     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
520     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
521     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
522     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
523     real             *charge;
524     int              nvdwtype;
525     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
526     int              *vdwtype;
527     real             *vdwparam;
528     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
529     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
530     __m128i          vfitab;
531     __m128i          ifour       = _mm_set1_epi32(4);
532     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
533     real             *vftab;
534     __m128i          ewitab;
535     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
536     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
537     real             *ewtab;
538     __m256d          dummy_mask,cutoff_mask;
539     __m128           tmpmask0,tmpmask1;
540     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
541     __m256d          one     = _mm256_set1_pd(1.0);
542     __m256d          two     = _mm256_set1_pd(2.0);
543     x                = xx[0];
544     f                = ff[0];
545
546     nri              = nlist->nri;
547     iinr             = nlist->iinr;
548     jindex           = nlist->jindex;
549     jjnr             = nlist->jjnr;
550     shiftidx         = nlist->shift;
551     gid              = nlist->gid;
552     shiftvec         = fr->shift_vec[0];
553     fshift           = fr->fshift[0];
554     facel            = _mm256_set1_pd(fr->ic->epsfac);
555     charge           = mdatoms->chargeA;
556     nvdwtype         = fr->ntype;
557     vdwparam         = fr->nbfp;
558     vdwtype          = mdatoms->typeA;
559
560     vftab            = kernel_data->table_vdw->data;
561     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
562
563     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
564     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
565     beta2            = _mm256_mul_pd(beta,beta);
566     beta3            = _mm256_mul_pd(beta,beta2);
567
568     ewtab            = fr->ic->tabq_coul_F;
569     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
570     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
571
572     /* Avoid stupid compiler warnings */
573     jnrA = jnrB = jnrC = jnrD = 0;
574     j_coord_offsetA = 0;
575     j_coord_offsetB = 0;
576     j_coord_offsetC = 0;
577     j_coord_offsetD = 0;
578
579     outeriter        = 0;
580     inneriter        = 0;
581
582     for(iidx=0;iidx<4*DIM;iidx++)
583     {
584         scratch[iidx] = 0.0;
585     }
586
587     /* Start outer loop over neighborlists */
588     for(iidx=0; iidx<nri; iidx++)
589     {
590         /* Load shift vector for this list */
591         i_shift_offset   = DIM*shiftidx[iidx];
592
593         /* Load limits for loop over neighbors */
594         j_index_start    = jindex[iidx];
595         j_index_end      = jindex[iidx+1];
596
597         /* Get outer coordinate index */
598         inr              = iinr[iidx];
599         i_coord_offset   = DIM*inr;
600
601         /* Load i particle coords and add shift vector */
602         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
603
604         fix0             = _mm256_setzero_pd();
605         fiy0             = _mm256_setzero_pd();
606         fiz0             = _mm256_setzero_pd();
607
608         /* Load parameters for i particles */
609         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
610         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
611
612         /* Start inner kernel loop */
613         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
614         {
615
616             /* Get j neighbor index, and coordinate index */
617             jnrA             = jjnr[jidx];
618             jnrB             = jjnr[jidx+1];
619             jnrC             = jjnr[jidx+2];
620             jnrD             = jjnr[jidx+3];
621             j_coord_offsetA  = DIM*jnrA;
622             j_coord_offsetB  = DIM*jnrB;
623             j_coord_offsetC  = DIM*jnrC;
624             j_coord_offsetD  = DIM*jnrD;
625
626             /* load j atom coordinates */
627             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
628                                                  x+j_coord_offsetC,x+j_coord_offsetD,
629                                                  &jx0,&jy0,&jz0);
630
631             /* Calculate displacement vector */
632             dx00             = _mm256_sub_pd(ix0,jx0);
633             dy00             = _mm256_sub_pd(iy0,jy0);
634             dz00             = _mm256_sub_pd(iz0,jz0);
635
636             /* Calculate squared distance and things based on it */
637             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
638
639             rinv00           = avx256_invsqrt_d(rsq00);
640
641             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
642
643             /* Load parameters for j particles */
644             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
645                                                                  charge+jnrC+0,charge+jnrD+0);
646             vdwjidx0A        = 2*vdwtype[jnrA+0];
647             vdwjidx0B        = 2*vdwtype[jnrB+0];
648             vdwjidx0C        = 2*vdwtype[jnrC+0];
649             vdwjidx0D        = 2*vdwtype[jnrD+0];
650
651             /**************************
652              * CALCULATE INTERACTIONS *
653              **************************/
654
655             r00              = _mm256_mul_pd(rsq00,rinv00);
656
657             /* Compute parameters for interactions between i and j atoms */
658             qq00             = _mm256_mul_pd(iq0,jq0);
659             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
660                                             vdwioffsetptr0+vdwjidx0B,
661                                             vdwioffsetptr0+vdwjidx0C,
662                                             vdwioffsetptr0+vdwjidx0D,
663                                             &c6_00,&c12_00);
664
665             /* Calculate table index by multiplying r with table scale and truncate to integer */
666             rt               = _mm256_mul_pd(r00,vftabscale);
667             vfitab           = _mm256_cvttpd_epi32(rt);
668             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
669             vfitab           = _mm_slli_epi32(vfitab,3);
670
671             /* EWALD ELECTROSTATICS */
672
673             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
674             ewrt             = _mm256_mul_pd(r00,ewtabscale);
675             ewitab           = _mm256_cvttpd_epi32(ewrt);
676             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
677             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
678                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
679                                             &ewtabF,&ewtabFn);
680             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
681             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
682
683             /* CUBIC SPLINE TABLE DISPERSION */
684             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
685             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
686             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
687             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
688             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
689             Heps             = _mm256_mul_pd(vfeps,H);
690             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
691             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
692             fvdw6            = _mm256_mul_pd(c6_00,FF);
693
694             /* CUBIC SPLINE TABLE REPULSION */
695             vfitab           = _mm_add_epi32(vfitab,ifour);
696             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
697             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
698             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
699             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
700             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
701             Heps             = _mm256_mul_pd(vfeps,H);
702             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
703             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
704             fvdw12           = _mm256_mul_pd(c12_00,FF);
705             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
706
707             fscal            = _mm256_add_pd(felec,fvdw);
708
709             /* Calculate temporary vectorial force */
710             tx               = _mm256_mul_pd(fscal,dx00);
711             ty               = _mm256_mul_pd(fscal,dy00);
712             tz               = _mm256_mul_pd(fscal,dz00);
713
714             /* Update vectorial force */
715             fix0             = _mm256_add_pd(fix0,tx);
716             fiy0             = _mm256_add_pd(fiy0,ty);
717             fiz0             = _mm256_add_pd(fiz0,tz);
718
719             fjptrA             = f+j_coord_offsetA;
720             fjptrB             = f+j_coord_offsetB;
721             fjptrC             = f+j_coord_offsetC;
722             fjptrD             = f+j_coord_offsetD;
723             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
724
725             /* Inner loop uses 62 flops */
726         }
727
728         if(jidx<j_index_end)
729         {
730
731             /* Get j neighbor index, and coordinate index */
732             jnrlistA         = jjnr[jidx];
733             jnrlistB         = jjnr[jidx+1];
734             jnrlistC         = jjnr[jidx+2];
735             jnrlistD         = jjnr[jidx+3];
736             /* Sign of each element will be negative for non-real atoms.
737              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
738              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
739              */
740             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
741
742             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
743             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
744             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
745
746             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
747             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
748             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
749             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
750             j_coord_offsetA  = DIM*jnrA;
751             j_coord_offsetB  = DIM*jnrB;
752             j_coord_offsetC  = DIM*jnrC;
753             j_coord_offsetD  = DIM*jnrD;
754
755             /* load j atom coordinates */
756             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
757                                                  x+j_coord_offsetC,x+j_coord_offsetD,
758                                                  &jx0,&jy0,&jz0);
759
760             /* Calculate displacement vector */
761             dx00             = _mm256_sub_pd(ix0,jx0);
762             dy00             = _mm256_sub_pd(iy0,jy0);
763             dz00             = _mm256_sub_pd(iz0,jz0);
764
765             /* Calculate squared distance and things based on it */
766             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
767
768             rinv00           = avx256_invsqrt_d(rsq00);
769
770             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
771
772             /* Load parameters for j particles */
773             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
774                                                                  charge+jnrC+0,charge+jnrD+0);
775             vdwjidx0A        = 2*vdwtype[jnrA+0];
776             vdwjidx0B        = 2*vdwtype[jnrB+0];
777             vdwjidx0C        = 2*vdwtype[jnrC+0];
778             vdwjidx0D        = 2*vdwtype[jnrD+0];
779
780             /**************************
781              * CALCULATE INTERACTIONS *
782              **************************/
783
784             r00              = _mm256_mul_pd(rsq00,rinv00);
785             r00              = _mm256_andnot_pd(dummy_mask,r00);
786
787             /* Compute parameters for interactions between i and j atoms */
788             qq00             = _mm256_mul_pd(iq0,jq0);
789             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
790                                             vdwioffsetptr0+vdwjidx0B,
791                                             vdwioffsetptr0+vdwjidx0C,
792                                             vdwioffsetptr0+vdwjidx0D,
793                                             &c6_00,&c12_00);
794
795             /* Calculate table index by multiplying r with table scale and truncate to integer */
796             rt               = _mm256_mul_pd(r00,vftabscale);
797             vfitab           = _mm256_cvttpd_epi32(rt);
798             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
799             vfitab           = _mm_slli_epi32(vfitab,3);
800
801             /* EWALD ELECTROSTATICS */
802
803             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
804             ewrt             = _mm256_mul_pd(r00,ewtabscale);
805             ewitab           = _mm256_cvttpd_epi32(ewrt);
806             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
807             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
808                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
809                                             &ewtabF,&ewtabFn);
810             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
811             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
812
813             /* CUBIC SPLINE TABLE DISPERSION */
814             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
815             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
816             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
817             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
818             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
819             Heps             = _mm256_mul_pd(vfeps,H);
820             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
821             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
822             fvdw6            = _mm256_mul_pd(c6_00,FF);
823
824             /* CUBIC SPLINE TABLE REPULSION */
825             vfitab           = _mm_add_epi32(vfitab,ifour);
826             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
827             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
828             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
829             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
830             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
831             Heps             = _mm256_mul_pd(vfeps,H);
832             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
833             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
834             fvdw12           = _mm256_mul_pd(c12_00,FF);
835             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
836
837             fscal            = _mm256_add_pd(felec,fvdw);
838
839             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
840
841             /* Calculate temporary vectorial force */
842             tx               = _mm256_mul_pd(fscal,dx00);
843             ty               = _mm256_mul_pd(fscal,dy00);
844             tz               = _mm256_mul_pd(fscal,dz00);
845
846             /* Update vectorial force */
847             fix0             = _mm256_add_pd(fix0,tx);
848             fiy0             = _mm256_add_pd(fiy0,ty);
849             fiz0             = _mm256_add_pd(fiz0,tz);
850
851             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
852             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
853             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
854             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
855             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
856
857             /* Inner loop uses 63 flops */
858         }
859
860         /* End of innermost loop */
861
862         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
863                                                  f+i_coord_offset,fshift+i_shift_offset);
864
865         /* Increment number of inner iterations */
866         inneriter                  += j_index_end - j_index_start;
867
868         /* Outer loop uses 7 flops */
869     }
870
871     /* Increment number of outer iterations */
872     outeriter        += nri;
873
874     /* Update outer/inner flops */
875
876     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
877 }