Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128i          ewitab;
104     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
106     real             *ewtab;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
131
132     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
133     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
134     beta2            = _mm256_mul_pd(beta,beta);
135     beta3            = _mm256_mul_pd(beta,beta2);
136
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
172
173         fix0             = _mm256_setzero_pd();
174         fiy0             = _mm256_setzero_pd();
175         fiz0             = _mm256_setzero_pd();
176
177         /* Load parameters for i particles */
178         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
179         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
180
181         /* Reset potential sums */
182         velecsum         = _mm256_setzero_pd();
183         vvdwsum          = _mm256_setzero_pd();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             jnrC             = jjnr[jidx+2];
193             jnrD             = jjnr[jidx+3];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198
199             /* load j atom coordinates */
200             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
201                                                  x+j_coord_offsetC,x+j_coord_offsetD,
202                                                  &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm256_sub_pd(ix0,jx0);
206             dy00             = _mm256_sub_pd(iy0,jy0);
207             dz00             = _mm256_sub_pd(iz0,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
211
212             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
213
214             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
218                                                                  charge+jnrC+0,charge+jnrD+0);
219             vdwjidx0A        = 2*vdwtype[jnrA+0];
220             vdwjidx0B        = 2*vdwtype[jnrB+0];
221             vdwjidx0C        = 2*vdwtype[jnrC+0];
222             vdwjidx0D        = 2*vdwtype[jnrD+0];
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             r00              = _mm256_mul_pd(rsq00,rinv00);
229
230             /* Compute parameters for interactions between i and j atoms */
231             qq00             = _mm256_mul_pd(iq0,jq0);
232             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
233                                             vdwioffsetptr0+vdwjidx0B,
234                                             vdwioffsetptr0+vdwjidx0C,
235                                             vdwioffsetptr0+vdwjidx0D,
236                                             &c6_00,&c12_00);
237
238             /* Calculate table index by multiplying r with table scale and truncate to integer */
239             rt               = _mm256_mul_pd(r00,vftabscale);
240             vfitab           = _mm256_cvttpd_epi32(rt);
241             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
242             vfitab           = _mm_slli_epi32(vfitab,3);
243
244             /* EWALD ELECTROSTATICS */
245
246             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
247             ewrt             = _mm256_mul_pd(r00,ewtabscale);
248             ewitab           = _mm256_cvttpd_epi32(ewrt);
249             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
250             ewitab           = _mm_slli_epi32(ewitab,2);
251             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
252             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
253             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
254             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
255             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
256             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
257             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
258             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
259             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
260
261             /* CUBIC SPLINE TABLE DISPERSION */
262             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
263             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
264             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
265             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
266             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
267             Heps             = _mm256_mul_pd(vfeps,H);
268             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
269             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
270             vvdw6            = _mm256_mul_pd(c6_00,VV);
271             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
272             fvdw6            = _mm256_mul_pd(c6_00,FF);
273
274             /* CUBIC SPLINE TABLE REPULSION */
275             vfitab           = _mm_add_epi32(vfitab,ifour);
276             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
277             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
278             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
279             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
280             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
281             Heps             = _mm256_mul_pd(vfeps,H);
282             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
283             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
284             vvdw12           = _mm256_mul_pd(c12_00,VV);
285             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
286             fvdw12           = _mm256_mul_pd(c12_00,FF);
287             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
288             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             velecsum         = _mm256_add_pd(velecsum,velec);
292             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
293
294             fscal            = _mm256_add_pd(felec,fvdw);
295
296             /* Calculate temporary vectorial force */
297             tx               = _mm256_mul_pd(fscal,dx00);
298             ty               = _mm256_mul_pd(fscal,dy00);
299             tz               = _mm256_mul_pd(fscal,dz00);
300
301             /* Update vectorial force */
302             fix0             = _mm256_add_pd(fix0,tx);
303             fiy0             = _mm256_add_pd(fiy0,ty);
304             fiz0             = _mm256_add_pd(fiz0,tz);
305
306             fjptrA             = f+j_coord_offsetA;
307             fjptrB             = f+j_coord_offsetB;
308             fjptrC             = f+j_coord_offsetC;
309             fjptrD             = f+j_coord_offsetD;
310             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
311
312             /* Inner loop uses 75 flops */
313         }
314
315         if(jidx<j_index_end)
316         {
317
318             /* Get j neighbor index, and coordinate index */
319             jnrlistA         = jjnr[jidx];
320             jnrlistB         = jjnr[jidx+1];
321             jnrlistC         = jjnr[jidx+2];
322             jnrlistD         = jjnr[jidx+3];
323             /* Sign of each element will be negative for non-real atoms.
324              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
325              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
326              */
327             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
328
329             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
330             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
331             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
332
333             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
334             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
335             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
336             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
337             j_coord_offsetA  = DIM*jnrA;
338             j_coord_offsetB  = DIM*jnrB;
339             j_coord_offsetC  = DIM*jnrC;
340             j_coord_offsetD  = DIM*jnrD;
341
342             /* load j atom coordinates */
343             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
344                                                  x+j_coord_offsetC,x+j_coord_offsetD,
345                                                  &jx0,&jy0,&jz0);
346
347             /* Calculate displacement vector */
348             dx00             = _mm256_sub_pd(ix0,jx0);
349             dy00             = _mm256_sub_pd(iy0,jy0);
350             dz00             = _mm256_sub_pd(iz0,jz0);
351
352             /* Calculate squared distance and things based on it */
353             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
354
355             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
356
357             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
358
359             /* Load parameters for j particles */
360             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
361                                                                  charge+jnrC+0,charge+jnrD+0);
362             vdwjidx0A        = 2*vdwtype[jnrA+0];
363             vdwjidx0B        = 2*vdwtype[jnrB+0];
364             vdwjidx0C        = 2*vdwtype[jnrC+0];
365             vdwjidx0D        = 2*vdwtype[jnrD+0];
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             r00              = _mm256_mul_pd(rsq00,rinv00);
372             r00              = _mm256_andnot_pd(dummy_mask,r00);
373
374             /* Compute parameters for interactions between i and j atoms */
375             qq00             = _mm256_mul_pd(iq0,jq0);
376             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
377                                             vdwioffsetptr0+vdwjidx0B,
378                                             vdwioffsetptr0+vdwjidx0C,
379                                             vdwioffsetptr0+vdwjidx0D,
380                                             &c6_00,&c12_00);
381
382             /* Calculate table index by multiplying r with table scale and truncate to integer */
383             rt               = _mm256_mul_pd(r00,vftabscale);
384             vfitab           = _mm256_cvttpd_epi32(rt);
385             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
386             vfitab           = _mm_slli_epi32(vfitab,3);
387
388             /* EWALD ELECTROSTATICS */
389
390             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
391             ewrt             = _mm256_mul_pd(r00,ewtabscale);
392             ewitab           = _mm256_cvttpd_epi32(ewrt);
393             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
394             ewitab           = _mm_slli_epi32(ewitab,2);
395             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
396             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
397             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
398             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
399             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
400             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
401             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
402             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
403             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
404
405             /* CUBIC SPLINE TABLE DISPERSION */
406             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
407             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
408             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
409             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
410             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
411             Heps             = _mm256_mul_pd(vfeps,H);
412             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
413             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
414             vvdw6            = _mm256_mul_pd(c6_00,VV);
415             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
416             fvdw6            = _mm256_mul_pd(c6_00,FF);
417
418             /* CUBIC SPLINE TABLE REPULSION */
419             vfitab           = _mm_add_epi32(vfitab,ifour);
420             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
421             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
422             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
423             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
424             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
425             Heps             = _mm256_mul_pd(vfeps,H);
426             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
427             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
428             vvdw12           = _mm256_mul_pd(c12_00,VV);
429             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
430             fvdw12           = _mm256_mul_pd(c12_00,FF);
431             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
432             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
433
434             /* Update potential sum for this i atom from the interaction with this j atom. */
435             velec            = _mm256_andnot_pd(dummy_mask,velec);
436             velecsum         = _mm256_add_pd(velecsum,velec);
437             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
438             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
439
440             fscal            = _mm256_add_pd(felec,fvdw);
441
442             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
443
444             /* Calculate temporary vectorial force */
445             tx               = _mm256_mul_pd(fscal,dx00);
446             ty               = _mm256_mul_pd(fscal,dy00);
447             tz               = _mm256_mul_pd(fscal,dz00);
448
449             /* Update vectorial force */
450             fix0             = _mm256_add_pd(fix0,tx);
451             fiy0             = _mm256_add_pd(fiy0,ty);
452             fiz0             = _mm256_add_pd(fiz0,tz);
453
454             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
455             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
456             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
457             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
458             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
459
460             /* Inner loop uses 76 flops */
461         }
462
463         /* End of innermost loop */
464
465         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
466                                                  f+i_coord_offset,fshift+i_shift_offset);
467
468         ggid                        = gid[iidx];
469         /* Update potential energies */
470         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
471         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
472
473         /* Increment number of inner iterations */
474         inneriter                  += j_index_end - j_index_start;
475
476         /* Outer loop uses 9 flops */
477     }
478
479     /* Increment number of outer iterations */
480     outeriter        += nri;
481
482     /* Update outer/inner flops */
483
484     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*76);
485 }
486 /*
487  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_256_double
488  * Electrostatics interaction: Ewald
489  * VdW interaction:            CubicSplineTable
490  * Geometry:                   Particle-Particle
491  * Calculate force/pot:        Force
492  */
493 void
494 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_256_double
495                     (t_nblist                    * gmx_restrict       nlist,
496                      rvec                        * gmx_restrict          xx,
497                      rvec                        * gmx_restrict          ff,
498                      t_forcerec                  * gmx_restrict          fr,
499                      t_mdatoms                   * gmx_restrict     mdatoms,
500                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
501                      t_nrnb                      * gmx_restrict        nrnb)
502 {
503     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
504      * just 0 for non-waters.
505      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
506      * jnr indices corresponding to data put in the four positions in the SIMD register.
507      */
508     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
509     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
510     int              jnrA,jnrB,jnrC,jnrD;
511     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
512     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
513     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
514     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
515     real             rcutoff_scalar;
516     real             *shiftvec,*fshift,*x,*f;
517     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
518     real             scratch[4*DIM];
519     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
520     real *           vdwioffsetptr0;
521     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
522     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
523     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
524     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
525     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
526     real             *charge;
527     int              nvdwtype;
528     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
529     int              *vdwtype;
530     real             *vdwparam;
531     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
532     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
533     __m128i          vfitab;
534     __m128i          ifour       = _mm_set1_epi32(4);
535     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
536     real             *vftab;
537     __m128i          ewitab;
538     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
539     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
540     real             *ewtab;
541     __m256d          dummy_mask,cutoff_mask;
542     __m128           tmpmask0,tmpmask1;
543     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
544     __m256d          one     = _mm256_set1_pd(1.0);
545     __m256d          two     = _mm256_set1_pd(2.0);
546     x                = xx[0];
547     f                = ff[0];
548
549     nri              = nlist->nri;
550     iinr             = nlist->iinr;
551     jindex           = nlist->jindex;
552     jjnr             = nlist->jjnr;
553     shiftidx         = nlist->shift;
554     gid              = nlist->gid;
555     shiftvec         = fr->shift_vec[0];
556     fshift           = fr->fshift[0];
557     facel            = _mm256_set1_pd(fr->epsfac);
558     charge           = mdatoms->chargeA;
559     nvdwtype         = fr->ntype;
560     vdwparam         = fr->nbfp;
561     vdwtype          = mdatoms->typeA;
562
563     vftab            = kernel_data->table_vdw->data;
564     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
565
566     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
567     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
568     beta2            = _mm256_mul_pd(beta,beta);
569     beta3            = _mm256_mul_pd(beta,beta2);
570
571     ewtab            = fr->ic->tabq_coul_F;
572     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
573     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
574
575     /* Avoid stupid compiler warnings */
576     jnrA = jnrB = jnrC = jnrD = 0;
577     j_coord_offsetA = 0;
578     j_coord_offsetB = 0;
579     j_coord_offsetC = 0;
580     j_coord_offsetD = 0;
581
582     outeriter        = 0;
583     inneriter        = 0;
584
585     for(iidx=0;iidx<4*DIM;iidx++)
586     {
587         scratch[iidx] = 0.0;
588     }
589
590     /* Start outer loop over neighborlists */
591     for(iidx=0; iidx<nri; iidx++)
592     {
593         /* Load shift vector for this list */
594         i_shift_offset   = DIM*shiftidx[iidx];
595
596         /* Load limits for loop over neighbors */
597         j_index_start    = jindex[iidx];
598         j_index_end      = jindex[iidx+1];
599
600         /* Get outer coordinate index */
601         inr              = iinr[iidx];
602         i_coord_offset   = DIM*inr;
603
604         /* Load i particle coords and add shift vector */
605         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
606
607         fix0             = _mm256_setzero_pd();
608         fiy0             = _mm256_setzero_pd();
609         fiz0             = _mm256_setzero_pd();
610
611         /* Load parameters for i particles */
612         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
613         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
614
615         /* Start inner kernel loop */
616         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
617         {
618
619             /* Get j neighbor index, and coordinate index */
620             jnrA             = jjnr[jidx];
621             jnrB             = jjnr[jidx+1];
622             jnrC             = jjnr[jidx+2];
623             jnrD             = jjnr[jidx+3];
624             j_coord_offsetA  = DIM*jnrA;
625             j_coord_offsetB  = DIM*jnrB;
626             j_coord_offsetC  = DIM*jnrC;
627             j_coord_offsetD  = DIM*jnrD;
628
629             /* load j atom coordinates */
630             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
631                                                  x+j_coord_offsetC,x+j_coord_offsetD,
632                                                  &jx0,&jy0,&jz0);
633
634             /* Calculate displacement vector */
635             dx00             = _mm256_sub_pd(ix0,jx0);
636             dy00             = _mm256_sub_pd(iy0,jy0);
637             dz00             = _mm256_sub_pd(iz0,jz0);
638
639             /* Calculate squared distance and things based on it */
640             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
641
642             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
643
644             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
645
646             /* Load parameters for j particles */
647             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
648                                                                  charge+jnrC+0,charge+jnrD+0);
649             vdwjidx0A        = 2*vdwtype[jnrA+0];
650             vdwjidx0B        = 2*vdwtype[jnrB+0];
651             vdwjidx0C        = 2*vdwtype[jnrC+0];
652             vdwjidx0D        = 2*vdwtype[jnrD+0];
653
654             /**************************
655              * CALCULATE INTERACTIONS *
656              **************************/
657
658             r00              = _mm256_mul_pd(rsq00,rinv00);
659
660             /* Compute parameters for interactions between i and j atoms */
661             qq00             = _mm256_mul_pd(iq0,jq0);
662             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
663                                             vdwioffsetptr0+vdwjidx0B,
664                                             vdwioffsetptr0+vdwjidx0C,
665                                             vdwioffsetptr0+vdwjidx0D,
666                                             &c6_00,&c12_00);
667
668             /* Calculate table index by multiplying r with table scale and truncate to integer */
669             rt               = _mm256_mul_pd(r00,vftabscale);
670             vfitab           = _mm256_cvttpd_epi32(rt);
671             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
672             vfitab           = _mm_slli_epi32(vfitab,3);
673
674             /* EWALD ELECTROSTATICS */
675
676             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
677             ewrt             = _mm256_mul_pd(r00,ewtabscale);
678             ewitab           = _mm256_cvttpd_epi32(ewrt);
679             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
680             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
681                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
682                                             &ewtabF,&ewtabFn);
683             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
684             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
685
686             /* CUBIC SPLINE TABLE DISPERSION */
687             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
688             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
689             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
690             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
691             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
692             Heps             = _mm256_mul_pd(vfeps,H);
693             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
694             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
695             fvdw6            = _mm256_mul_pd(c6_00,FF);
696
697             /* CUBIC SPLINE TABLE REPULSION */
698             vfitab           = _mm_add_epi32(vfitab,ifour);
699             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
700             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
701             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
702             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
703             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
704             Heps             = _mm256_mul_pd(vfeps,H);
705             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
706             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
707             fvdw12           = _mm256_mul_pd(c12_00,FF);
708             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
709
710             fscal            = _mm256_add_pd(felec,fvdw);
711
712             /* Calculate temporary vectorial force */
713             tx               = _mm256_mul_pd(fscal,dx00);
714             ty               = _mm256_mul_pd(fscal,dy00);
715             tz               = _mm256_mul_pd(fscal,dz00);
716
717             /* Update vectorial force */
718             fix0             = _mm256_add_pd(fix0,tx);
719             fiy0             = _mm256_add_pd(fiy0,ty);
720             fiz0             = _mm256_add_pd(fiz0,tz);
721
722             fjptrA             = f+j_coord_offsetA;
723             fjptrB             = f+j_coord_offsetB;
724             fjptrC             = f+j_coord_offsetC;
725             fjptrD             = f+j_coord_offsetD;
726             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
727
728             /* Inner loop uses 62 flops */
729         }
730
731         if(jidx<j_index_end)
732         {
733
734             /* Get j neighbor index, and coordinate index */
735             jnrlistA         = jjnr[jidx];
736             jnrlistB         = jjnr[jidx+1];
737             jnrlistC         = jjnr[jidx+2];
738             jnrlistD         = jjnr[jidx+3];
739             /* Sign of each element will be negative for non-real atoms.
740              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
741              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
742              */
743             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
744
745             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
746             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
747             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
748
749             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
750             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
751             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
752             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
753             j_coord_offsetA  = DIM*jnrA;
754             j_coord_offsetB  = DIM*jnrB;
755             j_coord_offsetC  = DIM*jnrC;
756             j_coord_offsetD  = DIM*jnrD;
757
758             /* load j atom coordinates */
759             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
760                                                  x+j_coord_offsetC,x+j_coord_offsetD,
761                                                  &jx0,&jy0,&jz0);
762
763             /* Calculate displacement vector */
764             dx00             = _mm256_sub_pd(ix0,jx0);
765             dy00             = _mm256_sub_pd(iy0,jy0);
766             dz00             = _mm256_sub_pd(iz0,jz0);
767
768             /* Calculate squared distance and things based on it */
769             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
770
771             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
772
773             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
774
775             /* Load parameters for j particles */
776             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
777                                                                  charge+jnrC+0,charge+jnrD+0);
778             vdwjidx0A        = 2*vdwtype[jnrA+0];
779             vdwjidx0B        = 2*vdwtype[jnrB+0];
780             vdwjidx0C        = 2*vdwtype[jnrC+0];
781             vdwjidx0D        = 2*vdwtype[jnrD+0];
782
783             /**************************
784              * CALCULATE INTERACTIONS *
785              **************************/
786
787             r00              = _mm256_mul_pd(rsq00,rinv00);
788             r00              = _mm256_andnot_pd(dummy_mask,r00);
789
790             /* Compute parameters for interactions between i and j atoms */
791             qq00             = _mm256_mul_pd(iq0,jq0);
792             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
793                                             vdwioffsetptr0+vdwjidx0B,
794                                             vdwioffsetptr0+vdwjidx0C,
795                                             vdwioffsetptr0+vdwjidx0D,
796                                             &c6_00,&c12_00);
797
798             /* Calculate table index by multiplying r with table scale and truncate to integer */
799             rt               = _mm256_mul_pd(r00,vftabscale);
800             vfitab           = _mm256_cvttpd_epi32(rt);
801             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
802             vfitab           = _mm_slli_epi32(vfitab,3);
803
804             /* EWALD ELECTROSTATICS */
805
806             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
807             ewrt             = _mm256_mul_pd(r00,ewtabscale);
808             ewitab           = _mm256_cvttpd_epi32(ewrt);
809             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
810             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
811                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
812                                             &ewtabF,&ewtabFn);
813             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
814             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
815
816             /* CUBIC SPLINE TABLE DISPERSION */
817             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
818             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
819             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
820             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
821             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
822             Heps             = _mm256_mul_pd(vfeps,H);
823             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
824             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
825             fvdw6            = _mm256_mul_pd(c6_00,FF);
826
827             /* CUBIC SPLINE TABLE REPULSION */
828             vfitab           = _mm_add_epi32(vfitab,ifour);
829             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
830             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
831             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
832             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
833             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
834             Heps             = _mm256_mul_pd(vfeps,H);
835             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
836             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
837             fvdw12           = _mm256_mul_pd(c12_00,FF);
838             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
839
840             fscal            = _mm256_add_pd(felec,fvdw);
841
842             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
843
844             /* Calculate temporary vectorial force */
845             tx               = _mm256_mul_pd(fscal,dx00);
846             ty               = _mm256_mul_pd(fscal,dy00);
847             tz               = _mm256_mul_pd(fscal,dz00);
848
849             /* Update vectorial force */
850             fix0             = _mm256_add_pd(fix0,tx);
851             fiy0             = _mm256_add_pd(fiy0,ty);
852             fiz0             = _mm256_add_pd(fiz0,tz);
853
854             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
855             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
856             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
857             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
858             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
859
860             /* Inner loop uses 63 flops */
861         }
862
863         /* End of innermost loop */
864
865         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
866                                                  f+i_coord_offset,fshift+i_shift_offset);
867
868         /* Increment number of inner iterations */
869         inneriter                  += j_index_end - j_index_start;
870
871         /* Outer loop uses 7 flops */
872     }
873
874     /* Increment number of outer iterations */
875     outeriter        += nri;
876
877     /* Update outer/inner flops */
878
879     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
880 }