Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m128i          vfitab;
98     __m128i          ifour       = _mm_set1_epi32(4);
99     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
100     real             *vftab;
101     __m128i          ewitab;
102     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
104     real             *ewtab;
105     __m256d          dummy_mask,cutoff_mask;
106     __m128           tmpmask0,tmpmask1;
107     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
108     __m256d          one     = _mm256_set1_pd(1.0);
109     __m256d          two     = _mm256_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
129
130     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
131     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
132     beta2            = _mm256_mul_pd(beta,beta);
133     beta3            = _mm256_mul_pd(beta,beta2);
134
135     ewtab            = fr->ic->tabq_coul_FDV0;
136     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
137     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
170
171         fix0             = _mm256_setzero_pd();
172         fiy0             = _mm256_setzero_pd();
173         fiz0             = _mm256_setzero_pd();
174
175         /* Load parameters for i particles */
176         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
177         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
178
179         /* Reset potential sums */
180         velecsum         = _mm256_setzero_pd();
181         vvdwsum          = _mm256_setzero_pd();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196
197             /* load j atom coordinates */
198             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
199                                                  x+j_coord_offsetC,x+j_coord_offsetD,
200                                                  &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm256_sub_pd(ix0,jx0);
204             dy00             = _mm256_sub_pd(iy0,jy0);
205             dz00             = _mm256_sub_pd(iz0,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
209
210             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
211
212             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
216                                                                  charge+jnrC+0,charge+jnrD+0);
217             vdwjidx0A        = 2*vdwtype[jnrA+0];
218             vdwjidx0B        = 2*vdwtype[jnrB+0];
219             vdwjidx0C        = 2*vdwtype[jnrC+0];
220             vdwjidx0D        = 2*vdwtype[jnrD+0];
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             r00              = _mm256_mul_pd(rsq00,rinv00);
227
228             /* Compute parameters for interactions between i and j atoms */
229             qq00             = _mm256_mul_pd(iq0,jq0);
230             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
231                                             vdwioffsetptr0+vdwjidx0B,
232                                             vdwioffsetptr0+vdwjidx0C,
233                                             vdwioffsetptr0+vdwjidx0D,
234                                             &c6_00,&c12_00);
235
236             /* Calculate table index by multiplying r with table scale and truncate to integer */
237             rt               = _mm256_mul_pd(r00,vftabscale);
238             vfitab           = _mm256_cvttpd_epi32(rt);
239             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
240             vfitab           = _mm_slli_epi32(vfitab,3);
241
242             /* EWALD ELECTROSTATICS */
243
244             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
245             ewrt             = _mm256_mul_pd(r00,ewtabscale);
246             ewitab           = _mm256_cvttpd_epi32(ewrt);
247             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
248             ewitab           = _mm_slli_epi32(ewitab,2);
249             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
250             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
251             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
252             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
253             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
254             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
255             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
256             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
257             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
258
259             /* CUBIC SPLINE TABLE DISPERSION */
260             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
261             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
262             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
263             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
264             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
265             Heps             = _mm256_mul_pd(vfeps,H);
266             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
267             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
268             vvdw6            = _mm256_mul_pd(c6_00,VV);
269             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
270             fvdw6            = _mm256_mul_pd(c6_00,FF);
271
272             /* CUBIC SPLINE TABLE REPULSION */
273             vfitab           = _mm_add_epi32(vfitab,ifour);
274             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
275             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
276             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
277             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
278             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
279             Heps             = _mm256_mul_pd(vfeps,H);
280             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
281             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
282             vvdw12           = _mm256_mul_pd(c12_00,VV);
283             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
284             fvdw12           = _mm256_mul_pd(c12_00,FF);
285             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
286             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             velecsum         = _mm256_add_pd(velecsum,velec);
290             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
291
292             fscal            = _mm256_add_pd(felec,fvdw);
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm256_mul_pd(fscal,dx00);
296             ty               = _mm256_mul_pd(fscal,dy00);
297             tz               = _mm256_mul_pd(fscal,dz00);
298
299             /* Update vectorial force */
300             fix0             = _mm256_add_pd(fix0,tx);
301             fiy0             = _mm256_add_pd(fiy0,ty);
302             fiz0             = _mm256_add_pd(fiz0,tz);
303
304             fjptrA             = f+j_coord_offsetA;
305             fjptrB             = f+j_coord_offsetB;
306             fjptrC             = f+j_coord_offsetC;
307             fjptrD             = f+j_coord_offsetD;
308             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
309
310             /* Inner loop uses 75 flops */
311         }
312
313         if(jidx<j_index_end)
314         {
315
316             /* Get j neighbor index, and coordinate index */
317             jnrlistA         = jjnr[jidx];
318             jnrlistB         = jjnr[jidx+1];
319             jnrlistC         = jjnr[jidx+2];
320             jnrlistD         = jjnr[jidx+3];
321             /* Sign of each element will be negative for non-real atoms.
322              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
323              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
324              */
325             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
326
327             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
328             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
329             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
330
331             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
332             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
333             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
334             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
335             j_coord_offsetA  = DIM*jnrA;
336             j_coord_offsetB  = DIM*jnrB;
337             j_coord_offsetC  = DIM*jnrC;
338             j_coord_offsetD  = DIM*jnrD;
339
340             /* load j atom coordinates */
341             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
342                                                  x+j_coord_offsetC,x+j_coord_offsetD,
343                                                  &jx0,&jy0,&jz0);
344
345             /* Calculate displacement vector */
346             dx00             = _mm256_sub_pd(ix0,jx0);
347             dy00             = _mm256_sub_pd(iy0,jy0);
348             dz00             = _mm256_sub_pd(iz0,jz0);
349
350             /* Calculate squared distance and things based on it */
351             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
352
353             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
354
355             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
356
357             /* Load parameters for j particles */
358             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
359                                                                  charge+jnrC+0,charge+jnrD+0);
360             vdwjidx0A        = 2*vdwtype[jnrA+0];
361             vdwjidx0B        = 2*vdwtype[jnrB+0];
362             vdwjidx0C        = 2*vdwtype[jnrC+0];
363             vdwjidx0D        = 2*vdwtype[jnrD+0];
364
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             r00              = _mm256_mul_pd(rsq00,rinv00);
370             r00              = _mm256_andnot_pd(dummy_mask,r00);
371
372             /* Compute parameters for interactions between i and j atoms */
373             qq00             = _mm256_mul_pd(iq0,jq0);
374             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
375                                             vdwioffsetptr0+vdwjidx0B,
376                                             vdwioffsetptr0+vdwjidx0C,
377                                             vdwioffsetptr0+vdwjidx0D,
378                                             &c6_00,&c12_00);
379
380             /* Calculate table index by multiplying r with table scale and truncate to integer */
381             rt               = _mm256_mul_pd(r00,vftabscale);
382             vfitab           = _mm256_cvttpd_epi32(rt);
383             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
384             vfitab           = _mm_slli_epi32(vfitab,3);
385
386             /* EWALD ELECTROSTATICS */
387
388             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
389             ewrt             = _mm256_mul_pd(r00,ewtabscale);
390             ewitab           = _mm256_cvttpd_epi32(ewrt);
391             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
392             ewitab           = _mm_slli_epi32(ewitab,2);
393             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
394             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
395             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
396             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
397             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
398             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
399             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
400             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
401             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
402
403             /* CUBIC SPLINE TABLE DISPERSION */
404             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
405             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
406             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
407             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
408             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
409             Heps             = _mm256_mul_pd(vfeps,H);
410             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
411             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
412             vvdw6            = _mm256_mul_pd(c6_00,VV);
413             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
414             fvdw6            = _mm256_mul_pd(c6_00,FF);
415
416             /* CUBIC SPLINE TABLE REPULSION */
417             vfitab           = _mm_add_epi32(vfitab,ifour);
418             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
419             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
420             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
421             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
422             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
423             Heps             = _mm256_mul_pd(vfeps,H);
424             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
425             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
426             vvdw12           = _mm256_mul_pd(c12_00,VV);
427             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
428             fvdw12           = _mm256_mul_pd(c12_00,FF);
429             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
430             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
431
432             /* Update potential sum for this i atom from the interaction with this j atom. */
433             velec            = _mm256_andnot_pd(dummy_mask,velec);
434             velecsum         = _mm256_add_pd(velecsum,velec);
435             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
436             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
437
438             fscal            = _mm256_add_pd(felec,fvdw);
439
440             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
441
442             /* Calculate temporary vectorial force */
443             tx               = _mm256_mul_pd(fscal,dx00);
444             ty               = _mm256_mul_pd(fscal,dy00);
445             tz               = _mm256_mul_pd(fscal,dz00);
446
447             /* Update vectorial force */
448             fix0             = _mm256_add_pd(fix0,tx);
449             fiy0             = _mm256_add_pd(fiy0,ty);
450             fiz0             = _mm256_add_pd(fiz0,tz);
451
452             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
453             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
454             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
455             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
456             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
457
458             /* Inner loop uses 76 flops */
459         }
460
461         /* End of innermost loop */
462
463         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
464                                                  f+i_coord_offset,fshift+i_shift_offset);
465
466         ggid                        = gid[iidx];
467         /* Update potential energies */
468         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
469         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
470
471         /* Increment number of inner iterations */
472         inneriter                  += j_index_end - j_index_start;
473
474         /* Outer loop uses 9 flops */
475     }
476
477     /* Increment number of outer iterations */
478     outeriter        += nri;
479
480     /* Update outer/inner flops */
481
482     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*76);
483 }
484 /*
485  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_256_double
486  * Electrostatics interaction: Ewald
487  * VdW interaction:            CubicSplineTable
488  * Geometry:                   Particle-Particle
489  * Calculate force/pot:        Force
490  */
491 void
492 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_256_double
493                     (t_nblist                    * gmx_restrict       nlist,
494                      rvec                        * gmx_restrict          xx,
495                      rvec                        * gmx_restrict          ff,
496                      t_forcerec                  * gmx_restrict          fr,
497                      t_mdatoms                   * gmx_restrict     mdatoms,
498                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
499                      t_nrnb                      * gmx_restrict        nrnb)
500 {
501     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
502      * just 0 for non-waters.
503      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
504      * jnr indices corresponding to data put in the four positions in the SIMD register.
505      */
506     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
507     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
508     int              jnrA,jnrB,jnrC,jnrD;
509     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
510     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
511     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
512     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
513     real             rcutoff_scalar;
514     real             *shiftvec,*fshift,*x,*f;
515     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
516     real             scratch[4*DIM];
517     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
518     real *           vdwioffsetptr0;
519     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
520     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
521     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
522     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
523     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
524     real             *charge;
525     int              nvdwtype;
526     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
527     int              *vdwtype;
528     real             *vdwparam;
529     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
530     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
531     __m128i          vfitab;
532     __m128i          ifour       = _mm_set1_epi32(4);
533     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
534     real             *vftab;
535     __m128i          ewitab;
536     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
537     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
538     real             *ewtab;
539     __m256d          dummy_mask,cutoff_mask;
540     __m128           tmpmask0,tmpmask1;
541     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
542     __m256d          one     = _mm256_set1_pd(1.0);
543     __m256d          two     = _mm256_set1_pd(2.0);
544     x                = xx[0];
545     f                = ff[0];
546
547     nri              = nlist->nri;
548     iinr             = nlist->iinr;
549     jindex           = nlist->jindex;
550     jjnr             = nlist->jjnr;
551     shiftidx         = nlist->shift;
552     gid              = nlist->gid;
553     shiftvec         = fr->shift_vec[0];
554     fshift           = fr->fshift[0];
555     facel            = _mm256_set1_pd(fr->epsfac);
556     charge           = mdatoms->chargeA;
557     nvdwtype         = fr->ntype;
558     vdwparam         = fr->nbfp;
559     vdwtype          = mdatoms->typeA;
560
561     vftab            = kernel_data->table_vdw->data;
562     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
563
564     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
565     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
566     beta2            = _mm256_mul_pd(beta,beta);
567     beta3            = _mm256_mul_pd(beta,beta2);
568
569     ewtab            = fr->ic->tabq_coul_F;
570     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
571     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
572
573     /* Avoid stupid compiler warnings */
574     jnrA = jnrB = jnrC = jnrD = 0;
575     j_coord_offsetA = 0;
576     j_coord_offsetB = 0;
577     j_coord_offsetC = 0;
578     j_coord_offsetD = 0;
579
580     outeriter        = 0;
581     inneriter        = 0;
582
583     for(iidx=0;iidx<4*DIM;iidx++)
584     {
585         scratch[iidx] = 0.0;
586     }
587
588     /* Start outer loop over neighborlists */
589     for(iidx=0; iidx<nri; iidx++)
590     {
591         /* Load shift vector for this list */
592         i_shift_offset   = DIM*shiftidx[iidx];
593
594         /* Load limits for loop over neighbors */
595         j_index_start    = jindex[iidx];
596         j_index_end      = jindex[iidx+1];
597
598         /* Get outer coordinate index */
599         inr              = iinr[iidx];
600         i_coord_offset   = DIM*inr;
601
602         /* Load i particle coords and add shift vector */
603         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
604
605         fix0             = _mm256_setzero_pd();
606         fiy0             = _mm256_setzero_pd();
607         fiz0             = _mm256_setzero_pd();
608
609         /* Load parameters for i particles */
610         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
611         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
612
613         /* Start inner kernel loop */
614         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
615         {
616
617             /* Get j neighbor index, and coordinate index */
618             jnrA             = jjnr[jidx];
619             jnrB             = jjnr[jidx+1];
620             jnrC             = jjnr[jidx+2];
621             jnrD             = jjnr[jidx+3];
622             j_coord_offsetA  = DIM*jnrA;
623             j_coord_offsetB  = DIM*jnrB;
624             j_coord_offsetC  = DIM*jnrC;
625             j_coord_offsetD  = DIM*jnrD;
626
627             /* load j atom coordinates */
628             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
629                                                  x+j_coord_offsetC,x+j_coord_offsetD,
630                                                  &jx0,&jy0,&jz0);
631
632             /* Calculate displacement vector */
633             dx00             = _mm256_sub_pd(ix0,jx0);
634             dy00             = _mm256_sub_pd(iy0,jy0);
635             dz00             = _mm256_sub_pd(iz0,jz0);
636
637             /* Calculate squared distance and things based on it */
638             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
639
640             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
641
642             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
643
644             /* Load parameters for j particles */
645             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
646                                                                  charge+jnrC+0,charge+jnrD+0);
647             vdwjidx0A        = 2*vdwtype[jnrA+0];
648             vdwjidx0B        = 2*vdwtype[jnrB+0];
649             vdwjidx0C        = 2*vdwtype[jnrC+0];
650             vdwjidx0D        = 2*vdwtype[jnrD+0];
651
652             /**************************
653              * CALCULATE INTERACTIONS *
654              **************************/
655
656             r00              = _mm256_mul_pd(rsq00,rinv00);
657
658             /* Compute parameters for interactions between i and j atoms */
659             qq00             = _mm256_mul_pd(iq0,jq0);
660             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
661                                             vdwioffsetptr0+vdwjidx0B,
662                                             vdwioffsetptr0+vdwjidx0C,
663                                             vdwioffsetptr0+vdwjidx0D,
664                                             &c6_00,&c12_00);
665
666             /* Calculate table index by multiplying r with table scale and truncate to integer */
667             rt               = _mm256_mul_pd(r00,vftabscale);
668             vfitab           = _mm256_cvttpd_epi32(rt);
669             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
670             vfitab           = _mm_slli_epi32(vfitab,3);
671
672             /* EWALD ELECTROSTATICS */
673
674             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
675             ewrt             = _mm256_mul_pd(r00,ewtabscale);
676             ewitab           = _mm256_cvttpd_epi32(ewrt);
677             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
678             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
679                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
680                                             &ewtabF,&ewtabFn);
681             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
682             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
683
684             /* CUBIC SPLINE TABLE DISPERSION */
685             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
686             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
687             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
688             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
689             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
690             Heps             = _mm256_mul_pd(vfeps,H);
691             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
692             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
693             fvdw6            = _mm256_mul_pd(c6_00,FF);
694
695             /* CUBIC SPLINE TABLE REPULSION */
696             vfitab           = _mm_add_epi32(vfitab,ifour);
697             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
698             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
699             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
700             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
701             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
702             Heps             = _mm256_mul_pd(vfeps,H);
703             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
704             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
705             fvdw12           = _mm256_mul_pd(c12_00,FF);
706             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
707
708             fscal            = _mm256_add_pd(felec,fvdw);
709
710             /* Calculate temporary vectorial force */
711             tx               = _mm256_mul_pd(fscal,dx00);
712             ty               = _mm256_mul_pd(fscal,dy00);
713             tz               = _mm256_mul_pd(fscal,dz00);
714
715             /* Update vectorial force */
716             fix0             = _mm256_add_pd(fix0,tx);
717             fiy0             = _mm256_add_pd(fiy0,ty);
718             fiz0             = _mm256_add_pd(fiz0,tz);
719
720             fjptrA             = f+j_coord_offsetA;
721             fjptrB             = f+j_coord_offsetB;
722             fjptrC             = f+j_coord_offsetC;
723             fjptrD             = f+j_coord_offsetD;
724             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
725
726             /* Inner loop uses 62 flops */
727         }
728
729         if(jidx<j_index_end)
730         {
731
732             /* Get j neighbor index, and coordinate index */
733             jnrlistA         = jjnr[jidx];
734             jnrlistB         = jjnr[jidx+1];
735             jnrlistC         = jjnr[jidx+2];
736             jnrlistD         = jjnr[jidx+3];
737             /* Sign of each element will be negative for non-real atoms.
738              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
739              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
740              */
741             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
742
743             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
744             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
745             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
746
747             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
748             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
749             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
750             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
751             j_coord_offsetA  = DIM*jnrA;
752             j_coord_offsetB  = DIM*jnrB;
753             j_coord_offsetC  = DIM*jnrC;
754             j_coord_offsetD  = DIM*jnrD;
755
756             /* load j atom coordinates */
757             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
758                                                  x+j_coord_offsetC,x+j_coord_offsetD,
759                                                  &jx0,&jy0,&jz0);
760
761             /* Calculate displacement vector */
762             dx00             = _mm256_sub_pd(ix0,jx0);
763             dy00             = _mm256_sub_pd(iy0,jy0);
764             dz00             = _mm256_sub_pd(iz0,jz0);
765
766             /* Calculate squared distance and things based on it */
767             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
768
769             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
770
771             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
772
773             /* Load parameters for j particles */
774             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
775                                                                  charge+jnrC+0,charge+jnrD+0);
776             vdwjidx0A        = 2*vdwtype[jnrA+0];
777             vdwjidx0B        = 2*vdwtype[jnrB+0];
778             vdwjidx0C        = 2*vdwtype[jnrC+0];
779             vdwjidx0D        = 2*vdwtype[jnrD+0];
780
781             /**************************
782              * CALCULATE INTERACTIONS *
783              **************************/
784
785             r00              = _mm256_mul_pd(rsq00,rinv00);
786             r00              = _mm256_andnot_pd(dummy_mask,r00);
787
788             /* Compute parameters for interactions between i and j atoms */
789             qq00             = _mm256_mul_pd(iq0,jq0);
790             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
791                                             vdwioffsetptr0+vdwjidx0B,
792                                             vdwioffsetptr0+vdwjidx0C,
793                                             vdwioffsetptr0+vdwjidx0D,
794                                             &c6_00,&c12_00);
795
796             /* Calculate table index by multiplying r with table scale and truncate to integer */
797             rt               = _mm256_mul_pd(r00,vftabscale);
798             vfitab           = _mm256_cvttpd_epi32(rt);
799             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
800             vfitab           = _mm_slli_epi32(vfitab,3);
801
802             /* EWALD ELECTROSTATICS */
803
804             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
805             ewrt             = _mm256_mul_pd(r00,ewtabscale);
806             ewitab           = _mm256_cvttpd_epi32(ewrt);
807             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
808             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
809                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
810                                             &ewtabF,&ewtabFn);
811             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
812             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
813
814             /* CUBIC SPLINE TABLE DISPERSION */
815             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
816             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
817             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
818             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
819             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
820             Heps             = _mm256_mul_pd(vfeps,H);
821             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
822             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
823             fvdw6            = _mm256_mul_pd(c6_00,FF);
824
825             /* CUBIC SPLINE TABLE REPULSION */
826             vfitab           = _mm_add_epi32(vfitab,ifour);
827             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
828             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
829             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
830             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
831             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
832             Heps             = _mm256_mul_pd(vfeps,H);
833             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
834             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
835             fvdw12           = _mm256_mul_pd(c12_00,FF);
836             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
837
838             fscal            = _mm256_add_pd(felec,fvdw);
839
840             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
841
842             /* Calculate temporary vectorial force */
843             tx               = _mm256_mul_pd(fscal,dx00);
844             ty               = _mm256_mul_pd(fscal,dy00);
845             tz               = _mm256_mul_pd(fscal,dz00);
846
847             /* Update vectorial force */
848             fix0             = _mm256_add_pd(fix0,tx);
849             fiy0             = _mm256_add_pd(fiy0,ty);
850             fiz0             = _mm256_add_pd(fiz0,tz);
851
852             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
853             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
854             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
855             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
856             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
857
858             /* Inner loop uses 63 flops */
859         }
860
861         /* End of innermost loop */
862
863         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
864                                                  f+i_coord_offset,fshift+i_shift_offset);
865
866         /* Increment number of inner iterations */
867         inneriter                  += j_index_end - j_index_start;
868
869         /* Outer loop uses 7 flops */
870     }
871
872     /* Increment number of outer iterations */
873     outeriter        += nri;
874
875     /* Update outer/inner flops */
876
877     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
878 }