Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSw_VdwNone_GeomW4P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr1;
71     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
72     real *           vdwioffsetptr2;
73     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
74     real *           vdwioffsetptr3;
75     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     __m128i          ewitab;
84     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
85     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
86     real             *ewtab;
87     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
88     real             rswitch_scalar,d_scalar;
89     __m256d          dummy_mask,cutoff_mask;
90     __m128           tmpmask0,tmpmask1;
91     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
92     __m256d          one     = _mm256_set1_pd(1.0);
93     __m256d          two     = _mm256_set1_pd(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm256_set1_pd(fr->epsfac);
106     charge           = mdatoms->chargeA;
107
108     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
109     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
110     beta2            = _mm256_mul_pd(beta,beta);
111     beta3            = _mm256_mul_pd(beta,beta2);
112
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
120     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
121     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
122
123     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124     rcutoff_scalar   = fr->rcoulomb;
125     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
126     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
127
128     rswitch_scalar   = fr->rcoulomb_switch;
129     rswitch          = _mm256_set1_pd(rswitch_scalar);
130     /* Setup switch parameters */
131     d_scalar         = rcutoff_scalar-rswitch_scalar;
132     d                = _mm256_set1_pd(d_scalar);
133     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
134     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
135     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
136     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
137     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
171                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
172
173         fix1             = _mm256_setzero_pd();
174         fiy1             = _mm256_setzero_pd();
175         fiz1             = _mm256_setzero_pd();
176         fix2             = _mm256_setzero_pd();
177         fiy2             = _mm256_setzero_pd();
178         fiz2             = _mm256_setzero_pd();
179         fix3             = _mm256_setzero_pd();
180         fiy3             = _mm256_setzero_pd();
181         fiz3             = _mm256_setzero_pd();
182
183         /* Reset potential sums */
184         velecsum         = _mm256_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx10             = _mm256_sub_pd(ix1,jx0);
207             dy10             = _mm256_sub_pd(iy1,jy0);
208             dz10             = _mm256_sub_pd(iz1,jz0);
209             dx20             = _mm256_sub_pd(ix2,jx0);
210             dy20             = _mm256_sub_pd(iy2,jy0);
211             dz20             = _mm256_sub_pd(iz2,jz0);
212             dx30             = _mm256_sub_pd(ix3,jx0);
213             dy30             = _mm256_sub_pd(iy3,jy0);
214             dz30             = _mm256_sub_pd(iz3,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
218             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
219             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
220
221             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
222             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
223             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
224
225             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
226             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
227             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
228
229             /* Load parameters for j particles */
230             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
231                                                                  charge+jnrC+0,charge+jnrD+0);
232
233             fjx0             = _mm256_setzero_pd();
234             fjy0             = _mm256_setzero_pd();
235             fjz0             = _mm256_setzero_pd();
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             if (gmx_mm256_any_lt(rsq10,rcutoff2))
242             {
243
244             r10              = _mm256_mul_pd(rsq10,rinv10);
245
246             /* Compute parameters for interactions between i and j atoms */
247             qq10             = _mm256_mul_pd(iq1,jq0);
248
249             /* EWALD ELECTROSTATICS */
250
251             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
252             ewrt             = _mm256_mul_pd(r10,ewtabscale);
253             ewitab           = _mm256_cvttpd_epi32(ewrt);
254             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
255             ewitab           = _mm_slli_epi32(ewitab,2);
256             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
257             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
258             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
259             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
260             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
261             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
262             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
263             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
264             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
265
266             d                = _mm256_sub_pd(r10,rswitch);
267             d                = _mm256_max_pd(d,_mm256_setzero_pd());
268             d2               = _mm256_mul_pd(d,d);
269             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
270
271             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
272
273             /* Evaluate switch function */
274             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
275             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
276             velec            = _mm256_mul_pd(velec,sw);
277             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             velec            = _mm256_and_pd(velec,cutoff_mask);
281             velecsum         = _mm256_add_pd(velecsum,velec);
282
283             fscal            = felec;
284
285             fscal            = _mm256_and_pd(fscal,cutoff_mask);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm256_mul_pd(fscal,dx10);
289             ty               = _mm256_mul_pd(fscal,dy10);
290             tz               = _mm256_mul_pd(fscal,dz10);
291
292             /* Update vectorial force */
293             fix1             = _mm256_add_pd(fix1,tx);
294             fiy1             = _mm256_add_pd(fiy1,ty);
295             fiz1             = _mm256_add_pd(fiz1,tz);
296
297             fjx0             = _mm256_add_pd(fjx0,tx);
298             fjy0             = _mm256_add_pd(fjy0,ty);
299             fjz0             = _mm256_add_pd(fjz0,tz);
300
301             }
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             if (gmx_mm256_any_lt(rsq20,rcutoff2))
308             {
309
310             r20              = _mm256_mul_pd(rsq20,rinv20);
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq20             = _mm256_mul_pd(iq2,jq0);
314
315             /* EWALD ELECTROSTATICS */
316
317             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
318             ewrt             = _mm256_mul_pd(r20,ewtabscale);
319             ewitab           = _mm256_cvttpd_epi32(ewrt);
320             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
321             ewitab           = _mm_slli_epi32(ewitab,2);
322             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
323             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
324             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
325             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
326             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
327             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
328             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
329             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
330             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
331
332             d                = _mm256_sub_pd(r20,rswitch);
333             d                = _mm256_max_pd(d,_mm256_setzero_pd());
334             d2               = _mm256_mul_pd(d,d);
335             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
336
337             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
338
339             /* Evaluate switch function */
340             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
341             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
342             velec            = _mm256_mul_pd(velec,sw);
343             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velec            = _mm256_and_pd(velec,cutoff_mask);
347             velecsum         = _mm256_add_pd(velecsum,velec);
348
349             fscal            = felec;
350
351             fscal            = _mm256_and_pd(fscal,cutoff_mask);
352
353             /* Calculate temporary vectorial force */
354             tx               = _mm256_mul_pd(fscal,dx20);
355             ty               = _mm256_mul_pd(fscal,dy20);
356             tz               = _mm256_mul_pd(fscal,dz20);
357
358             /* Update vectorial force */
359             fix2             = _mm256_add_pd(fix2,tx);
360             fiy2             = _mm256_add_pd(fiy2,ty);
361             fiz2             = _mm256_add_pd(fiz2,tz);
362
363             fjx0             = _mm256_add_pd(fjx0,tx);
364             fjy0             = _mm256_add_pd(fjy0,ty);
365             fjz0             = _mm256_add_pd(fjz0,tz);
366
367             }
368
369             /**************************
370              * CALCULATE INTERACTIONS *
371              **************************/
372
373             if (gmx_mm256_any_lt(rsq30,rcutoff2))
374             {
375
376             r30              = _mm256_mul_pd(rsq30,rinv30);
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq30             = _mm256_mul_pd(iq3,jq0);
380
381             /* EWALD ELECTROSTATICS */
382
383             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
384             ewrt             = _mm256_mul_pd(r30,ewtabscale);
385             ewitab           = _mm256_cvttpd_epi32(ewrt);
386             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
387             ewitab           = _mm_slli_epi32(ewitab,2);
388             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
389             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
390             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
391             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
392             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
393             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
394             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
395             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
396             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
397
398             d                = _mm256_sub_pd(r30,rswitch);
399             d                = _mm256_max_pd(d,_mm256_setzero_pd());
400             d2               = _mm256_mul_pd(d,d);
401             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
402
403             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
404
405             /* Evaluate switch function */
406             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
407             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv30,_mm256_mul_pd(velec,dsw)) );
408             velec            = _mm256_mul_pd(velec,sw);
409             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
410
411             /* Update potential sum for this i atom from the interaction with this j atom. */
412             velec            = _mm256_and_pd(velec,cutoff_mask);
413             velecsum         = _mm256_add_pd(velecsum,velec);
414
415             fscal            = felec;
416
417             fscal            = _mm256_and_pd(fscal,cutoff_mask);
418
419             /* Calculate temporary vectorial force */
420             tx               = _mm256_mul_pd(fscal,dx30);
421             ty               = _mm256_mul_pd(fscal,dy30);
422             tz               = _mm256_mul_pd(fscal,dz30);
423
424             /* Update vectorial force */
425             fix3             = _mm256_add_pd(fix3,tx);
426             fiy3             = _mm256_add_pd(fiy3,ty);
427             fiz3             = _mm256_add_pd(fiz3,tz);
428
429             fjx0             = _mm256_add_pd(fjx0,tx);
430             fjy0             = _mm256_add_pd(fjy0,ty);
431             fjz0             = _mm256_add_pd(fjz0,tz);
432
433             }
434
435             fjptrA             = f+j_coord_offsetA;
436             fjptrB             = f+j_coord_offsetB;
437             fjptrC             = f+j_coord_offsetC;
438             fjptrD             = f+j_coord_offsetD;
439
440             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
441
442             /* Inner loop uses 198 flops */
443         }
444
445         if(jidx<j_index_end)
446         {
447
448             /* Get j neighbor index, and coordinate index */
449             jnrlistA         = jjnr[jidx];
450             jnrlistB         = jjnr[jidx+1];
451             jnrlistC         = jjnr[jidx+2];
452             jnrlistD         = jjnr[jidx+3];
453             /* Sign of each element will be negative for non-real atoms.
454              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
455              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
456              */
457             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
458
459             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
460             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
461             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
462
463             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
464             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
465             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
466             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
467             j_coord_offsetA  = DIM*jnrA;
468             j_coord_offsetB  = DIM*jnrB;
469             j_coord_offsetC  = DIM*jnrC;
470             j_coord_offsetD  = DIM*jnrD;
471
472             /* load j atom coordinates */
473             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
474                                                  x+j_coord_offsetC,x+j_coord_offsetD,
475                                                  &jx0,&jy0,&jz0);
476
477             /* Calculate displacement vector */
478             dx10             = _mm256_sub_pd(ix1,jx0);
479             dy10             = _mm256_sub_pd(iy1,jy0);
480             dz10             = _mm256_sub_pd(iz1,jz0);
481             dx20             = _mm256_sub_pd(ix2,jx0);
482             dy20             = _mm256_sub_pd(iy2,jy0);
483             dz20             = _mm256_sub_pd(iz2,jz0);
484             dx30             = _mm256_sub_pd(ix3,jx0);
485             dy30             = _mm256_sub_pd(iy3,jy0);
486             dz30             = _mm256_sub_pd(iz3,jz0);
487
488             /* Calculate squared distance and things based on it */
489             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
490             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
491             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
492
493             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
494             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
495             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
496
497             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
498             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
499             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
500
501             /* Load parameters for j particles */
502             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
503                                                                  charge+jnrC+0,charge+jnrD+0);
504
505             fjx0             = _mm256_setzero_pd();
506             fjy0             = _mm256_setzero_pd();
507             fjz0             = _mm256_setzero_pd();
508
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             if (gmx_mm256_any_lt(rsq10,rcutoff2))
514             {
515
516             r10              = _mm256_mul_pd(rsq10,rinv10);
517             r10              = _mm256_andnot_pd(dummy_mask,r10);
518
519             /* Compute parameters for interactions between i and j atoms */
520             qq10             = _mm256_mul_pd(iq1,jq0);
521
522             /* EWALD ELECTROSTATICS */
523
524             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
525             ewrt             = _mm256_mul_pd(r10,ewtabscale);
526             ewitab           = _mm256_cvttpd_epi32(ewrt);
527             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
528             ewitab           = _mm_slli_epi32(ewitab,2);
529             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
530             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
531             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
532             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
533             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
534             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
535             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
536             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
537             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
538
539             d                = _mm256_sub_pd(r10,rswitch);
540             d                = _mm256_max_pd(d,_mm256_setzero_pd());
541             d2               = _mm256_mul_pd(d,d);
542             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
543
544             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
545
546             /* Evaluate switch function */
547             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
548             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
549             velec            = _mm256_mul_pd(velec,sw);
550             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
551
552             /* Update potential sum for this i atom from the interaction with this j atom. */
553             velec            = _mm256_and_pd(velec,cutoff_mask);
554             velec            = _mm256_andnot_pd(dummy_mask,velec);
555             velecsum         = _mm256_add_pd(velecsum,velec);
556
557             fscal            = felec;
558
559             fscal            = _mm256_and_pd(fscal,cutoff_mask);
560
561             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
562
563             /* Calculate temporary vectorial force */
564             tx               = _mm256_mul_pd(fscal,dx10);
565             ty               = _mm256_mul_pd(fscal,dy10);
566             tz               = _mm256_mul_pd(fscal,dz10);
567
568             /* Update vectorial force */
569             fix1             = _mm256_add_pd(fix1,tx);
570             fiy1             = _mm256_add_pd(fiy1,ty);
571             fiz1             = _mm256_add_pd(fiz1,tz);
572
573             fjx0             = _mm256_add_pd(fjx0,tx);
574             fjy0             = _mm256_add_pd(fjy0,ty);
575             fjz0             = _mm256_add_pd(fjz0,tz);
576
577             }
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             if (gmx_mm256_any_lt(rsq20,rcutoff2))
584             {
585
586             r20              = _mm256_mul_pd(rsq20,rinv20);
587             r20              = _mm256_andnot_pd(dummy_mask,r20);
588
589             /* Compute parameters for interactions between i and j atoms */
590             qq20             = _mm256_mul_pd(iq2,jq0);
591
592             /* EWALD ELECTROSTATICS */
593
594             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
595             ewrt             = _mm256_mul_pd(r20,ewtabscale);
596             ewitab           = _mm256_cvttpd_epi32(ewrt);
597             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
598             ewitab           = _mm_slli_epi32(ewitab,2);
599             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
600             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
601             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
602             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
603             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
604             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
605             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
606             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
607             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
608
609             d                = _mm256_sub_pd(r20,rswitch);
610             d                = _mm256_max_pd(d,_mm256_setzero_pd());
611             d2               = _mm256_mul_pd(d,d);
612             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
613
614             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
615
616             /* Evaluate switch function */
617             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
618             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
619             velec            = _mm256_mul_pd(velec,sw);
620             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
621
622             /* Update potential sum for this i atom from the interaction with this j atom. */
623             velec            = _mm256_and_pd(velec,cutoff_mask);
624             velec            = _mm256_andnot_pd(dummy_mask,velec);
625             velecsum         = _mm256_add_pd(velecsum,velec);
626
627             fscal            = felec;
628
629             fscal            = _mm256_and_pd(fscal,cutoff_mask);
630
631             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
632
633             /* Calculate temporary vectorial force */
634             tx               = _mm256_mul_pd(fscal,dx20);
635             ty               = _mm256_mul_pd(fscal,dy20);
636             tz               = _mm256_mul_pd(fscal,dz20);
637
638             /* Update vectorial force */
639             fix2             = _mm256_add_pd(fix2,tx);
640             fiy2             = _mm256_add_pd(fiy2,ty);
641             fiz2             = _mm256_add_pd(fiz2,tz);
642
643             fjx0             = _mm256_add_pd(fjx0,tx);
644             fjy0             = _mm256_add_pd(fjy0,ty);
645             fjz0             = _mm256_add_pd(fjz0,tz);
646
647             }
648
649             /**************************
650              * CALCULATE INTERACTIONS *
651              **************************/
652
653             if (gmx_mm256_any_lt(rsq30,rcutoff2))
654             {
655
656             r30              = _mm256_mul_pd(rsq30,rinv30);
657             r30              = _mm256_andnot_pd(dummy_mask,r30);
658
659             /* Compute parameters for interactions between i and j atoms */
660             qq30             = _mm256_mul_pd(iq3,jq0);
661
662             /* EWALD ELECTROSTATICS */
663
664             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
665             ewrt             = _mm256_mul_pd(r30,ewtabscale);
666             ewitab           = _mm256_cvttpd_epi32(ewrt);
667             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
668             ewitab           = _mm_slli_epi32(ewitab,2);
669             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
670             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
671             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
672             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
673             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
674             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
675             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
676             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
677             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
678
679             d                = _mm256_sub_pd(r30,rswitch);
680             d                = _mm256_max_pd(d,_mm256_setzero_pd());
681             d2               = _mm256_mul_pd(d,d);
682             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
683
684             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
685
686             /* Evaluate switch function */
687             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
688             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv30,_mm256_mul_pd(velec,dsw)) );
689             velec            = _mm256_mul_pd(velec,sw);
690             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
691
692             /* Update potential sum for this i atom from the interaction with this j atom. */
693             velec            = _mm256_and_pd(velec,cutoff_mask);
694             velec            = _mm256_andnot_pd(dummy_mask,velec);
695             velecsum         = _mm256_add_pd(velecsum,velec);
696
697             fscal            = felec;
698
699             fscal            = _mm256_and_pd(fscal,cutoff_mask);
700
701             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
702
703             /* Calculate temporary vectorial force */
704             tx               = _mm256_mul_pd(fscal,dx30);
705             ty               = _mm256_mul_pd(fscal,dy30);
706             tz               = _mm256_mul_pd(fscal,dz30);
707
708             /* Update vectorial force */
709             fix3             = _mm256_add_pd(fix3,tx);
710             fiy3             = _mm256_add_pd(fiy3,ty);
711             fiz3             = _mm256_add_pd(fiz3,tz);
712
713             fjx0             = _mm256_add_pd(fjx0,tx);
714             fjy0             = _mm256_add_pd(fjy0,ty);
715             fjz0             = _mm256_add_pd(fjz0,tz);
716
717             }
718
719             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
720             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
721             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
722             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
723
724             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
725
726             /* Inner loop uses 201 flops */
727         }
728
729         /* End of innermost loop */
730
731         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
732                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
733
734         ggid                        = gid[iidx];
735         /* Update potential energies */
736         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
737
738         /* Increment number of inner iterations */
739         inneriter                  += j_index_end - j_index_start;
740
741         /* Outer loop uses 19 flops */
742     }
743
744     /* Increment number of outer iterations */
745     outeriter        += nri;
746
747     /* Update outer/inner flops */
748
749     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*201);
750 }
751 /*
752  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_avx_256_double
753  * Electrostatics interaction: Ewald
754  * VdW interaction:            None
755  * Geometry:                   Water4-Particle
756  * Calculate force/pot:        Force
757  */
758 void
759 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_avx_256_double
760                     (t_nblist * gmx_restrict                nlist,
761                      rvec * gmx_restrict                    xx,
762                      rvec * gmx_restrict                    ff,
763                      t_forcerec * gmx_restrict              fr,
764                      t_mdatoms * gmx_restrict               mdatoms,
765                      nb_kernel_data_t * gmx_restrict        kernel_data,
766                      t_nrnb * gmx_restrict                  nrnb)
767 {
768     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
769      * just 0 for non-waters.
770      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
771      * jnr indices corresponding to data put in the four positions in the SIMD register.
772      */
773     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
774     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
775     int              jnrA,jnrB,jnrC,jnrD;
776     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
777     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
778     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
779     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
780     real             rcutoff_scalar;
781     real             *shiftvec,*fshift,*x,*f;
782     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
783     real             scratch[4*DIM];
784     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
785     real *           vdwioffsetptr1;
786     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
787     real *           vdwioffsetptr2;
788     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
789     real *           vdwioffsetptr3;
790     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
791     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
792     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
793     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
794     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
795     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
796     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
797     real             *charge;
798     __m128i          ewitab;
799     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
800     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
801     real             *ewtab;
802     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
803     real             rswitch_scalar,d_scalar;
804     __m256d          dummy_mask,cutoff_mask;
805     __m128           tmpmask0,tmpmask1;
806     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
807     __m256d          one     = _mm256_set1_pd(1.0);
808     __m256d          two     = _mm256_set1_pd(2.0);
809     x                = xx[0];
810     f                = ff[0];
811
812     nri              = nlist->nri;
813     iinr             = nlist->iinr;
814     jindex           = nlist->jindex;
815     jjnr             = nlist->jjnr;
816     shiftidx         = nlist->shift;
817     gid              = nlist->gid;
818     shiftvec         = fr->shift_vec[0];
819     fshift           = fr->fshift[0];
820     facel            = _mm256_set1_pd(fr->epsfac);
821     charge           = mdatoms->chargeA;
822
823     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
824     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
825     beta2            = _mm256_mul_pd(beta,beta);
826     beta3            = _mm256_mul_pd(beta,beta2);
827
828     ewtab            = fr->ic->tabq_coul_FDV0;
829     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
830     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
831
832     /* Setup water-specific parameters */
833     inr              = nlist->iinr[0];
834     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
835     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
836     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
837
838     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
839     rcutoff_scalar   = fr->rcoulomb;
840     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
841     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
842
843     rswitch_scalar   = fr->rcoulomb_switch;
844     rswitch          = _mm256_set1_pd(rswitch_scalar);
845     /* Setup switch parameters */
846     d_scalar         = rcutoff_scalar-rswitch_scalar;
847     d                = _mm256_set1_pd(d_scalar);
848     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
849     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
850     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
851     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
852     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
853     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
854
855     /* Avoid stupid compiler warnings */
856     jnrA = jnrB = jnrC = jnrD = 0;
857     j_coord_offsetA = 0;
858     j_coord_offsetB = 0;
859     j_coord_offsetC = 0;
860     j_coord_offsetD = 0;
861
862     outeriter        = 0;
863     inneriter        = 0;
864
865     for(iidx=0;iidx<4*DIM;iidx++)
866     {
867         scratch[iidx] = 0.0;
868     }
869
870     /* Start outer loop over neighborlists */
871     for(iidx=0; iidx<nri; iidx++)
872     {
873         /* Load shift vector for this list */
874         i_shift_offset   = DIM*shiftidx[iidx];
875
876         /* Load limits for loop over neighbors */
877         j_index_start    = jindex[iidx];
878         j_index_end      = jindex[iidx+1];
879
880         /* Get outer coordinate index */
881         inr              = iinr[iidx];
882         i_coord_offset   = DIM*inr;
883
884         /* Load i particle coords and add shift vector */
885         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
886                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
887
888         fix1             = _mm256_setzero_pd();
889         fiy1             = _mm256_setzero_pd();
890         fiz1             = _mm256_setzero_pd();
891         fix2             = _mm256_setzero_pd();
892         fiy2             = _mm256_setzero_pd();
893         fiz2             = _mm256_setzero_pd();
894         fix3             = _mm256_setzero_pd();
895         fiy3             = _mm256_setzero_pd();
896         fiz3             = _mm256_setzero_pd();
897
898         /* Start inner kernel loop */
899         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
900         {
901
902             /* Get j neighbor index, and coordinate index */
903             jnrA             = jjnr[jidx];
904             jnrB             = jjnr[jidx+1];
905             jnrC             = jjnr[jidx+2];
906             jnrD             = jjnr[jidx+3];
907             j_coord_offsetA  = DIM*jnrA;
908             j_coord_offsetB  = DIM*jnrB;
909             j_coord_offsetC  = DIM*jnrC;
910             j_coord_offsetD  = DIM*jnrD;
911
912             /* load j atom coordinates */
913             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
914                                                  x+j_coord_offsetC,x+j_coord_offsetD,
915                                                  &jx0,&jy0,&jz0);
916
917             /* Calculate displacement vector */
918             dx10             = _mm256_sub_pd(ix1,jx0);
919             dy10             = _mm256_sub_pd(iy1,jy0);
920             dz10             = _mm256_sub_pd(iz1,jz0);
921             dx20             = _mm256_sub_pd(ix2,jx0);
922             dy20             = _mm256_sub_pd(iy2,jy0);
923             dz20             = _mm256_sub_pd(iz2,jz0);
924             dx30             = _mm256_sub_pd(ix3,jx0);
925             dy30             = _mm256_sub_pd(iy3,jy0);
926             dz30             = _mm256_sub_pd(iz3,jz0);
927
928             /* Calculate squared distance and things based on it */
929             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
930             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
931             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
932
933             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
934             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
935             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
936
937             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
938             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
939             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
940
941             /* Load parameters for j particles */
942             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
943                                                                  charge+jnrC+0,charge+jnrD+0);
944
945             fjx0             = _mm256_setzero_pd();
946             fjy0             = _mm256_setzero_pd();
947             fjz0             = _mm256_setzero_pd();
948
949             /**************************
950              * CALCULATE INTERACTIONS *
951              **************************/
952
953             if (gmx_mm256_any_lt(rsq10,rcutoff2))
954             {
955
956             r10              = _mm256_mul_pd(rsq10,rinv10);
957
958             /* Compute parameters for interactions between i and j atoms */
959             qq10             = _mm256_mul_pd(iq1,jq0);
960
961             /* EWALD ELECTROSTATICS */
962
963             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
964             ewrt             = _mm256_mul_pd(r10,ewtabscale);
965             ewitab           = _mm256_cvttpd_epi32(ewrt);
966             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
967             ewitab           = _mm_slli_epi32(ewitab,2);
968             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
969             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
970             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
971             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
972             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
973             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
974             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
975             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
976             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
977
978             d                = _mm256_sub_pd(r10,rswitch);
979             d                = _mm256_max_pd(d,_mm256_setzero_pd());
980             d2               = _mm256_mul_pd(d,d);
981             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
982
983             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
984
985             /* Evaluate switch function */
986             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
987             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
988             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
989
990             fscal            = felec;
991
992             fscal            = _mm256_and_pd(fscal,cutoff_mask);
993
994             /* Calculate temporary vectorial force */
995             tx               = _mm256_mul_pd(fscal,dx10);
996             ty               = _mm256_mul_pd(fscal,dy10);
997             tz               = _mm256_mul_pd(fscal,dz10);
998
999             /* Update vectorial force */
1000             fix1             = _mm256_add_pd(fix1,tx);
1001             fiy1             = _mm256_add_pd(fiy1,ty);
1002             fiz1             = _mm256_add_pd(fiz1,tz);
1003
1004             fjx0             = _mm256_add_pd(fjx0,tx);
1005             fjy0             = _mm256_add_pd(fjy0,ty);
1006             fjz0             = _mm256_add_pd(fjz0,tz);
1007
1008             }
1009
1010             /**************************
1011              * CALCULATE INTERACTIONS *
1012              **************************/
1013
1014             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1015             {
1016
1017             r20              = _mm256_mul_pd(rsq20,rinv20);
1018
1019             /* Compute parameters for interactions between i and j atoms */
1020             qq20             = _mm256_mul_pd(iq2,jq0);
1021
1022             /* EWALD ELECTROSTATICS */
1023
1024             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1025             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1026             ewitab           = _mm256_cvttpd_epi32(ewrt);
1027             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1028             ewitab           = _mm_slli_epi32(ewitab,2);
1029             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1030             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1031             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1032             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1033             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1034             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1035             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1036             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
1037             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1038
1039             d                = _mm256_sub_pd(r20,rswitch);
1040             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1041             d2               = _mm256_mul_pd(d,d);
1042             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1043
1044             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1045
1046             /* Evaluate switch function */
1047             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1048             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
1049             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1050
1051             fscal            = felec;
1052
1053             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1054
1055             /* Calculate temporary vectorial force */
1056             tx               = _mm256_mul_pd(fscal,dx20);
1057             ty               = _mm256_mul_pd(fscal,dy20);
1058             tz               = _mm256_mul_pd(fscal,dz20);
1059
1060             /* Update vectorial force */
1061             fix2             = _mm256_add_pd(fix2,tx);
1062             fiy2             = _mm256_add_pd(fiy2,ty);
1063             fiz2             = _mm256_add_pd(fiz2,tz);
1064
1065             fjx0             = _mm256_add_pd(fjx0,tx);
1066             fjy0             = _mm256_add_pd(fjy0,ty);
1067             fjz0             = _mm256_add_pd(fjz0,tz);
1068
1069             }
1070
1071             /**************************
1072              * CALCULATE INTERACTIONS *
1073              **************************/
1074
1075             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1076             {
1077
1078             r30              = _mm256_mul_pd(rsq30,rinv30);
1079
1080             /* Compute parameters for interactions between i and j atoms */
1081             qq30             = _mm256_mul_pd(iq3,jq0);
1082
1083             /* EWALD ELECTROSTATICS */
1084
1085             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1086             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1087             ewitab           = _mm256_cvttpd_epi32(ewrt);
1088             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1089             ewitab           = _mm_slli_epi32(ewitab,2);
1090             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1091             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1092             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1093             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1094             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1095             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1096             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1097             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
1098             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1099
1100             d                = _mm256_sub_pd(r30,rswitch);
1101             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1102             d2               = _mm256_mul_pd(d,d);
1103             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1104
1105             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1106
1107             /* Evaluate switch function */
1108             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1109             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv30,_mm256_mul_pd(velec,dsw)) );
1110             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1111
1112             fscal            = felec;
1113
1114             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1115
1116             /* Calculate temporary vectorial force */
1117             tx               = _mm256_mul_pd(fscal,dx30);
1118             ty               = _mm256_mul_pd(fscal,dy30);
1119             tz               = _mm256_mul_pd(fscal,dz30);
1120
1121             /* Update vectorial force */
1122             fix3             = _mm256_add_pd(fix3,tx);
1123             fiy3             = _mm256_add_pd(fiy3,ty);
1124             fiz3             = _mm256_add_pd(fiz3,tz);
1125
1126             fjx0             = _mm256_add_pd(fjx0,tx);
1127             fjy0             = _mm256_add_pd(fjy0,ty);
1128             fjz0             = _mm256_add_pd(fjz0,tz);
1129
1130             }
1131
1132             fjptrA             = f+j_coord_offsetA;
1133             fjptrB             = f+j_coord_offsetB;
1134             fjptrC             = f+j_coord_offsetC;
1135             fjptrD             = f+j_coord_offsetD;
1136
1137             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1138
1139             /* Inner loop uses 189 flops */
1140         }
1141
1142         if(jidx<j_index_end)
1143         {
1144
1145             /* Get j neighbor index, and coordinate index */
1146             jnrlistA         = jjnr[jidx];
1147             jnrlistB         = jjnr[jidx+1];
1148             jnrlistC         = jjnr[jidx+2];
1149             jnrlistD         = jjnr[jidx+3];
1150             /* Sign of each element will be negative for non-real atoms.
1151              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1152              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1153              */
1154             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1155
1156             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1157             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1158             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1159
1160             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1161             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1162             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1163             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1164             j_coord_offsetA  = DIM*jnrA;
1165             j_coord_offsetB  = DIM*jnrB;
1166             j_coord_offsetC  = DIM*jnrC;
1167             j_coord_offsetD  = DIM*jnrD;
1168
1169             /* load j atom coordinates */
1170             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1171                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1172                                                  &jx0,&jy0,&jz0);
1173
1174             /* Calculate displacement vector */
1175             dx10             = _mm256_sub_pd(ix1,jx0);
1176             dy10             = _mm256_sub_pd(iy1,jy0);
1177             dz10             = _mm256_sub_pd(iz1,jz0);
1178             dx20             = _mm256_sub_pd(ix2,jx0);
1179             dy20             = _mm256_sub_pd(iy2,jy0);
1180             dz20             = _mm256_sub_pd(iz2,jz0);
1181             dx30             = _mm256_sub_pd(ix3,jx0);
1182             dy30             = _mm256_sub_pd(iy3,jy0);
1183             dz30             = _mm256_sub_pd(iz3,jz0);
1184
1185             /* Calculate squared distance and things based on it */
1186             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1187             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1188             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1189
1190             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1191             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1192             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1193
1194             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1195             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1196             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1197
1198             /* Load parameters for j particles */
1199             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1200                                                                  charge+jnrC+0,charge+jnrD+0);
1201
1202             fjx0             = _mm256_setzero_pd();
1203             fjy0             = _mm256_setzero_pd();
1204             fjz0             = _mm256_setzero_pd();
1205
1206             /**************************
1207              * CALCULATE INTERACTIONS *
1208              **************************/
1209
1210             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1211             {
1212
1213             r10              = _mm256_mul_pd(rsq10,rinv10);
1214             r10              = _mm256_andnot_pd(dummy_mask,r10);
1215
1216             /* Compute parameters for interactions between i and j atoms */
1217             qq10             = _mm256_mul_pd(iq1,jq0);
1218
1219             /* EWALD ELECTROSTATICS */
1220
1221             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1222             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1223             ewitab           = _mm256_cvttpd_epi32(ewrt);
1224             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1225             ewitab           = _mm_slli_epi32(ewitab,2);
1226             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1227             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1228             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1229             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1230             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1231             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1232             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1233             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
1234             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1235
1236             d                = _mm256_sub_pd(r10,rswitch);
1237             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1238             d2               = _mm256_mul_pd(d,d);
1239             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1240
1241             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1242
1243             /* Evaluate switch function */
1244             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1245             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
1246             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1247
1248             fscal            = felec;
1249
1250             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1251
1252             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1253
1254             /* Calculate temporary vectorial force */
1255             tx               = _mm256_mul_pd(fscal,dx10);
1256             ty               = _mm256_mul_pd(fscal,dy10);
1257             tz               = _mm256_mul_pd(fscal,dz10);
1258
1259             /* Update vectorial force */
1260             fix1             = _mm256_add_pd(fix1,tx);
1261             fiy1             = _mm256_add_pd(fiy1,ty);
1262             fiz1             = _mm256_add_pd(fiz1,tz);
1263
1264             fjx0             = _mm256_add_pd(fjx0,tx);
1265             fjy0             = _mm256_add_pd(fjy0,ty);
1266             fjz0             = _mm256_add_pd(fjz0,tz);
1267
1268             }
1269
1270             /**************************
1271              * CALCULATE INTERACTIONS *
1272              **************************/
1273
1274             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1275             {
1276
1277             r20              = _mm256_mul_pd(rsq20,rinv20);
1278             r20              = _mm256_andnot_pd(dummy_mask,r20);
1279
1280             /* Compute parameters for interactions between i and j atoms */
1281             qq20             = _mm256_mul_pd(iq2,jq0);
1282
1283             /* EWALD ELECTROSTATICS */
1284
1285             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1286             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1287             ewitab           = _mm256_cvttpd_epi32(ewrt);
1288             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1289             ewitab           = _mm_slli_epi32(ewitab,2);
1290             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1291             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1292             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1293             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1294             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1295             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1296             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1297             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
1298             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1299
1300             d                = _mm256_sub_pd(r20,rswitch);
1301             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1302             d2               = _mm256_mul_pd(d,d);
1303             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1304
1305             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1306
1307             /* Evaluate switch function */
1308             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1309             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
1310             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1311
1312             fscal            = felec;
1313
1314             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1315
1316             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1317
1318             /* Calculate temporary vectorial force */
1319             tx               = _mm256_mul_pd(fscal,dx20);
1320             ty               = _mm256_mul_pd(fscal,dy20);
1321             tz               = _mm256_mul_pd(fscal,dz20);
1322
1323             /* Update vectorial force */
1324             fix2             = _mm256_add_pd(fix2,tx);
1325             fiy2             = _mm256_add_pd(fiy2,ty);
1326             fiz2             = _mm256_add_pd(fiz2,tz);
1327
1328             fjx0             = _mm256_add_pd(fjx0,tx);
1329             fjy0             = _mm256_add_pd(fjy0,ty);
1330             fjz0             = _mm256_add_pd(fjz0,tz);
1331
1332             }
1333
1334             /**************************
1335              * CALCULATE INTERACTIONS *
1336              **************************/
1337
1338             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1339             {
1340
1341             r30              = _mm256_mul_pd(rsq30,rinv30);
1342             r30              = _mm256_andnot_pd(dummy_mask,r30);
1343
1344             /* Compute parameters for interactions between i and j atoms */
1345             qq30             = _mm256_mul_pd(iq3,jq0);
1346
1347             /* EWALD ELECTROSTATICS */
1348
1349             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1350             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1351             ewitab           = _mm256_cvttpd_epi32(ewrt);
1352             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1353             ewitab           = _mm_slli_epi32(ewitab,2);
1354             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1355             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1356             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1357             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1358             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1359             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1360             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1361             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
1362             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1363
1364             d                = _mm256_sub_pd(r30,rswitch);
1365             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1366             d2               = _mm256_mul_pd(d,d);
1367             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1368
1369             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1370
1371             /* Evaluate switch function */
1372             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1373             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv30,_mm256_mul_pd(velec,dsw)) );
1374             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1375
1376             fscal            = felec;
1377
1378             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1379
1380             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1381
1382             /* Calculate temporary vectorial force */
1383             tx               = _mm256_mul_pd(fscal,dx30);
1384             ty               = _mm256_mul_pd(fscal,dy30);
1385             tz               = _mm256_mul_pd(fscal,dz30);
1386
1387             /* Update vectorial force */
1388             fix3             = _mm256_add_pd(fix3,tx);
1389             fiy3             = _mm256_add_pd(fiy3,ty);
1390             fiz3             = _mm256_add_pd(fiz3,tz);
1391
1392             fjx0             = _mm256_add_pd(fjx0,tx);
1393             fjy0             = _mm256_add_pd(fjy0,ty);
1394             fjz0             = _mm256_add_pd(fjz0,tz);
1395
1396             }
1397
1398             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1399             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1400             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1401             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1402
1403             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1404
1405             /* Inner loop uses 192 flops */
1406         }
1407
1408         /* End of innermost loop */
1409
1410         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1411                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1412
1413         /* Increment number of inner iterations */
1414         inneriter                  += j_index_end - j_index_start;
1415
1416         /* Outer loop uses 18 flops */
1417     }
1418
1419     /* Increment number of outer iterations */
1420     outeriter        += nri;
1421
1422     /* Update outer/inner flops */
1423
1424     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*192);
1425 }