Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     __m128i          ewitab;
92     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
93     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
94     real             *ewtab;
95     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
96     real             rswitch_scalar,d_scalar;
97     __m256d          dummy_mask,cutoff_mask;
98     __m128           tmpmask0,tmpmask1;
99     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
100     __m256d          one     = _mm256_set1_pd(1.0);
101     __m256d          two     = _mm256_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm256_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115
116     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
117     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
118     beta2            = _mm256_mul_pd(beta,beta);
119     beta3            = _mm256_mul_pd(beta,beta2);
120
121     ewtab            = fr->ic->tabq_coul_FDV0;
122     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
123     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
124
125     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
126     rcutoff_scalar   = fr->rcoulomb;
127     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
128     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
129
130     rswitch_scalar   = fr->rcoulomb_switch;
131     rswitch          = _mm256_set1_pd(rswitch_scalar);
132     /* Setup switch parameters */
133     d_scalar         = rcutoff_scalar-rswitch_scalar;
134     d                = _mm256_set1_pd(d_scalar);
135     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
136     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
137     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
138     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
139     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
140     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
173
174         fix0             = _mm256_setzero_pd();
175         fiy0             = _mm256_setzero_pd();
176         fiz0             = _mm256_setzero_pd();
177
178         /* Load parameters for i particles */
179         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
180
181         /* Reset potential sums */
182         velecsum         = _mm256_setzero_pd();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm256_sub_pd(ix0,jx0);
205             dy00             = _mm256_sub_pd(iy0,jy0);
206             dz00             = _mm256_sub_pd(iz0,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
210
211             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
212
213             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
214
215             /* Load parameters for j particles */
216             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
217                                                                  charge+jnrC+0,charge+jnrD+0);
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             if (gmx_mm256_any_lt(rsq00,rcutoff2))
224             {
225
226             r00              = _mm256_mul_pd(rsq00,rinv00);
227
228             /* Compute parameters for interactions between i and j atoms */
229             qq00             = _mm256_mul_pd(iq0,jq0);
230
231             /* EWALD ELECTROSTATICS */
232
233             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
234             ewrt             = _mm256_mul_pd(r00,ewtabscale);
235             ewitab           = _mm256_cvttpd_epi32(ewrt);
236             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
237             ewitab           = _mm_slli_epi32(ewitab,2);
238             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
239             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
240             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
241             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
242             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
243             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
244             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
245             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
246             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
247
248             d                = _mm256_sub_pd(r00,rswitch);
249             d                = _mm256_max_pd(d,_mm256_setzero_pd());
250             d2               = _mm256_mul_pd(d,d);
251             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
252
253             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
254
255             /* Evaluate switch function */
256             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
257             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
258             velec            = _mm256_mul_pd(velec,sw);
259             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
260
261             /* Update potential sum for this i atom from the interaction with this j atom. */
262             velec            = _mm256_and_pd(velec,cutoff_mask);
263             velecsum         = _mm256_add_pd(velecsum,velec);
264
265             fscal            = felec;
266
267             fscal            = _mm256_and_pd(fscal,cutoff_mask);
268
269             /* Calculate temporary vectorial force */
270             tx               = _mm256_mul_pd(fscal,dx00);
271             ty               = _mm256_mul_pd(fscal,dy00);
272             tz               = _mm256_mul_pd(fscal,dz00);
273
274             /* Update vectorial force */
275             fix0             = _mm256_add_pd(fix0,tx);
276             fiy0             = _mm256_add_pd(fiy0,ty);
277             fiz0             = _mm256_add_pd(fiz0,tz);
278
279             fjptrA             = f+j_coord_offsetA;
280             fjptrB             = f+j_coord_offsetB;
281             fjptrC             = f+j_coord_offsetC;
282             fjptrD             = f+j_coord_offsetD;
283             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
284
285             }
286
287             /* Inner loop uses 65 flops */
288         }
289
290         if(jidx<j_index_end)
291         {
292
293             /* Get j neighbor index, and coordinate index */
294             jnrlistA         = jjnr[jidx];
295             jnrlistB         = jjnr[jidx+1];
296             jnrlistC         = jjnr[jidx+2];
297             jnrlistD         = jjnr[jidx+3];
298             /* Sign of each element will be negative for non-real atoms.
299              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
300              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
301              */
302             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
303
304             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
305             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
306             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
307
308             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
309             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
310             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
311             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
312             j_coord_offsetA  = DIM*jnrA;
313             j_coord_offsetB  = DIM*jnrB;
314             j_coord_offsetC  = DIM*jnrC;
315             j_coord_offsetD  = DIM*jnrD;
316
317             /* load j atom coordinates */
318             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
319                                                  x+j_coord_offsetC,x+j_coord_offsetD,
320                                                  &jx0,&jy0,&jz0);
321
322             /* Calculate displacement vector */
323             dx00             = _mm256_sub_pd(ix0,jx0);
324             dy00             = _mm256_sub_pd(iy0,jy0);
325             dz00             = _mm256_sub_pd(iz0,jz0);
326
327             /* Calculate squared distance and things based on it */
328             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
329
330             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
331
332             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
333
334             /* Load parameters for j particles */
335             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
336                                                                  charge+jnrC+0,charge+jnrD+0);
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             if (gmx_mm256_any_lt(rsq00,rcutoff2))
343             {
344
345             r00              = _mm256_mul_pd(rsq00,rinv00);
346             r00              = _mm256_andnot_pd(dummy_mask,r00);
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq00             = _mm256_mul_pd(iq0,jq0);
350
351             /* EWALD ELECTROSTATICS */
352
353             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
354             ewrt             = _mm256_mul_pd(r00,ewtabscale);
355             ewitab           = _mm256_cvttpd_epi32(ewrt);
356             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
357             ewitab           = _mm_slli_epi32(ewitab,2);
358             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
359             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
360             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
361             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
362             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
363             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
364             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
365             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
366             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
367
368             d                = _mm256_sub_pd(r00,rswitch);
369             d                = _mm256_max_pd(d,_mm256_setzero_pd());
370             d2               = _mm256_mul_pd(d,d);
371             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
372
373             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
374
375             /* Evaluate switch function */
376             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
377             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
378             velec            = _mm256_mul_pd(velec,sw);
379             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
380
381             /* Update potential sum for this i atom from the interaction with this j atom. */
382             velec            = _mm256_and_pd(velec,cutoff_mask);
383             velec            = _mm256_andnot_pd(dummy_mask,velec);
384             velecsum         = _mm256_add_pd(velecsum,velec);
385
386             fscal            = felec;
387
388             fscal            = _mm256_and_pd(fscal,cutoff_mask);
389
390             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm256_mul_pd(fscal,dx00);
394             ty               = _mm256_mul_pd(fscal,dy00);
395             tz               = _mm256_mul_pd(fscal,dz00);
396
397             /* Update vectorial force */
398             fix0             = _mm256_add_pd(fix0,tx);
399             fiy0             = _mm256_add_pd(fiy0,ty);
400             fiz0             = _mm256_add_pd(fiz0,tz);
401
402             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
403             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
404             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
405             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
406             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
407
408             }
409
410             /* Inner loop uses 66 flops */
411         }
412
413         /* End of innermost loop */
414
415         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
416                                                  f+i_coord_offset,fshift+i_shift_offset);
417
418         ggid                        = gid[iidx];
419         /* Update potential energies */
420         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
421
422         /* Increment number of inner iterations */
423         inneriter                  += j_index_end - j_index_start;
424
425         /* Outer loop uses 8 flops */
426     }
427
428     /* Increment number of outer iterations */
429     outeriter        += nri;
430
431     /* Update outer/inner flops */
432
433     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*66);
434 }
435 /*
436  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_256_double
437  * Electrostatics interaction: Ewald
438  * VdW interaction:            None
439  * Geometry:                   Particle-Particle
440  * Calculate force/pot:        Force
441  */
442 void
443 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_256_double
444                     (t_nblist                    * gmx_restrict       nlist,
445                      rvec                        * gmx_restrict          xx,
446                      rvec                        * gmx_restrict          ff,
447                      t_forcerec                  * gmx_restrict          fr,
448                      t_mdatoms                   * gmx_restrict     mdatoms,
449                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
450                      t_nrnb                      * gmx_restrict        nrnb)
451 {
452     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
453      * just 0 for non-waters.
454      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
455      * jnr indices corresponding to data put in the four positions in the SIMD register.
456      */
457     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
458     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
459     int              jnrA,jnrB,jnrC,jnrD;
460     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
461     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
462     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
463     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
464     real             rcutoff_scalar;
465     real             *shiftvec,*fshift,*x,*f;
466     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
467     real             scratch[4*DIM];
468     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
469     real *           vdwioffsetptr0;
470     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
471     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
472     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
473     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
474     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
475     real             *charge;
476     __m128i          ewitab;
477     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
478     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
479     real             *ewtab;
480     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
481     real             rswitch_scalar,d_scalar;
482     __m256d          dummy_mask,cutoff_mask;
483     __m128           tmpmask0,tmpmask1;
484     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
485     __m256d          one     = _mm256_set1_pd(1.0);
486     __m256d          two     = _mm256_set1_pd(2.0);
487     x                = xx[0];
488     f                = ff[0];
489
490     nri              = nlist->nri;
491     iinr             = nlist->iinr;
492     jindex           = nlist->jindex;
493     jjnr             = nlist->jjnr;
494     shiftidx         = nlist->shift;
495     gid              = nlist->gid;
496     shiftvec         = fr->shift_vec[0];
497     fshift           = fr->fshift[0];
498     facel            = _mm256_set1_pd(fr->epsfac);
499     charge           = mdatoms->chargeA;
500
501     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
502     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
503     beta2            = _mm256_mul_pd(beta,beta);
504     beta3            = _mm256_mul_pd(beta,beta2);
505
506     ewtab            = fr->ic->tabq_coul_FDV0;
507     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
508     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
509
510     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
511     rcutoff_scalar   = fr->rcoulomb;
512     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
513     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
514
515     rswitch_scalar   = fr->rcoulomb_switch;
516     rswitch          = _mm256_set1_pd(rswitch_scalar);
517     /* Setup switch parameters */
518     d_scalar         = rcutoff_scalar-rswitch_scalar;
519     d                = _mm256_set1_pd(d_scalar);
520     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
521     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
522     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
523     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
524     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
525     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
526
527     /* Avoid stupid compiler warnings */
528     jnrA = jnrB = jnrC = jnrD = 0;
529     j_coord_offsetA = 0;
530     j_coord_offsetB = 0;
531     j_coord_offsetC = 0;
532     j_coord_offsetD = 0;
533
534     outeriter        = 0;
535     inneriter        = 0;
536
537     for(iidx=0;iidx<4*DIM;iidx++)
538     {
539         scratch[iidx] = 0.0;
540     }
541
542     /* Start outer loop over neighborlists */
543     for(iidx=0; iidx<nri; iidx++)
544     {
545         /* Load shift vector for this list */
546         i_shift_offset   = DIM*shiftidx[iidx];
547
548         /* Load limits for loop over neighbors */
549         j_index_start    = jindex[iidx];
550         j_index_end      = jindex[iidx+1];
551
552         /* Get outer coordinate index */
553         inr              = iinr[iidx];
554         i_coord_offset   = DIM*inr;
555
556         /* Load i particle coords and add shift vector */
557         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
558
559         fix0             = _mm256_setzero_pd();
560         fiy0             = _mm256_setzero_pd();
561         fiz0             = _mm256_setzero_pd();
562
563         /* Load parameters for i particles */
564         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
565
566         /* Start inner kernel loop */
567         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
568         {
569
570             /* Get j neighbor index, and coordinate index */
571             jnrA             = jjnr[jidx];
572             jnrB             = jjnr[jidx+1];
573             jnrC             = jjnr[jidx+2];
574             jnrD             = jjnr[jidx+3];
575             j_coord_offsetA  = DIM*jnrA;
576             j_coord_offsetB  = DIM*jnrB;
577             j_coord_offsetC  = DIM*jnrC;
578             j_coord_offsetD  = DIM*jnrD;
579
580             /* load j atom coordinates */
581             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
582                                                  x+j_coord_offsetC,x+j_coord_offsetD,
583                                                  &jx0,&jy0,&jz0);
584
585             /* Calculate displacement vector */
586             dx00             = _mm256_sub_pd(ix0,jx0);
587             dy00             = _mm256_sub_pd(iy0,jy0);
588             dz00             = _mm256_sub_pd(iz0,jz0);
589
590             /* Calculate squared distance and things based on it */
591             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
592
593             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
594
595             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
596
597             /* Load parameters for j particles */
598             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
599                                                                  charge+jnrC+0,charge+jnrD+0);
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             if (gmx_mm256_any_lt(rsq00,rcutoff2))
606             {
607
608             r00              = _mm256_mul_pd(rsq00,rinv00);
609
610             /* Compute parameters for interactions between i and j atoms */
611             qq00             = _mm256_mul_pd(iq0,jq0);
612
613             /* EWALD ELECTROSTATICS */
614
615             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
616             ewrt             = _mm256_mul_pd(r00,ewtabscale);
617             ewitab           = _mm256_cvttpd_epi32(ewrt);
618             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
619             ewitab           = _mm_slli_epi32(ewitab,2);
620             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
621             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
622             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
623             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
624             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
625             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
626             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
627             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
628             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
629
630             d                = _mm256_sub_pd(r00,rswitch);
631             d                = _mm256_max_pd(d,_mm256_setzero_pd());
632             d2               = _mm256_mul_pd(d,d);
633             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
634
635             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
636
637             /* Evaluate switch function */
638             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
639             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
640             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
641
642             fscal            = felec;
643
644             fscal            = _mm256_and_pd(fscal,cutoff_mask);
645
646             /* Calculate temporary vectorial force */
647             tx               = _mm256_mul_pd(fscal,dx00);
648             ty               = _mm256_mul_pd(fscal,dy00);
649             tz               = _mm256_mul_pd(fscal,dz00);
650
651             /* Update vectorial force */
652             fix0             = _mm256_add_pd(fix0,tx);
653             fiy0             = _mm256_add_pd(fiy0,ty);
654             fiz0             = _mm256_add_pd(fiz0,tz);
655
656             fjptrA             = f+j_coord_offsetA;
657             fjptrB             = f+j_coord_offsetB;
658             fjptrC             = f+j_coord_offsetC;
659             fjptrD             = f+j_coord_offsetD;
660             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
661
662             }
663
664             /* Inner loop uses 62 flops */
665         }
666
667         if(jidx<j_index_end)
668         {
669
670             /* Get j neighbor index, and coordinate index */
671             jnrlistA         = jjnr[jidx];
672             jnrlistB         = jjnr[jidx+1];
673             jnrlistC         = jjnr[jidx+2];
674             jnrlistD         = jjnr[jidx+3];
675             /* Sign of each element will be negative for non-real atoms.
676              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
677              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
678              */
679             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
680
681             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
682             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
683             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
684
685             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
686             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
687             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
688             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
689             j_coord_offsetA  = DIM*jnrA;
690             j_coord_offsetB  = DIM*jnrB;
691             j_coord_offsetC  = DIM*jnrC;
692             j_coord_offsetD  = DIM*jnrD;
693
694             /* load j atom coordinates */
695             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
696                                                  x+j_coord_offsetC,x+j_coord_offsetD,
697                                                  &jx0,&jy0,&jz0);
698
699             /* Calculate displacement vector */
700             dx00             = _mm256_sub_pd(ix0,jx0);
701             dy00             = _mm256_sub_pd(iy0,jy0);
702             dz00             = _mm256_sub_pd(iz0,jz0);
703
704             /* Calculate squared distance and things based on it */
705             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
706
707             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
708
709             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
710
711             /* Load parameters for j particles */
712             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
713                                                                  charge+jnrC+0,charge+jnrD+0);
714
715             /**************************
716              * CALCULATE INTERACTIONS *
717              **************************/
718
719             if (gmx_mm256_any_lt(rsq00,rcutoff2))
720             {
721
722             r00              = _mm256_mul_pd(rsq00,rinv00);
723             r00              = _mm256_andnot_pd(dummy_mask,r00);
724
725             /* Compute parameters for interactions between i and j atoms */
726             qq00             = _mm256_mul_pd(iq0,jq0);
727
728             /* EWALD ELECTROSTATICS */
729
730             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
731             ewrt             = _mm256_mul_pd(r00,ewtabscale);
732             ewitab           = _mm256_cvttpd_epi32(ewrt);
733             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
734             ewitab           = _mm_slli_epi32(ewitab,2);
735             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
736             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
737             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
738             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
739             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
740             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
741             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
742             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
743             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
744
745             d                = _mm256_sub_pd(r00,rswitch);
746             d                = _mm256_max_pd(d,_mm256_setzero_pd());
747             d2               = _mm256_mul_pd(d,d);
748             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
749
750             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
751
752             /* Evaluate switch function */
753             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
754             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
755             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
756
757             fscal            = felec;
758
759             fscal            = _mm256_and_pd(fscal,cutoff_mask);
760
761             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
762
763             /* Calculate temporary vectorial force */
764             tx               = _mm256_mul_pd(fscal,dx00);
765             ty               = _mm256_mul_pd(fscal,dy00);
766             tz               = _mm256_mul_pd(fscal,dz00);
767
768             /* Update vectorial force */
769             fix0             = _mm256_add_pd(fix0,tx);
770             fiy0             = _mm256_add_pd(fiy0,ty);
771             fiz0             = _mm256_add_pd(fiz0,tz);
772
773             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
774             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
775             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
776             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
777             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
778
779             }
780
781             /* Inner loop uses 63 flops */
782         }
783
784         /* End of innermost loop */
785
786         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
787                                                  f+i_coord_offset,fshift+i_shift_offset);
788
789         /* Increment number of inner iterations */
790         inneriter                  += j_index_end - j_index_start;
791
792         /* Outer loop uses 7 flops */
793     }
794
795     /* Increment number of outer iterations */
796     outeriter        += nri;
797
798     /* Update outer/inner flops */
799
800     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*63);
801 }