Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m128i          ewitab;
94     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
96     real             *ewtab;
97     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
98     real             rswitch_scalar,d_scalar;
99     __m256d          dummy_mask,cutoff_mask;
100     __m128           tmpmask0,tmpmask1;
101     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
102     __m256d          one     = _mm256_set1_pd(1.0);
103     __m256d          two     = _mm256_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm256_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117
118     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
119     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
120     beta2            = _mm256_mul_pd(beta,beta);
121     beta3            = _mm256_mul_pd(beta,beta2);
122
123     ewtab            = fr->ic->tabq_coul_FDV0;
124     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
125     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
126
127     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128     rcutoff_scalar   = fr->rcoulomb;
129     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
130     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
131
132     rswitch_scalar   = fr->rcoulomb_switch;
133     rswitch          = _mm256_set1_pd(rswitch_scalar);
134     /* Setup switch parameters */
135     d_scalar         = rcutoff_scalar-rswitch_scalar;
136     d                = _mm256_set1_pd(d_scalar);
137     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
138     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
141     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
142     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     for(iidx=0;iidx<4*DIM;iidx++)
155     {
156         scratch[iidx] = 0.0;
157     }
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
175
176         fix0             = _mm256_setzero_pd();
177         fiy0             = _mm256_setzero_pd();
178         fiz0             = _mm256_setzero_pd();
179
180         /* Load parameters for i particles */
181         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
182
183         /* Reset potential sums */
184         velecsum         = _mm256_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_pd(ix0,jx0);
207             dy00             = _mm256_sub_pd(iy0,jy0);
208             dz00             = _mm256_sub_pd(iz0,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
212
213             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
214
215             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
219                                                                  charge+jnrC+0,charge+jnrD+0);
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             if (gmx_mm256_any_lt(rsq00,rcutoff2))
226             {
227
228             r00              = _mm256_mul_pd(rsq00,rinv00);
229
230             /* Compute parameters for interactions between i and j atoms */
231             qq00             = _mm256_mul_pd(iq0,jq0);
232
233             /* EWALD ELECTROSTATICS */
234
235             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
236             ewrt             = _mm256_mul_pd(r00,ewtabscale);
237             ewitab           = _mm256_cvttpd_epi32(ewrt);
238             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
239             ewitab           = _mm_slli_epi32(ewitab,2);
240             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
241             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
242             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
243             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
244             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
245             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
246             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
247             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
248             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
249
250             d                = _mm256_sub_pd(r00,rswitch);
251             d                = _mm256_max_pd(d,_mm256_setzero_pd());
252             d2               = _mm256_mul_pd(d,d);
253             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
254
255             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
256
257             /* Evaluate switch function */
258             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
259             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
260             velec            = _mm256_mul_pd(velec,sw);
261             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
262
263             /* Update potential sum for this i atom from the interaction with this j atom. */
264             velec            = _mm256_and_pd(velec,cutoff_mask);
265             velecsum         = _mm256_add_pd(velecsum,velec);
266
267             fscal            = felec;
268
269             fscal            = _mm256_and_pd(fscal,cutoff_mask);
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm256_mul_pd(fscal,dx00);
273             ty               = _mm256_mul_pd(fscal,dy00);
274             tz               = _mm256_mul_pd(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm256_add_pd(fix0,tx);
278             fiy0             = _mm256_add_pd(fiy0,ty);
279             fiz0             = _mm256_add_pd(fiz0,tz);
280
281             fjptrA             = f+j_coord_offsetA;
282             fjptrB             = f+j_coord_offsetB;
283             fjptrC             = f+j_coord_offsetC;
284             fjptrD             = f+j_coord_offsetD;
285             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
286
287             }
288
289             /* Inner loop uses 65 flops */
290         }
291
292         if(jidx<j_index_end)
293         {
294
295             /* Get j neighbor index, and coordinate index */
296             jnrlistA         = jjnr[jidx];
297             jnrlistB         = jjnr[jidx+1];
298             jnrlistC         = jjnr[jidx+2];
299             jnrlistD         = jjnr[jidx+3];
300             /* Sign of each element will be negative for non-real atoms.
301              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
302              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
303              */
304             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
305
306             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
307             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
308             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
309
310             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
311             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
312             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
313             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
314             j_coord_offsetA  = DIM*jnrA;
315             j_coord_offsetB  = DIM*jnrB;
316             j_coord_offsetC  = DIM*jnrC;
317             j_coord_offsetD  = DIM*jnrD;
318
319             /* load j atom coordinates */
320             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
321                                                  x+j_coord_offsetC,x+j_coord_offsetD,
322                                                  &jx0,&jy0,&jz0);
323
324             /* Calculate displacement vector */
325             dx00             = _mm256_sub_pd(ix0,jx0);
326             dy00             = _mm256_sub_pd(iy0,jy0);
327             dz00             = _mm256_sub_pd(iz0,jz0);
328
329             /* Calculate squared distance and things based on it */
330             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
331
332             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
333
334             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
335
336             /* Load parameters for j particles */
337             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
338                                                                  charge+jnrC+0,charge+jnrD+0);
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             if (gmx_mm256_any_lt(rsq00,rcutoff2))
345             {
346
347             r00              = _mm256_mul_pd(rsq00,rinv00);
348             r00              = _mm256_andnot_pd(dummy_mask,r00);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq00             = _mm256_mul_pd(iq0,jq0);
352
353             /* EWALD ELECTROSTATICS */
354
355             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
356             ewrt             = _mm256_mul_pd(r00,ewtabscale);
357             ewitab           = _mm256_cvttpd_epi32(ewrt);
358             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
359             ewitab           = _mm_slli_epi32(ewitab,2);
360             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
361             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
362             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
363             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
364             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
365             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
366             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
367             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
368             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
369
370             d                = _mm256_sub_pd(r00,rswitch);
371             d                = _mm256_max_pd(d,_mm256_setzero_pd());
372             d2               = _mm256_mul_pd(d,d);
373             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
374
375             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
376
377             /* Evaluate switch function */
378             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
379             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
380             velec            = _mm256_mul_pd(velec,sw);
381             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
382
383             /* Update potential sum for this i atom from the interaction with this j atom. */
384             velec            = _mm256_and_pd(velec,cutoff_mask);
385             velec            = _mm256_andnot_pd(dummy_mask,velec);
386             velecsum         = _mm256_add_pd(velecsum,velec);
387
388             fscal            = felec;
389
390             fscal            = _mm256_and_pd(fscal,cutoff_mask);
391
392             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
393
394             /* Calculate temporary vectorial force */
395             tx               = _mm256_mul_pd(fscal,dx00);
396             ty               = _mm256_mul_pd(fscal,dy00);
397             tz               = _mm256_mul_pd(fscal,dz00);
398
399             /* Update vectorial force */
400             fix0             = _mm256_add_pd(fix0,tx);
401             fiy0             = _mm256_add_pd(fiy0,ty);
402             fiz0             = _mm256_add_pd(fiz0,tz);
403
404             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
405             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
406             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
407             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
408             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
409
410             }
411
412             /* Inner loop uses 66 flops */
413         }
414
415         /* End of innermost loop */
416
417         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
418                                                  f+i_coord_offset,fshift+i_shift_offset);
419
420         ggid                        = gid[iidx];
421         /* Update potential energies */
422         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
423
424         /* Increment number of inner iterations */
425         inneriter                  += j_index_end - j_index_start;
426
427         /* Outer loop uses 8 flops */
428     }
429
430     /* Increment number of outer iterations */
431     outeriter        += nri;
432
433     /* Update outer/inner flops */
434
435     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*66);
436 }
437 /*
438  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_256_double
439  * Electrostatics interaction: Ewald
440  * VdW interaction:            None
441  * Geometry:                   Particle-Particle
442  * Calculate force/pot:        Force
443  */
444 void
445 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_256_double
446                     (t_nblist                    * gmx_restrict       nlist,
447                      rvec                        * gmx_restrict          xx,
448                      rvec                        * gmx_restrict          ff,
449                      t_forcerec                  * gmx_restrict          fr,
450                      t_mdatoms                   * gmx_restrict     mdatoms,
451                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
452                      t_nrnb                      * gmx_restrict        nrnb)
453 {
454     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
455      * just 0 for non-waters.
456      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
457      * jnr indices corresponding to data put in the four positions in the SIMD register.
458      */
459     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
460     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
461     int              jnrA,jnrB,jnrC,jnrD;
462     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
463     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
464     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
465     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
466     real             rcutoff_scalar;
467     real             *shiftvec,*fshift,*x,*f;
468     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
469     real             scratch[4*DIM];
470     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
471     real *           vdwioffsetptr0;
472     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
473     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
474     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
475     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
476     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
477     real             *charge;
478     __m128i          ewitab;
479     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
480     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
481     real             *ewtab;
482     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
483     real             rswitch_scalar,d_scalar;
484     __m256d          dummy_mask,cutoff_mask;
485     __m128           tmpmask0,tmpmask1;
486     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
487     __m256d          one     = _mm256_set1_pd(1.0);
488     __m256d          two     = _mm256_set1_pd(2.0);
489     x                = xx[0];
490     f                = ff[0];
491
492     nri              = nlist->nri;
493     iinr             = nlist->iinr;
494     jindex           = nlist->jindex;
495     jjnr             = nlist->jjnr;
496     shiftidx         = nlist->shift;
497     gid              = nlist->gid;
498     shiftvec         = fr->shift_vec[0];
499     fshift           = fr->fshift[0];
500     facel            = _mm256_set1_pd(fr->epsfac);
501     charge           = mdatoms->chargeA;
502
503     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
504     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
505     beta2            = _mm256_mul_pd(beta,beta);
506     beta3            = _mm256_mul_pd(beta,beta2);
507
508     ewtab            = fr->ic->tabq_coul_FDV0;
509     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
510     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
511
512     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
513     rcutoff_scalar   = fr->rcoulomb;
514     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
515     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
516
517     rswitch_scalar   = fr->rcoulomb_switch;
518     rswitch          = _mm256_set1_pd(rswitch_scalar);
519     /* Setup switch parameters */
520     d_scalar         = rcutoff_scalar-rswitch_scalar;
521     d                = _mm256_set1_pd(d_scalar);
522     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
523     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
524     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
525     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
526     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
527     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
528
529     /* Avoid stupid compiler warnings */
530     jnrA = jnrB = jnrC = jnrD = 0;
531     j_coord_offsetA = 0;
532     j_coord_offsetB = 0;
533     j_coord_offsetC = 0;
534     j_coord_offsetD = 0;
535
536     outeriter        = 0;
537     inneriter        = 0;
538
539     for(iidx=0;iidx<4*DIM;iidx++)
540     {
541         scratch[iidx] = 0.0;
542     }
543
544     /* Start outer loop over neighborlists */
545     for(iidx=0; iidx<nri; iidx++)
546     {
547         /* Load shift vector for this list */
548         i_shift_offset   = DIM*shiftidx[iidx];
549
550         /* Load limits for loop over neighbors */
551         j_index_start    = jindex[iidx];
552         j_index_end      = jindex[iidx+1];
553
554         /* Get outer coordinate index */
555         inr              = iinr[iidx];
556         i_coord_offset   = DIM*inr;
557
558         /* Load i particle coords and add shift vector */
559         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
560
561         fix0             = _mm256_setzero_pd();
562         fiy0             = _mm256_setzero_pd();
563         fiz0             = _mm256_setzero_pd();
564
565         /* Load parameters for i particles */
566         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
567
568         /* Start inner kernel loop */
569         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
570         {
571
572             /* Get j neighbor index, and coordinate index */
573             jnrA             = jjnr[jidx];
574             jnrB             = jjnr[jidx+1];
575             jnrC             = jjnr[jidx+2];
576             jnrD             = jjnr[jidx+3];
577             j_coord_offsetA  = DIM*jnrA;
578             j_coord_offsetB  = DIM*jnrB;
579             j_coord_offsetC  = DIM*jnrC;
580             j_coord_offsetD  = DIM*jnrD;
581
582             /* load j atom coordinates */
583             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
584                                                  x+j_coord_offsetC,x+j_coord_offsetD,
585                                                  &jx0,&jy0,&jz0);
586
587             /* Calculate displacement vector */
588             dx00             = _mm256_sub_pd(ix0,jx0);
589             dy00             = _mm256_sub_pd(iy0,jy0);
590             dz00             = _mm256_sub_pd(iz0,jz0);
591
592             /* Calculate squared distance and things based on it */
593             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
594
595             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
596
597             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
598
599             /* Load parameters for j particles */
600             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
601                                                                  charge+jnrC+0,charge+jnrD+0);
602
603             /**************************
604              * CALCULATE INTERACTIONS *
605              **************************/
606
607             if (gmx_mm256_any_lt(rsq00,rcutoff2))
608             {
609
610             r00              = _mm256_mul_pd(rsq00,rinv00);
611
612             /* Compute parameters for interactions between i and j atoms */
613             qq00             = _mm256_mul_pd(iq0,jq0);
614
615             /* EWALD ELECTROSTATICS */
616
617             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
618             ewrt             = _mm256_mul_pd(r00,ewtabscale);
619             ewitab           = _mm256_cvttpd_epi32(ewrt);
620             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
621             ewitab           = _mm_slli_epi32(ewitab,2);
622             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
623             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
624             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
625             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
626             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
627             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
628             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
629             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
630             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
631
632             d                = _mm256_sub_pd(r00,rswitch);
633             d                = _mm256_max_pd(d,_mm256_setzero_pd());
634             d2               = _mm256_mul_pd(d,d);
635             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
636
637             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
638
639             /* Evaluate switch function */
640             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
641             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
642             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
643
644             fscal            = felec;
645
646             fscal            = _mm256_and_pd(fscal,cutoff_mask);
647
648             /* Calculate temporary vectorial force */
649             tx               = _mm256_mul_pd(fscal,dx00);
650             ty               = _mm256_mul_pd(fscal,dy00);
651             tz               = _mm256_mul_pd(fscal,dz00);
652
653             /* Update vectorial force */
654             fix0             = _mm256_add_pd(fix0,tx);
655             fiy0             = _mm256_add_pd(fiy0,ty);
656             fiz0             = _mm256_add_pd(fiz0,tz);
657
658             fjptrA             = f+j_coord_offsetA;
659             fjptrB             = f+j_coord_offsetB;
660             fjptrC             = f+j_coord_offsetC;
661             fjptrD             = f+j_coord_offsetD;
662             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
663
664             }
665
666             /* Inner loop uses 62 flops */
667         }
668
669         if(jidx<j_index_end)
670         {
671
672             /* Get j neighbor index, and coordinate index */
673             jnrlistA         = jjnr[jidx];
674             jnrlistB         = jjnr[jidx+1];
675             jnrlistC         = jjnr[jidx+2];
676             jnrlistD         = jjnr[jidx+3];
677             /* Sign of each element will be negative for non-real atoms.
678              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
679              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
680              */
681             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
682
683             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
684             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
685             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
686
687             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
688             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
689             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
690             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
691             j_coord_offsetA  = DIM*jnrA;
692             j_coord_offsetB  = DIM*jnrB;
693             j_coord_offsetC  = DIM*jnrC;
694             j_coord_offsetD  = DIM*jnrD;
695
696             /* load j atom coordinates */
697             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
698                                                  x+j_coord_offsetC,x+j_coord_offsetD,
699                                                  &jx0,&jy0,&jz0);
700
701             /* Calculate displacement vector */
702             dx00             = _mm256_sub_pd(ix0,jx0);
703             dy00             = _mm256_sub_pd(iy0,jy0);
704             dz00             = _mm256_sub_pd(iz0,jz0);
705
706             /* Calculate squared distance and things based on it */
707             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
708
709             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
710
711             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
712
713             /* Load parameters for j particles */
714             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
715                                                                  charge+jnrC+0,charge+jnrD+0);
716
717             /**************************
718              * CALCULATE INTERACTIONS *
719              **************************/
720
721             if (gmx_mm256_any_lt(rsq00,rcutoff2))
722             {
723
724             r00              = _mm256_mul_pd(rsq00,rinv00);
725             r00              = _mm256_andnot_pd(dummy_mask,r00);
726
727             /* Compute parameters for interactions between i and j atoms */
728             qq00             = _mm256_mul_pd(iq0,jq0);
729
730             /* EWALD ELECTROSTATICS */
731
732             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
733             ewrt             = _mm256_mul_pd(r00,ewtabscale);
734             ewitab           = _mm256_cvttpd_epi32(ewrt);
735             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
736             ewitab           = _mm_slli_epi32(ewitab,2);
737             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
738             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
739             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
740             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
741             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
742             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
743             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
744             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
745             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
746
747             d                = _mm256_sub_pd(r00,rswitch);
748             d                = _mm256_max_pd(d,_mm256_setzero_pd());
749             d2               = _mm256_mul_pd(d,d);
750             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
751
752             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
753
754             /* Evaluate switch function */
755             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
756             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
757             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
758
759             fscal            = felec;
760
761             fscal            = _mm256_and_pd(fscal,cutoff_mask);
762
763             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
764
765             /* Calculate temporary vectorial force */
766             tx               = _mm256_mul_pd(fscal,dx00);
767             ty               = _mm256_mul_pd(fscal,dy00);
768             tz               = _mm256_mul_pd(fscal,dz00);
769
770             /* Update vectorial force */
771             fix0             = _mm256_add_pd(fix0,tx);
772             fiy0             = _mm256_add_pd(fiy0,ty);
773             fiz0             = _mm256_add_pd(fiz0,tz);
774
775             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
776             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
777             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
778             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
779             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
780
781             }
782
783             /* Inner loop uses 63 flops */
784         }
785
786         /* End of innermost loop */
787
788         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
789                                                  f+i_coord_offset,fshift+i_shift_offset);
790
791         /* Increment number of inner iterations */
792         inneriter                  += j_index_end - j_index_start;
793
794         /* Outer loop uses 7 flops */
795     }
796
797     /* Increment number of outer iterations */
798     outeriter        += nri;
799
800     /* Update outer/inner flops */
801
802     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*63);
803 }