b080ffd7fd814794e1e6c04a16ab17895dfef58e
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
98     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
105     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
106     __m128i          ewitab;
107     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
109     real             *ewtab;
110     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
111     real             rswitch_scalar,d_scalar;
112     __m256d          dummy_mask,cutoff_mask;
113     __m128           tmpmask0,tmpmask1;
114     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
115     __m256d          one     = _mm256_set1_pd(1.0);
116     __m256d          two     = _mm256_set1_pd(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm256_set1_pd(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
135     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
136     beta2            = _mm256_mul_pd(beta,beta);
137     beta3            = _mm256_mul_pd(beta,beta2);
138
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
141     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
146     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
147     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
148     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
149
150     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
151     rcutoff_scalar   = fr->rcoulomb;
152     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
153     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
154
155     rswitch_scalar   = fr->rcoulomb_switch;
156     rswitch          = _mm256_set1_pd(rswitch_scalar);
157     /* Setup switch parameters */
158     d_scalar         = rcutoff_scalar-rswitch_scalar;
159     d                = _mm256_set1_pd(d_scalar);
160     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
161     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
162     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
163     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
164     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
165     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
166
167     /* Avoid stupid compiler warnings */
168     jnrA = jnrB = jnrC = jnrD = 0;
169     j_coord_offsetA = 0;
170     j_coord_offsetB = 0;
171     j_coord_offsetC = 0;
172     j_coord_offsetD = 0;
173
174     outeriter        = 0;
175     inneriter        = 0;
176
177     for(iidx=0;iidx<4*DIM;iidx++)
178     {
179         scratch[iidx] = 0.0;
180     }
181
182     /* Start outer loop over neighborlists */
183     for(iidx=0; iidx<nri; iidx++)
184     {
185         /* Load shift vector for this list */
186         i_shift_offset   = DIM*shiftidx[iidx];
187
188         /* Load limits for loop over neighbors */
189         j_index_start    = jindex[iidx];
190         j_index_end      = jindex[iidx+1];
191
192         /* Get outer coordinate index */
193         inr              = iinr[iidx];
194         i_coord_offset   = DIM*inr;
195
196         /* Load i particle coords and add shift vector */
197         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
198                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
199
200         fix0             = _mm256_setzero_pd();
201         fiy0             = _mm256_setzero_pd();
202         fiz0             = _mm256_setzero_pd();
203         fix1             = _mm256_setzero_pd();
204         fiy1             = _mm256_setzero_pd();
205         fiz1             = _mm256_setzero_pd();
206         fix2             = _mm256_setzero_pd();
207         fiy2             = _mm256_setzero_pd();
208         fiz2             = _mm256_setzero_pd();
209         fix3             = _mm256_setzero_pd();
210         fiy3             = _mm256_setzero_pd();
211         fiz3             = _mm256_setzero_pd();
212
213         /* Reset potential sums */
214         velecsum         = _mm256_setzero_pd();
215         vvdwsum          = _mm256_setzero_pd();
216
217         /* Start inner kernel loop */
218         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
219         {
220
221             /* Get j neighbor index, and coordinate index */
222             jnrA             = jjnr[jidx];
223             jnrB             = jjnr[jidx+1];
224             jnrC             = jjnr[jidx+2];
225             jnrD             = jjnr[jidx+3];
226             j_coord_offsetA  = DIM*jnrA;
227             j_coord_offsetB  = DIM*jnrB;
228             j_coord_offsetC  = DIM*jnrC;
229             j_coord_offsetD  = DIM*jnrD;
230
231             /* load j atom coordinates */
232             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
233                                                  x+j_coord_offsetC,x+j_coord_offsetD,
234                                                  &jx0,&jy0,&jz0);
235
236             /* Calculate displacement vector */
237             dx00             = _mm256_sub_pd(ix0,jx0);
238             dy00             = _mm256_sub_pd(iy0,jy0);
239             dz00             = _mm256_sub_pd(iz0,jz0);
240             dx10             = _mm256_sub_pd(ix1,jx0);
241             dy10             = _mm256_sub_pd(iy1,jy0);
242             dz10             = _mm256_sub_pd(iz1,jz0);
243             dx20             = _mm256_sub_pd(ix2,jx0);
244             dy20             = _mm256_sub_pd(iy2,jy0);
245             dz20             = _mm256_sub_pd(iz2,jz0);
246             dx30             = _mm256_sub_pd(ix3,jx0);
247             dy30             = _mm256_sub_pd(iy3,jy0);
248             dz30             = _mm256_sub_pd(iz3,jz0);
249
250             /* Calculate squared distance and things based on it */
251             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
252             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
253             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
254             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
255
256             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
257             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
258             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
259             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
260
261             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
262             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
263             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
264             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
265
266             /* Load parameters for j particles */
267             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
268                                                                  charge+jnrC+0,charge+jnrD+0);
269             vdwjidx0A        = 2*vdwtype[jnrA+0];
270             vdwjidx0B        = 2*vdwtype[jnrB+0];
271             vdwjidx0C        = 2*vdwtype[jnrC+0];
272             vdwjidx0D        = 2*vdwtype[jnrD+0];
273
274             fjx0             = _mm256_setzero_pd();
275             fjy0             = _mm256_setzero_pd();
276             fjz0             = _mm256_setzero_pd();
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             if (gmx_mm256_any_lt(rsq00,rcutoff2))
283             {
284
285             r00              = _mm256_mul_pd(rsq00,rinv00);
286
287             /* Compute parameters for interactions between i and j atoms */
288             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
289                                             vdwioffsetptr0+vdwjidx0B,
290                                             vdwioffsetptr0+vdwjidx0C,
291                                             vdwioffsetptr0+vdwjidx0D,
292                                             &c6_00,&c12_00);
293
294             /* LENNARD-JONES DISPERSION/REPULSION */
295
296             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
297             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
298             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
299             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
300             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
301
302             d                = _mm256_sub_pd(r00,rswitch);
303             d                = _mm256_max_pd(d,_mm256_setzero_pd());
304             d2               = _mm256_mul_pd(d,d);
305             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
306
307             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
308
309             /* Evaluate switch function */
310             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
311             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
312             vvdw             = _mm256_mul_pd(vvdw,sw);
313             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
317             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
318
319             fscal            = fvdw;
320
321             fscal            = _mm256_and_pd(fscal,cutoff_mask);
322
323             /* Calculate temporary vectorial force */
324             tx               = _mm256_mul_pd(fscal,dx00);
325             ty               = _mm256_mul_pd(fscal,dy00);
326             tz               = _mm256_mul_pd(fscal,dz00);
327
328             /* Update vectorial force */
329             fix0             = _mm256_add_pd(fix0,tx);
330             fiy0             = _mm256_add_pd(fiy0,ty);
331             fiz0             = _mm256_add_pd(fiz0,tz);
332
333             fjx0             = _mm256_add_pd(fjx0,tx);
334             fjy0             = _mm256_add_pd(fjy0,ty);
335             fjz0             = _mm256_add_pd(fjz0,tz);
336
337             }
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             if (gmx_mm256_any_lt(rsq10,rcutoff2))
344             {
345
346             r10              = _mm256_mul_pd(rsq10,rinv10);
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq10             = _mm256_mul_pd(iq1,jq0);
350
351             /* EWALD ELECTROSTATICS */
352
353             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
354             ewrt             = _mm256_mul_pd(r10,ewtabscale);
355             ewitab           = _mm256_cvttpd_epi32(ewrt);
356             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
357             ewitab           = _mm_slli_epi32(ewitab,2);
358             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
359             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
360             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
361             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
362             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
363             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
364             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
365             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
366             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
367
368             d                = _mm256_sub_pd(r10,rswitch);
369             d                = _mm256_max_pd(d,_mm256_setzero_pd());
370             d2               = _mm256_mul_pd(d,d);
371             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
372
373             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
374
375             /* Evaluate switch function */
376             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
377             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
378             velec            = _mm256_mul_pd(velec,sw);
379             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
380
381             /* Update potential sum for this i atom from the interaction with this j atom. */
382             velec            = _mm256_and_pd(velec,cutoff_mask);
383             velecsum         = _mm256_add_pd(velecsum,velec);
384
385             fscal            = felec;
386
387             fscal            = _mm256_and_pd(fscal,cutoff_mask);
388
389             /* Calculate temporary vectorial force */
390             tx               = _mm256_mul_pd(fscal,dx10);
391             ty               = _mm256_mul_pd(fscal,dy10);
392             tz               = _mm256_mul_pd(fscal,dz10);
393
394             /* Update vectorial force */
395             fix1             = _mm256_add_pd(fix1,tx);
396             fiy1             = _mm256_add_pd(fiy1,ty);
397             fiz1             = _mm256_add_pd(fiz1,tz);
398
399             fjx0             = _mm256_add_pd(fjx0,tx);
400             fjy0             = _mm256_add_pd(fjy0,ty);
401             fjz0             = _mm256_add_pd(fjz0,tz);
402
403             }
404
405             /**************************
406              * CALCULATE INTERACTIONS *
407              **************************/
408
409             if (gmx_mm256_any_lt(rsq20,rcutoff2))
410             {
411
412             r20              = _mm256_mul_pd(rsq20,rinv20);
413
414             /* Compute parameters for interactions between i and j atoms */
415             qq20             = _mm256_mul_pd(iq2,jq0);
416
417             /* EWALD ELECTROSTATICS */
418
419             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
420             ewrt             = _mm256_mul_pd(r20,ewtabscale);
421             ewitab           = _mm256_cvttpd_epi32(ewrt);
422             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
423             ewitab           = _mm_slli_epi32(ewitab,2);
424             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
425             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
426             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
427             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
428             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
429             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
430             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
431             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
432             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
433
434             d                = _mm256_sub_pd(r20,rswitch);
435             d                = _mm256_max_pd(d,_mm256_setzero_pd());
436             d2               = _mm256_mul_pd(d,d);
437             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
438
439             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
440
441             /* Evaluate switch function */
442             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
443             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
444             velec            = _mm256_mul_pd(velec,sw);
445             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
446
447             /* Update potential sum for this i atom from the interaction with this j atom. */
448             velec            = _mm256_and_pd(velec,cutoff_mask);
449             velecsum         = _mm256_add_pd(velecsum,velec);
450
451             fscal            = felec;
452
453             fscal            = _mm256_and_pd(fscal,cutoff_mask);
454
455             /* Calculate temporary vectorial force */
456             tx               = _mm256_mul_pd(fscal,dx20);
457             ty               = _mm256_mul_pd(fscal,dy20);
458             tz               = _mm256_mul_pd(fscal,dz20);
459
460             /* Update vectorial force */
461             fix2             = _mm256_add_pd(fix2,tx);
462             fiy2             = _mm256_add_pd(fiy2,ty);
463             fiz2             = _mm256_add_pd(fiz2,tz);
464
465             fjx0             = _mm256_add_pd(fjx0,tx);
466             fjy0             = _mm256_add_pd(fjy0,ty);
467             fjz0             = _mm256_add_pd(fjz0,tz);
468
469             }
470
471             /**************************
472              * CALCULATE INTERACTIONS *
473              **************************/
474
475             if (gmx_mm256_any_lt(rsq30,rcutoff2))
476             {
477
478             r30              = _mm256_mul_pd(rsq30,rinv30);
479
480             /* Compute parameters for interactions between i and j atoms */
481             qq30             = _mm256_mul_pd(iq3,jq0);
482
483             /* EWALD ELECTROSTATICS */
484
485             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
486             ewrt             = _mm256_mul_pd(r30,ewtabscale);
487             ewitab           = _mm256_cvttpd_epi32(ewrt);
488             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
489             ewitab           = _mm_slli_epi32(ewitab,2);
490             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
491             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
492             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
493             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
494             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
495             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
496             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
497             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
498             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
499
500             d                = _mm256_sub_pd(r30,rswitch);
501             d                = _mm256_max_pd(d,_mm256_setzero_pd());
502             d2               = _mm256_mul_pd(d,d);
503             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
504
505             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
506
507             /* Evaluate switch function */
508             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
509             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv30,_mm256_mul_pd(velec,dsw)) );
510             velec            = _mm256_mul_pd(velec,sw);
511             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
512
513             /* Update potential sum for this i atom from the interaction with this j atom. */
514             velec            = _mm256_and_pd(velec,cutoff_mask);
515             velecsum         = _mm256_add_pd(velecsum,velec);
516
517             fscal            = felec;
518
519             fscal            = _mm256_and_pd(fscal,cutoff_mask);
520
521             /* Calculate temporary vectorial force */
522             tx               = _mm256_mul_pd(fscal,dx30);
523             ty               = _mm256_mul_pd(fscal,dy30);
524             tz               = _mm256_mul_pd(fscal,dz30);
525
526             /* Update vectorial force */
527             fix3             = _mm256_add_pd(fix3,tx);
528             fiy3             = _mm256_add_pd(fiy3,ty);
529             fiz3             = _mm256_add_pd(fiz3,tz);
530
531             fjx0             = _mm256_add_pd(fjx0,tx);
532             fjy0             = _mm256_add_pd(fjy0,ty);
533             fjz0             = _mm256_add_pd(fjz0,tz);
534
535             }
536
537             fjptrA             = f+j_coord_offsetA;
538             fjptrB             = f+j_coord_offsetB;
539             fjptrC             = f+j_coord_offsetC;
540             fjptrD             = f+j_coord_offsetD;
541
542             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
543
544             /* Inner loop uses 257 flops */
545         }
546
547         if(jidx<j_index_end)
548         {
549
550             /* Get j neighbor index, and coordinate index */
551             jnrlistA         = jjnr[jidx];
552             jnrlistB         = jjnr[jidx+1];
553             jnrlistC         = jjnr[jidx+2];
554             jnrlistD         = jjnr[jidx+3];
555             /* Sign of each element will be negative for non-real atoms.
556              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
557              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
558              */
559             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
560
561             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
562             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
563             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
564
565             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
566             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
567             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
568             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
569             j_coord_offsetA  = DIM*jnrA;
570             j_coord_offsetB  = DIM*jnrB;
571             j_coord_offsetC  = DIM*jnrC;
572             j_coord_offsetD  = DIM*jnrD;
573
574             /* load j atom coordinates */
575             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
576                                                  x+j_coord_offsetC,x+j_coord_offsetD,
577                                                  &jx0,&jy0,&jz0);
578
579             /* Calculate displacement vector */
580             dx00             = _mm256_sub_pd(ix0,jx0);
581             dy00             = _mm256_sub_pd(iy0,jy0);
582             dz00             = _mm256_sub_pd(iz0,jz0);
583             dx10             = _mm256_sub_pd(ix1,jx0);
584             dy10             = _mm256_sub_pd(iy1,jy0);
585             dz10             = _mm256_sub_pd(iz1,jz0);
586             dx20             = _mm256_sub_pd(ix2,jx0);
587             dy20             = _mm256_sub_pd(iy2,jy0);
588             dz20             = _mm256_sub_pd(iz2,jz0);
589             dx30             = _mm256_sub_pd(ix3,jx0);
590             dy30             = _mm256_sub_pd(iy3,jy0);
591             dz30             = _mm256_sub_pd(iz3,jz0);
592
593             /* Calculate squared distance and things based on it */
594             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
595             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
596             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
597             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
598
599             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
600             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
601             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
602             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
603
604             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
605             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
606             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
607             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
608
609             /* Load parameters for j particles */
610             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
611                                                                  charge+jnrC+0,charge+jnrD+0);
612             vdwjidx0A        = 2*vdwtype[jnrA+0];
613             vdwjidx0B        = 2*vdwtype[jnrB+0];
614             vdwjidx0C        = 2*vdwtype[jnrC+0];
615             vdwjidx0D        = 2*vdwtype[jnrD+0];
616
617             fjx0             = _mm256_setzero_pd();
618             fjy0             = _mm256_setzero_pd();
619             fjz0             = _mm256_setzero_pd();
620
621             /**************************
622              * CALCULATE INTERACTIONS *
623              **************************/
624
625             if (gmx_mm256_any_lt(rsq00,rcutoff2))
626             {
627
628             r00              = _mm256_mul_pd(rsq00,rinv00);
629             r00              = _mm256_andnot_pd(dummy_mask,r00);
630
631             /* Compute parameters for interactions between i and j atoms */
632             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
633                                             vdwioffsetptr0+vdwjidx0B,
634                                             vdwioffsetptr0+vdwjidx0C,
635                                             vdwioffsetptr0+vdwjidx0D,
636                                             &c6_00,&c12_00);
637
638             /* LENNARD-JONES DISPERSION/REPULSION */
639
640             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
641             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
642             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
643             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
644             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
645
646             d                = _mm256_sub_pd(r00,rswitch);
647             d                = _mm256_max_pd(d,_mm256_setzero_pd());
648             d2               = _mm256_mul_pd(d,d);
649             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
650
651             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
652
653             /* Evaluate switch function */
654             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
655             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
656             vvdw             = _mm256_mul_pd(vvdw,sw);
657             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
658
659             /* Update potential sum for this i atom from the interaction with this j atom. */
660             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
661             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
662             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
663
664             fscal            = fvdw;
665
666             fscal            = _mm256_and_pd(fscal,cutoff_mask);
667
668             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
669
670             /* Calculate temporary vectorial force */
671             tx               = _mm256_mul_pd(fscal,dx00);
672             ty               = _mm256_mul_pd(fscal,dy00);
673             tz               = _mm256_mul_pd(fscal,dz00);
674
675             /* Update vectorial force */
676             fix0             = _mm256_add_pd(fix0,tx);
677             fiy0             = _mm256_add_pd(fiy0,ty);
678             fiz0             = _mm256_add_pd(fiz0,tz);
679
680             fjx0             = _mm256_add_pd(fjx0,tx);
681             fjy0             = _mm256_add_pd(fjy0,ty);
682             fjz0             = _mm256_add_pd(fjz0,tz);
683
684             }
685
686             /**************************
687              * CALCULATE INTERACTIONS *
688              **************************/
689
690             if (gmx_mm256_any_lt(rsq10,rcutoff2))
691             {
692
693             r10              = _mm256_mul_pd(rsq10,rinv10);
694             r10              = _mm256_andnot_pd(dummy_mask,r10);
695
696             /* Compute parameters for interactions between i and j atoms */
697             qq10             = _mm256_mul_pd(iq1,jq0);
698
699             /* EWALD ELECTROSTATICS */
700
701             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
702             ewrt             = _mm256_mul_pd(r10,ewtabscale);
703             ewitab           = _mm256_cvttpd_epi32(ewrt);
704             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
705             ewitab           = _mm_slli_epi32(ewitab,2);
706             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
707             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
708             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
709             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
710             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
711             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
712             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
713             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
714             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
715
716             d                = _mm256_sub_pd(r10,rswitch);
717             d                = _mm256_max_pd(d,_mm256_setzero_pd());
718             d2               = _mm256_mul_pd(d,d);
719             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
720
721             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
722
723             /* Evaluate switch function */
724             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
725             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
726             velec            = _mm256_mul_pd(velec,sw);
727             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
728
729             /* Update potential sum for this i atom from the interaction with this j atom. */
730             velec            = _mm256_and_pd(velec,cutoff_mask);
731             velec            = _mm256_andnot_pd(dummy_mask,velec);
732             velecsum         = _mm256_add_pd(velecsum,velec);
733
734             fscal            = felec;
735
736             fscal            = _mm256_and_pd(fscal,cutoff_mask);
737
738             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
739
740             /* Calculate temporary vectorial force */
741             tx               = _mm256_mul_pd(fscal,dx10);
742             ty               = _mm256_mul_pd(fscal,dy10);
743             tz               = _mm256_mul_pd(fscal,dz10);
744
745             /* Update vectorial force */
746             fix1             = _mm256_add_pd(fix1,tx);
747             fiy1             = _mm256_add_pd(fiy1,ty);
748             fiz1             = _mm256_add_pd(fiz1,tz);
749
750             fjx0             = _mm256_add_pd(fjx0,tx);
751             fjy0             = _mm256_add_pd(fjy0,ty);
752             fjz0             = _mm256_add_pd(fjz0,tz);
753
754             }
755
756             /**************************
757              * CALCULATE INTERACTIONS *
758              **************************/
759
760             if (gmx_mm256_any_lt(rsq20,rcutoff2))
761             {
762
763             r20              = _mm256_mul_pd(rsq20,rinv20);
764             r20              = _mm256_andnot_pd(dummy_mask,r20);
765
766             /* Compute parameters for interactions between i and j atoms */
767             qq20             = _mm256_mul_pd(iq2,jq0);
768
769             /* EWALD ELECTROSTATICS */
770
771             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
772             ewrt             = _mm256_mul_pd(r20,ewtabscale);
773             ewitab           = _mm256_cvttpd_epi32(ewrt);
774             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
775             ewitab           = _mm_slli_epi32(ewitab,2);
776             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
777             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
778             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
779             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
780             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
781             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
782             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
783             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
784             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
785
786             d                = _mm256_sub_pd(r20,rswitch);
787             d                = _mm256_max_pd(d,_mm256_setzero_pd());
788             d2               = _mm256_mul_pd(d,d);
789             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
790
791             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
792
793             /* Evaluate switch function */
794             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
795             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
796             velec            = _mm256_mul_pd(velec,sw);
797             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
798
799             /* Update potential sum for this i atom from the interaction with this j atom. */
800             velec            = _mm256_and_pd(velec,cutoff_mask);
801             velec            = _mm256_andnot_pd(dummy_mask,velec);
802             velecsum         = _mm256_add_pd(velecsum,velec);
803
804             fscal            = felec;
805
806             fscal            = _mm256_and_pd(fscal,cutoff_mask);
807
808             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
809
810             /* Calculate temporary vectorial force */
811             tx               = _mm256_mul_pd(fscal,dx20);
812             ty               = _mm256_mul_pd(fscal,dy20);
813             tz               = _mm256_mul_pd(fscal,dz20);
814
815             /* Update vectorial force */
816             fix2             = _mm256_add_pd(fix2,tx);
817             fiy2             = _mm256_add_pd(fiy2,ty);
818             fiz2             = _mm256_add_pd(fiz2,tz);
819
820             fjx0             = _mm256_add_pd(fjx0,tx);
821             fjy0             = _mm256_add_pd(fjy0,ty);
822             fjz0             = _mm256_add_pd(fjz0,tz);
823
824             }
825
826             /**************************
827              * CALCULATE INTERACTIONS *
828              **************************/
829
830             if (gmx_mm256_any_lt(rsq30,rcutoff2))
831             {
832
833             r30              = _mm256_mul_pd(rsq30,rinv30);
834             r30              = _mm256_andnot_pd(dummy_mask,r30);
835
836             /* Compute parameters for interactions between i and j atoms */
837             qq30             = _mm256_mul_pd(iq3,jq0);
838
839             /* EWALD ELECTROSTATICS */
840
841             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
842             ewrt             = _mm256_mul_pd(r30,ewtabscale);
843             ewitab           = _mm256_cvttpd_epi32(ewrt);
844             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
845             ewitab           = _mm_slli_epi32(ewitab,2);
846             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
847             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
848             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
849             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
850             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
851             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
852             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
853             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
854             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
855
856             d                = _mm256_sub_pd(r30,rswitch);
857             d                = _mm256_max_pd(d,_mm256_setzero_pd());
858             d2               = _mm256_mul_pd(d,d);
859             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
860
861             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
862
863             /* Evaluate switch function */
864             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
865             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv30,_mm256_mul_pd(velec,dsw)) );
866             velec            = _mm256_mul_pd(velec,sw);
867             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
868
869             /* Update potential sum for this i atom from the interaction with this j atom. */
870             velec            = _mm256_and_pd(velec,cutoff_mask);
871             velec            = _mm256_andnot_pd(dummy_mask,velec);
872             velecsum         = _mm256_add_pd(velecsum,velec);
873
874             fscal            = felec;
875
876             fscal            = _mm256_and_pd(fscal,cutoff_mask);
877
878             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
879
880             /* Calculate temporary vectorial force */
881             tx               = _mm256_mul_pd(fscal,dx30);
882             ty               = _mm256_mul_pd(fscal,dy30);
883             tz               = _mm256_mul_pd(fscal,dz30);
884
885             /* Update vectorial force */
886             fix3             = _mm256_add_pd(fix3,tx);
887             fiy3             = _mm256_add_pd(fiy3,ty);
888             fiz3             = _mm256_add_pd(fiz3,tz);
889
890             fjx0             = _mm256_add_pd(fjx0,tx);
891             fjy0             = _mm256_add_pd(fjy0,ty);
892             fjz0             = _mm256_add_pd(fjz0,tz);
893
894             }
895
896             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
897             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
898             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
899             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
900
901             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
902
903             /* Inner loop uses 261 flops */
904         }
905
906         /* End of innermost loop */
907
908         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
909                                                  f+i_coord_offset,fshift+i_shift_offset);
910
911         ggid                        = gid[iidx];
912         /* Update potential energies */
913         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
914         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
915
916         /* Increment number of inner iterations */
917         inneriter                  += j_index_end - j_index_start;
918
919         /* Outer loop uses 26 flops */
920     }
921
922     /* Increment number of outer iterations */
923     outeriter        += nri;
924
925     /* Update outer/inner flops */
926
927     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*261);
928 }
929 /*
930  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_256_double
931  * Electrostatics interaction: Ewald
932  * VdW interaction:            LennardJones
933  * Geometry:                   Water4-Particle
934  * Calculate force/pot:        Force
935  */
936 void
937 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_256_double
938                     (t_nblist                    * gmx_restrict       nlist,
939                      rvec                        * gmx_restrict          xx,
940                      rvec                        * gmx_restrict          ff,
941                      t_forcerec                  * gmx_restrict          fr,
942                      t_mdatoms                   * gmx_restrict     mdatoms,
943                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
944                      t_nrnb                      * gmx_restrict        nrnb)
945 {
946     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
947      * just 0 for non-waters.
948      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
949      * jnr indices corresponding to data put in the four positions in the SIMD register.
950      */
951     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
952     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
953     int              jnrA,jnrB,jnrC,jnrD;
954     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
955     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
956     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
957     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
958     real             rcutoff_scalar;
959     real             *shiftvec,*fshift,*x,*f;
960     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
961     real             scratch[4*DIM];
962     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
963     real *           vdwioffsetptr0;
964     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
965     real *           vdwioffsetptr1;
966     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
967     real *           vdwioffsetptr2;
968     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
969     real *           vdwioffsetptr3;
970     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
971     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
972     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
973     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
974     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
975     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
976     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
977     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
978     real             *charge;
979     int              nvdwtype;
980     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
981     int              *vdwtype;
982     real             *vdwparam;
983     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
984     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
985     __m128i          ewitab;
986     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
987     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
988     real             *ewtab;
989     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
990     real             rswitch_scalar,d_scalar;
991     __m256d          dummy_mask,cutoff_mask;
992     __m128           tmpmask0,tmpmask1;
993     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
994     __m256d          one     = _mm256_set1_pd(1.0);
995     __m256d          two     = _mm256_set1_pd(2.0);
996     x                = xx[0];
997     f                = ff[0];
998
999     nri              = nlist->nri;
1000     iinr             = nlist->iinr;
1001     jindex           = nlist->jindex;
1002     jjnr             = nlist->jjnr;
1003     shiftidx         = nlist->shift;
1004     gid              = nlist->gid;
1005     shiftvec         = fr->shift_vec[0];
1006     fshift           = fr->fshift[0];
1007     facel            = _mm256_set1_pd(fr->epsfac);
1008     charge           = mdatoms->chargeA;
1009     nvdwtype         = fr->ntype;
1010     vdwparam         = fr->nbfp;
1011     vdwtype          = mdatoms->typeA;
1012
1013     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
1014     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
1015     beta2            = _mm256_mul_pd(beta,beta);
1016     beta3            = _mm256_mul_pd(beta,beta2);
1017
1018     ewtab            = fr->ic->tabq_coul_FDV0;
1019     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
1020     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
1021
1022     /* Setup water-specific parameters */
1023     inr              = nlist->iinr[0];
1024     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
1025     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
1026     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
1027     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
1028
1029     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1030     rcutoff_scalar   = fr->rcoulomb;
1031     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
1032     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
1033
1034     rswitch_scalar   = fr->rcoulomb_switch;
1035     rswitch          = _mm256_set1_pd(rswitch_scalar);
1036     /* Setup switch parameters */
1037     d_scalar         = rcutoff_scalar-rswitch_scalar;
1038     d                = _mm256_set1_pd(d_scalar);
1039     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
1040     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
1041     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
1042     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
1043     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
1044     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
1045
1046     /* Avoid stupid compiler warnings */
1047     jnrA = jnrB = jnrC = jnrD = 0;
1048     j_coord_offsetA = 0;
1049     j_coord_offsetB = 0;
1050     j_coord_offsetC = 0;
1051     j_coord_offsetD = 0;
1052
1053     outeriter        = 0;
1054     inneriter        = 0;
1055
1056     for(iidx=0;iidx<4*DIM;iidx++)
1057     {
1058         scratch[iidx] = 0.0;
1059     }
1060
1061     /* Start outer loop over neighborlists */
1062     for(iidx=0; iidx<nri; iidx++)
1063     {
1064         /* Load shift vector for this list */
1065         i_shift_offset   = DIM*shiftidx[iidx];
1066
1067         /* Load limits for loop over neighbors */
1068         j_index_start    = jindex[iidx];
1069         j_index_end      = jindex[iidx+1];
1070
1071         /* Get outer coordinate index */
1072         inr              = iinr[iidx];
1073         i_coord_offset   = DIM*inr;
1074
1075         /* Load i particle coords and add shift vector */
1076         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1077                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1078
1079         fix0             = _mm256_setzero_pd();
1080         fiy0             = _mm256_setzero_pd();
1081         fiz0             = _mm256_setzero_pd();
1082         fix1             = _mm256_setzero_pd();
1083         fiy1             = _mm256_setzero_pd();
1084         fiz1             = _mm256_setzero_pd();
1085         fix2             = _mm256_setzero_pd();
1086         fiy2             = _mm256_setzero_pd();
1087         fiz2             = _mm256_setzero_pd();
1088         fix3             = _mm256_setzero_pd();
1089         fiy3             = _mm256_setzero_pd();
1090         fiz3             = _mm256_setzero_pd();
1091
1092         /* Start inner kernel loop */
1093         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1094         {
1095
1096             /* Get j neighbor index, and coordinate index */
1097             jnrA             = jjnr[jidx];
1098             jnrB             = jjnr[jidx+1];
1099             jnrC             = jjnr[jidx+2];
1100             jnrD             = jjnr[jidx+3];
1101             j_coord_offsetA  = DIM*jnrA;
1102             j_coord_offsetB  = DIM*jnrB;
1103             j_coord_offsetC  = DIM*jnrC;
1104             j_coord_offsetD  = DIM*jnrD;
1105
1106             /* load j atom coordinates */
1107             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1108                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1109                                                  &jx0,&jy0,&jz0);
1110
1111             /* Calculate displacement vector */
1112             dx00             = _mm256_sub_pd(ix0,jx0);
1113             dy00             = _mm256_sub_pd(iy0,jy0);
1114             dz00             = _mm256_sub_pd(iz0,jz0);
1115             dx10             = _mm256_sub_pd(ix1,jx0);
1116             dy10             = _mm256_sub_pd(iy1,jy0);
1117             dz10             = _mm256_sub_pd(iz1,jz0);
1118             dx20             = _mm256_sub_pd(ix2,jx0);
1119             dy20             = _mm256_sub_pd(iy2,jy0);
1120             dz20             = _mm256_sub_pd(iz2,jz0);
1121             dx30             = _mm256_sub_pd(ix3,jx0);
1122             dy30             = _mm256_sub_pd(iy3,jy0);
1123             dz30             = _mm256_sub_pd(iz3,jz0);
1124
1125             /* Calculate squared distance and things based on it */
1126             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1127             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1128             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1129             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1130
1131             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1132             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1133             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1134             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1135
1136             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1137             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1138             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1139             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1140
1141             /* Load parameters for j particles */
1142             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1143                                                                  charge+jnrC+0,charge+jnrD+0);
1144             vdwjidx0A        = 2*vdwtype[jnrA+0];
1145             vdwjidx0B        = 2*vdwtype[jnrB+0];
1146             vdwjidx0C        = 2*vdwtype[jnrC+0];
1147             vdwjidx0D        = 2*vdwtype[jnrD+0];
1148
1149             fjx0             = _mm256_setzero_pd();
1150             fjy0             = _mm256_setzero_pd();
1151             fjz0             = _mm256_setzero_pd();
1152
1153             /**************************
1154              * CALCULATE INTERACTIONS *
1155              **************************/
1156
1157             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1158             {
1159
1160             r00              = _mm256_mul_pd(rsq00,rinv00);
1161
1162             /* Compute parameters for interactions between i and j atoms */
1163             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1164                                             vdwioffsetptr0+vdwjidx0B,
1165                                             vdwioffsetptr0+vdwjidx0C,
1166                                             vdwioffsetptr0+vdwjidx0D,
1167                                             &c6_00,&c12_00);
1168
1169             /* LENNARD-JONES DISPERSION/REPULSION */
1170
1171             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1172             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
1173             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
1174             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
1175             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
1176
1177             d                = _mm256_sub_pd(r00,rswitch);
1178             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1179             d2               = _mm256_mul_pd(d,d);
1180             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1181
1182             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1183
1184             /* Evaluate switch function */
1185             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1186             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1187             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1188
1189             fscal            = fvdw;
1190
1191             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1192
1193             /* Calculate temporary vectorial force */
1194             tx               = _mm256_mul_pd(fscal,dx00);
1195             ty               = _mm256_mul_pd(fscal,dy00);
1196             tz               = _mm256_mul_pd(fscal,dz00);
1197
1198             /* Update vectorial force */
1199             fix0             = _mm256_add_pd(fix0,tx);
1200             fiy0             = _mm256_add_pd(fiy0,ty);
1201             fiz0             = _mm256_add_pd(fiz0,tz);
1202
1203             fjx0             = _mm256_add_pd(fjx0,tx);
1204             fjy0             = _mm256_add_pd(fjy0,ty);
1205             fjz0             = _mm256_add_pd(fjz0,tz);
1206
1207             }
1208
1209             /**************************
1210              * CALCULATE INTERACTIONS *
1211              **************************/
1212
1213             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1214             {
1215
1216             r10              = _mm256_mul_pd(rsq10,rinv10);
1217
1218             /* Compute parameters for interactions between i and j atoms */
1219             qq10             = _mm256_mul_pd(iq1,jq0);
1220
1221             /* EWALD ELECTROSTATICS */
1222
1223             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1224             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1225             ewitab           = _mm256_cvttpd_epi32(ewrt);
1226             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1227             ewitab           = _mm_slli_epi32(ewitab,2);
1228             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1229             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1230             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1231             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1232             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1233             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1234             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1235             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
1236             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1237
1238             d                = _mm256_sub_pd(r10,rswitch);
1239             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1240             d2               = _mm256_mul_pd(d,d);
1241             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1242
1243             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1244
1245             /* Evaluate switch function */
1246             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1247             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
1248             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1249
1250             fscal            = felec;
1251
1252             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1253
1254             /* Calculate temporary vectorial force */
1255             tx               = _mm256_mul_pd(fscal,dx10);
1256             ty               = _mm256_mul_pd(fscal,dy10);
1257             tz               = _mm256_mul_pd(fscal,dz10);
1258
1259             /* Update vectorial force */
1260             fix1             = _mm256_add_pd(fix1,tx);
1261             fiy1             = _mm256_add_pd(fiy1,ty);
1262             fiz1             = _mm256_add_pd(fiz1,tz);
1263
1264             fjx0             = _mm256_add_pd(fjx0,tx);
1265             fjy0             = _mm256_add_pd(fjy0,ty);
1266             fjz0             = _mm256_add_pd(fjz0,tz);
1267
1268             }
1269
1270             /**************************
1271              * CALCULATE INTERACTIONS *
1272              **************************/
1273
1274             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1275             {
1276
1277             r20              = _mm256_mul_pd(rsq20,rinv20);
1278
1279             /* Compute parameters for interactions between i and j atoms */
1280             qq20             = _mm256_mul_pd(iq2,jq0);
1281
1282             /* EWALD ELECTROSTATICS */
1283
1284             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1285             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1286             ewitab           = _mm256_cvttpd_epi32(ewrt);
1287             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1288             ewitab           = _mm_slli_epi32(ewitab,2);
1289             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1290             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1291             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1292             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1293             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1294             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1295             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1296             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
1297             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1298
1299             d                = _mm256_sub_pd(r20,rswitch);
1300             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1301             d2               = _mm256_mul_pd(d,d);
1302             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1303
1304             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1305
1306             /* Evaluate switch function */
1307             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1308             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
1309             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1310
1311             fscal            = felec;
1312
1313             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1314
1315             /* Calculate temporary vectorial force */
1316             tx               = _mm256_mul_pd(fscal,dx20);
1317             ty               = _mm256_mul_pd(fscal,dy20);
1318             tz               = _mm256_mul_pd(fscal,dz20);
1319
1320             /* Update vectorial force */
1321             fix2             = _mm256_add_pd(fix2,tx);
1322             fiy2             = _mm256_add_pd(fiy2,ty);
1323             fiz2             = _mm256_add_pd(fiz2,tz);
1324
1325             fjx0             = _mm256_add_pd(fjx0,tx);
1326             fjy0             = _mm256_add_pd(fjy0,ty);
1327             fjz0             = _mm256_add_pd(fjz0,tz);
1328
1329             }
1330
1331             /**************************
1332              * CALCULATE INTERACTIONS *
1333              **************************/
1334
1335             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1336             {
1337
1338             r30              = _mm256_mul_pd(rsq30,rinv30);
1339
1340             /* Compute parameters for interactions between i and j atoms */
1341             qq30             = _mm256_mul_pd(iq3,jq0);
1342
1343             /* EWALD ELECTROSTATICS */
1344
1345             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1346             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1347             ewitab           = _mm256_cvttpd_epi32(ewrt);
1348             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1349             ewitab           = _mm_slli_epi32(ewitab,2);
1350             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1351             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1352             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1353             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1354             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1355             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1356             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1357             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
1358             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1359
1360             d                = _mm256_sub_pd(r30,rswitch);
1361             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1362             d2               = _mm256_mul_pd(d,d);
1363             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1364
1365             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1366
1367             /* Evaluate switch function */
1368             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1369             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv30,_mm256_mul_pd(velec,dsw)) );
1370             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1371
1372             fscal            = felec;
1373
1374             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1375
1376             /* Calculate temporary vectorial force */
1377             tx               = _mm256_mul_pd(fscal,dx30);
1378             ty               = _mm256_mul_pd(fscal,dy30);
1379             tz               = _mm256_mul_pd(fscal,dz30);
1380
1381             /* Update vectorial force */
1382             fix3             = _mm256_add_pd(fix3,tx);
1383             fiy3             = _mm256_add_pd(fiy3,ty);
1384             fiz3             = _mm256_add_pd(fiz3,tz);
1385
1386             fjx0             = _mm256_add_pd(fjx0,tx);
1387             fjy0             = _mm256_add_pd(fjy0,ty);
1388             fjz0             = _mm256_add_pd(fjz0,tz);
1389
1390             }
1391
1392             fjptrA             = f+j_coord_offsetA;
1393             fjptrB             = f+j_coord_offsetB;
1394             fjptrC             = f+j_coord_offsetC;
1395             fjptrD             = f+j_coord_offsetD;
1396
1397             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1398
1399             /* Inner loop uses 245 flops */
1400         }
1401
1402         if(jidx<j_index_end)
1403         {
1404
1405             /* Get j neighbor index, and coordinate index */
1406             jnrlistA         = jjnr[jidx];
1407             jnrlistB         = jjnr[jidx+1];
1408             jnrlistC         = jjnr[jidx+2];
1409             jnrlistD         = jjnr[jidx+3];
1410             /* Sign of each element will be negative for non-real atoms.
1411              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1412              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1413              */
1414             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1415
1416             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1417             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1418             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1419
1420             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1421             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1422             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1423             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1424             j_coord_offsetA  = DIM*jnrA;
1425             j_coord_offsetB  = DIM*jnrB;
1426             j_coord_offsetC  = DIM*jnrC;
1427             j_coord_offsetD  = DIM*jnrD;
1428
1429             /* load j atom coordinates */
1430             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1431                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1432                                                  &jx0,&jy0,&jz0);
1433
1434             /* Calculate displacement vector */
1435             dx00             = _mm256_sub_pd(ix0,jx0);
1436             dy00             = _mm256_sub_pd(iy0,jy0);
1437             dz00             = _mm256_sub_pd(iz0,jz0);
1438             dx10             = _mm256_sub_pd(ix1,jx0);
1439             dy10             = _mm256_sub_pd(iy1,jy0);
1440             dz10             = _mm256_sub_pd(iz1,jz0);
1441             dx20             = _mm256_sub_pd(ix2,jx0);
1442             dy20             = _mm256_sub_pd(iy2,jy0);
1443             dz20             = _mm256_sub_pd(iz2,jz0);
1444             dx30             = _mm256_sub_pd(ix3,jx0);
1445             dy30             = _mm256_sub_pd(iy3,jy0);
1446             dz30             = _mm256_sub_pd(iz3,jz0);
1447
1448             /* Calculate squared distance and things based on it */
1449             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1450             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1451             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1452             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1453
1454             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1455             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1456             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1457             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1458
1459             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1460             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1461             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1462             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1463
1464             /* Load parameters for j particles */
1465             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1466                                                                  charge+jnrC+0,charge+jnrD+0);
1467             vdwjidx0A        = 2*vdwtype[jnrA+0];
1468             vdwjidx0B        = 2*vdwtype[jnrB+0];
1469             vdwjidx0C        = 2*vdwtype[jnrC+0];
1470             vdwjidx0D        = 2*vdwtype[jnrD+0];
1471
1472             fjx0             = _mm256_setzero_pd();
1473             fjy0             = _mm256_setzero_pd();
1474             fjz0             = _mm256_setzero_pd();
1475
1476             /**************************
1477              * CALCULATE INTERACTIONS *
1478              **************************/
1479
1480             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1481             {
1482
1483             r00              = _mm256_mul_pd(rsq00,rinv00);
1484             r00              = _mm256_andnot_pd(dummy_mask,r00);
1485
1486             /* Compute parameters for interactions between i and j atoms */
1487             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1488                                             vdwioffsetptr0+vdwjidx0B,
1489                                             vdwioffsetptr0+vdwjidx0C,
1490                                             vdwioffsetptr0+vdwjidx0D,
1491                                             &c6_00,&c12_00);
1492
1493             /* LENNARD-JONES DISPERSION/REPULSION */
1494
1495             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1496             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
1497             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
1498             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
1499             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
1500
1501             d                = _mm256_sub_pd(r00,rswitch);
1502             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1503             d2               = _mm256_mul_pd(d,d);
1504             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1505
1506             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1507
1508             /* Evaluate switch function */
1509             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1510             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1511             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1512
1513             fscal            = fvdw;
1514
1515             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1516
1517             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1518
1519             /* Calculate temporary vectorial force */
1520             tx               = _mm256_mul_pd(fscal,dx00);
1521             ty               = _mm256_mul_pd(fscal,dy00);
1522             tz               = _mm256_mul_pd(fscal,dz00);
1523
1524             /* Update vectorial force */
1525             fix0             = _mm256_add_pd(fix0,tx);
1526             fiy0             = _mm256_add_pd(fiy0,ty);
1527             fiz0             = _mm256_add_pd(fiz0,tz);
1528
1529             fjx0             = _mm256_add_pd(fjx0,tx);
1530             fjy0             = _mm256_add_pd(fjy0,ty);
1531             fjz0             = _mm256_add_pd(fjz0,tz);
1532
1533             }
1534
1535             /**************************
1536              * CALCULATE INTERACTIONS *
1537              **************************/
1538
1539             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1540             {
1541
1542             r10              = _mm256_mul_pd(rsq10,rinv10);
1543             r10              = _mm256_andnot_pd(dummy_mask,r10);
1544
1545             /* Compute parameters for interactions between i and j atoms */
1546             qq10             = _mm256_mul_pd(iq1,jq0);
1547
1548             /* EWALD ELECTROSTATICS */
1549
1550             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1551             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1552             ewitab           = _mm256_cvttpd_epi32(ewrt);
1553             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1554             ewitab           = _mm_slli_epi32(ewitab,2);
1555             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1556             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1557             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1558             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1559             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1560             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1561             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1562             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
1563             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1564
1565             d                = _mm256_sub_pd(r10,rswitch);
1566             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1567             d2               = _mm256_mul_pd(d,d);
1568             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1569
1570             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1571
1572             /* Evaluate switch function */
1573             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1574             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
1575             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1576
1577             fscal            = felec;
1578
1579             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1580
1581             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1582
1583             /* Calculate temporary vectorial force */
1584             tx               = _mm256_mul_pd(fscal,dx10);
1585             ty               = _mm256_mul_pd(fscal,dy10);
1586             tz               = _mm256_mul_pd(fscal,dz10);
1587
1588             /* Update vectorial force */
1589             fix1             = _mm256_add_pd(fix1,tx);
1590             fiy1             = _mm256_add_pd(fiy1,ty);
1591             fiz1             = _mm256_add_pd(fiz1,tz);
1592
1593             fjx0             = _mm256_add_pd(fjx0,tx);
1594             fjy0             = _mm256_add_pd(fjy0,ty);
1595             fjz0             = _mm256_add_pd(fjz0,tz);
1596
1597             }
1598
1599             /**************************
1600              * CALCULATE INTERACTIONS *
1601              **************************/
1602
1603             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1604             {
1605
1606             r20              = _mm256_mul_pd(rsq20,rinv20);
1607             r20              = _mm256_andnot_pd(dummy_mask,r20);
1608
1609             /* Compute parameters for interactions between i and j atoms */
1610             qq20             = _mm256_mul_pd(iq2,jq0);
1611
1612             /* EWALD ELECTROSTATICS */
1613
1614             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1615             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1616             ewitab           = _mm256_cvttpd_epi32(ewrt);
1617             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1618             ewitab           = _mm_slli_epi32(ewitab,2);
1619             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1620             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1621             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1622             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1623             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1624             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1625             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1626             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
1627             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1628
1629             d                = _mm256_sub_pd(r20,rswitch);
1630             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1631             d2               = _mm256_mul_pd(d,d);
1632             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1633
1634             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1635
1636             /* Evaluate switch function */
1637             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1638             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
1639             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1640
1641             fscal            = felec;
1642
1643             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1644
1645             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1646
1647             /* Calculate temporary vectorial force */
1648             tx               = _mm256_mul_pd(fscal,dx20);
1649             ty               = _mm256_mul_pd(fscal,dy20);
1650             tz               = _mm256_mul_pd(fscal,dz20);
1651
1652             /* Update vectorial force */
1653             fix2             = _mm256_add_pd(fix2,tx);
1654             fiy2             = _mm256_add_pd(fiy2,ty);
1655             fiz2             = _mm256_add_pd(fiz2,tz);
1656
1657             fjx0             = _mm256_add_pd(fjx0,tx);
1658             fjy0             = _mm256_add_pd(fjy0,ty);
1659             fjz0             = _mm256_add_pd(fjz0,tz);
1660
1661             }
1662
1663             /**************************
1664              * CALCULATE INTERACTIONS *
1665              **************************/
1666
1667             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1668             {
1669
1670             r30              = _mm256_mul_pd(rsq30,rinv30);
1671             r30              = _mm256_andnot_pd(dummy_mask,r30);
1672
1673             /* Compute parameters for interactions between i and j atoms */
1674             qq30             = _mm256_mul_pd(iq3,jq0);
1675
1676             /* EWALD ELECTROSTATICS */
1677
1678             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1679             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1680             ewitab           = _mm256_cvttpd_epi32(ewrt);
1681             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1682             ewitab           = _mm_slli_epi32(ewitab,2);
1683             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1684             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1685             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1686             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1687             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1688             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1689             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1690             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
1691             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1692
1693             d                = _mm256_sub_pd(r30,rswitch);
1694             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1695             d2               = _mm256_mul_pd(d,d);
1696             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1697
1698             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1699
1700             /* Evaluate switch function */
1701             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1702             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv30,_mm256_mul_pd(velec,dsw)) );
1703             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1704
1705             fscal            = felec;
1706
1707             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1708
1709             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1710
1711             /* Calculate temporary vectorial force */
1712             tx               = _mm256_mul_pd(fscal,dx30);
1713             ty               = _mm256_mul_pd(fscal,dy30);
1714             tz               = _mm256_mul_pd(fscal,dz30);
1715
1716             /* Update vectorial force */
1717             fix3             = _mm256_add_pd(fix3,tx);
1718             fiy3             = _mm256_add_pd(fiy3,ty);
1719             fiz3             = _mm256_add_pd(fiz3,tz);
1720
1721             fjx0             = _mm256_add_pd(fjx0,tx);
1722             fjy0             = _mm256_add_pd(fjy0,ty);
1723             fjz0             = _mm256_add_pd(fjz0,tz);
1724
1725             }
1726
1727             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1728             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1729             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1730             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1731
1732             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1733
1734             /* Inner loop uses 249 flops */
1735         }
1736
1737         /* End of innermost loop */
1738
1739         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1740                                                  f+i_coord_offset,fshift+i_shift_offset);
1741
1742         /* Increment number of inner iterations */
1743         inneriter                  += j_index_end - j_index_start;
1744
1745         /* Outer loop uses 24 flops */
1746     }
1747
1748     /* Increment number of outer iterations */
1749     outeriter        += nri;
1750
1751     /* Update outer/inner flops */
1752
1753     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*249);
1754 }