Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m128i          ewitab;
106     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
108     real             *ewtab;
109     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
110     real             rswitch_scalar,d_scalar;
111     __m256d          dummy_mask,cutoff_mask;
112     __m128           tmpmask0,tmpmask1;
113     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
114     __m256d          one     = _mm256_set1_pd(1.0);
115     __m256d          two     = _mm256_set1_pd(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm256_set1_pd(fr->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
134     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
135     beta2            = _mm256_mul_pd(beta,beta);
136     beta3            = _mm256_mul_pd(beta,beta2);
137
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
141
142     /* Setup water-specific parameters */
143     inr              = nlist->iinr[0];
144     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
145     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
146     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
147     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
148
149     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
150     rcutoff_scalar   = fr->rcoulomb;
151     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
152     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
153
154     rswitch_scalar   = fr->rcoulomb_switch;
155     rswitch          = _mm256_set1_pd(rswitch_scalar);
156     /* Setup switch parameters */
157     d_scalar         = rcutoff_scalar-rswitch_scalar;
158     d                = _mm256_set1_pd(d_scalar);
159     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
160     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
161     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
162     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
163     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
164     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
165
166     /* Avoid stupid compiler warnings */
167     jnrA = jnrB = jnrC = jnrD = 0;
168     j_coord_offsetA = 0;
169     j_coord_offsetB = 0;
170     j_coord_offsetC = 0;
171     j_coord_offsetD = 0;
172
173     outeriter        = 0;
174     inneriter        = 0;
175
176     for(iidx=0;iidx<4*DIM;iidx++)
177     {
178         scratch[iidx] = 0.0;
179     }
180
181     /* Start outer loop over neighborlists */
182     for(iidx=0; iidx<nri; iidx++)
183     {
184         /* Load shift vector for this list */
185         i_shift_offset   = DIM*shiftidx[iidx];
186
187         /* Load limits for loop over neighbors */
188         j_index_start    = jindex[iidx];
189         j_index_end      = jindex[iidx+1];
190
191         /* Get outer coordinate index */
192         inr              = iinr[iidx];
193         i_coord_offset   = DIM*inr;
194
195         /* Load i particle coords and add shift vector */
196         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
197                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
198
199         fix0             = _mm256_setzero_pd();
200         fiy0             = _mm256_setzero_pd();
201         fiz0             = _mm256_setzero_pd();
202         fix1             = _mm256_setzero_pd();
203         fiy1             = _mm256_setzero_pd();
204         fiz1             = _mm256_setzero_pd();
205         fix2             = _mm256_setzero_pd();
206         fiy2             = _mm256_setzero_pd();
207         fiz2             = _mm256_setzero_pd();
208
209         /* Reset potential sums */
210         velecsum         = _mm256_setzero_pd();
211         vvdwsum          = _mm256_setzero_pd();
212
213         /* Start inner kernel loop */
214         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
215         {
216
217             /* Get j neighbor index, and coordinate index */
218             jnrA             = jjnr[jidx];
219             jnrB             = jjnr[jidx+1];
220             jnrC             = jjnr[jidx+2];
221             jnrD             = jjnr[jidx+3];
222             j_coord_offsetA  = DIM*jnrA;
223             j_coord_offsetB  = DIM*jnrB;
224             j_coord_offsetC  = DIM*jnrC;
225             j_coord_offsetD  = DIM*jnrD;
226
227             /* load j atom coordinates */
228             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
229                                                  x+j_coord_offsetC,x+j_coord_offsetD,
230                                                  &jx0,&jy0,&jz0);
231
232             /* Calculate displacement vector */
233             dx00             = _mm256_sub_pd(ix0,jx0);
234             dy00             = _mm256_sub_pd(iy0,jy0);
235             dz00             = _mm256_sub_pd(iz0,jz0);
236             dx10             = _mm256_sub_pd(ix1,jx0);
237             dy10             = _mm256_sub_pd(iy1,jy0);
238             dz10             = _mm256_sub_pd(iz1,jz0);
239             dx20             = _mm256_sub_pd(ix2,jx0);
240             dy20             = _mm256_sub_pd(iy2,jy0);
241             dz20             = _mm256_sub_pd(iz2,jz0);
242
243             /* Calculate squared distance and things based on it */
244             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
245             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
246             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
247
248             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
249             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
250             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
251
252             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
253             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
254             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
255
256             /* Load parameters for j particles */
257             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
258                                                                  charge+jnrC+0,charge+jnrD+0);
259             vdwjidx0A        = 2*vdwtype[jnrA+0];
260             vdwjidx0B        = 2*vdwtype[jnrB+0];
261             vdwjidx0C        = 2*vdwtype[jnrC+0];
262             vdwjidx0D        = 2*vdwtype[jnrD+0];
263
264             fjx0             = _mm256_setzero_pd();
265             fjy0             = _mm256_setzero_pd();
266             fjz0             = _mm256_setzero_pd();
267
268             /**************************
269              * CALCULATE INTERACTIONS *
270              **************************/
271
272             if (gmx_mm256_any_lt(rsq00,rcutoff2))
273             {
274
275             r00              = _mm256_mul_pd(rsq00,rinv00);
276
277             /* Compute parameters for interactions between i and j atoms */
278             qq00             = _mm256_mul_pd(iq0,jq0);
279             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
280                                             vdwioffsetptr0+vdwjidx0B,
281                                             vdwioffsetptr0+vdwjidx0C,
282                                             vdwioffsetptr0+vdwjidx0D,
283                                             &c6_00,&c12_00);
284
285             /* EWALD ELECTROSTATICS */
286
287             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
288             ewrt             = _mm256_mul_pd(r00,ewtabscale);
289             ewitab           = _mm256_cvttpd_epi32(ewrt);
290             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
291             ewitab           = _mm_slli_epi32(ewitab,2);
292             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
293             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
294             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
295             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
296             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
297             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
298             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
299             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
300             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
301
302             /* LENNARD-JONES DISPERSION/REPULSION */
303
304             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
305             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
306             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
307             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
308             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
309
310             d                = _mm256_sub_pd(r00,rswitch);
311             d                = _mm256_max_pd(d,_mm256_setzero_pd());
312             d2               = _mm256_mul_pd(d,d);
313             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
314
315             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
316
317             /* Evaluate switch function */
318             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
319             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
320             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
321             velec            = _mm256_mul_pd(velec,sw);
322             vvdw             = _mm256_mul_pd(vvdw,sw);
323             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velec            = _mm256_and_pd(velec,cutoff_mask);
327             velecsum         = _mm256_add_pd(velecsum,velec);
328             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
329             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
330
331             fscal            = _mm256_add_pd(felec,fvdw);
332
333             fscal            = _mm256_and_pd(fscal,cutoff_mask);
334
335             /* Calculate temporary vectorial force */
336             tx               = _mm256_mul_pd(fscal,dx00);
337             ty               = _mm256_mul_pd(fscal,dy00);
338             tz               = _mm256_mul_pd(fscal,dz00);
339
340             /* Update vectorial force */
341             fix0             = _mm256_add_pd(fix0,tx);
342             fiy0             = _mm256_add_pd(fiy0,ty);
343             fiz0             = _mm256_add_pd(fiz0,tz);
344
345             fjx0             = _mm256_add_pd(fjx0,tx);
346             fjy0             = _mm256_add_pd(fjy0,ty);
347             fjz0             = _mm256_add_pd(fjz0,tz);
348
349             }
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             if (gmx_mm256_any_lt(rsq10,rcutoff2))
356             {
357
358             r10              = _mm256_mul_pd(rsq10,rinv10);
359
360             /* Compute parameters for interactions between i and j atoms */
361             qq10             = _mm256_mul_pd(iq1,jq0);
362
363             /* EWALD ELECTROSTATICS */
364
365             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
366             ewrt             = _mm256_mul_pd(r10,ewtabscale);
367             ewitab           = _mm256_cvttpd_epi32(ewrt);
368             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
369             ewitab           = _mm_slli_epi32(ewitab,2);
370             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
371             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
372             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
373             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
374             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
375             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
376             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
377             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
378             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
379
380             d                = _mm256_sub_pd(r10,rswitch);
381             d                = _mm256_max_pd(d,_mm256_setzero_pd());
382             d2               = _mm256_mul_pd(d,d);
383             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
384
385             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
386
387             /* Evaluate switch function */
388             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
389             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
390             velec            = _mm256_mul_pd(velec,sw);
391             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velec            = _mm256_and_pd(velec,cutoff_mask);
395             velecsum         = _mm256_add_pd(velecsum,velec);
396
397             fscal            = felec;
398
399             fscal            = _mm256_and_pd(fscal,cutoff_mask);
400
401             /* Calculate temporary vectorial force */
402             tx               = _mm256_mul_pd(fscal,dx10);
403             ty               = _mm256_mul_pd(fscal,dy10);
404             tz               = _mm256_mul_pd(fscal,dz10);
405
406             /* Update vectorial force */
407             fix1             = _mm256_add_pd(fix1,tx);
408             fiy1             = _mm256_add_pd(fiy1,ty);
409             fiz1             = _mm256_add_pd(fiz1,tz);
410
411             fjx0             = _mm256_add_pd(fjx0,tx);
412             fjy0             = _mm256_add_pd(fjy0,ty);
413             fjz0             = _mm256_add_pd(fjz0,tz);
414
415             }
416
417             /**************************
418              * CALCULATE INTERACTIONS *
419              **************************/
420
421             if (gmx_mm256_any_lt(rsq20,rcutoff2))
422             {
423
424             r20              = _mm256_mul_pd(rsq20,rinv20);
425
426             /* Compute parameters for interactions between i and j atoms */
427             qq20             = _mm256_mul_pd(iq2,jq0);
428
429             /* EWALD ELECTROSTATICS */
430
431             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
432             ewrt             = _mm256_mul_pd(r20,ewtabscale);
433             ewitab           = _mm256_cvttpd_epi32(ewrt);
434             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
435             ewitab           = _mm_slli_epi32(ewitab,2);
436             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
437             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
438             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
439             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
440             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
441             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
442             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
443             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
444             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
445
446             d                = _mm256_sub_pd(r20,rswitch);
447             d                = _mm256_max_pd(d,_mm256_setzero_pd());
448             d2               = _mm256_mul_pd(d,d);
449             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
450
451             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
452
453             /* Evaluate switch function */
454             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
455             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
456             velec            = _mm256_mul_pd(velec,sw);
457             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
458
459             /* Update potential sum for this i atom from the interaction with this j atom. */
460             velec            = _mm256_and_pd(velec,cutoff_mask);
461             velecsum         = _mm256_add_pd(velecsum,velec);
462
463             fscal            = felec;
464
465             fscal            = _mm256_and_pd(fscal,cutoff_mask);
466
467             /* Calculate temporary vectorial force */
468             tx               = _mm256_mul_pd(fscal,dx20);
469             ty               = _mm256_mul_pd(fscal,dy20);
470             tz               = _mm256_mul_pd(fscal,dz20);
471
472             /* Update vectorial force */
473             fix2             = _mm256_add_pd(fix2,tx);
474             fiy2             = _mm256_add_pd(fiy2,ty);
475             fiz2             = _mm256_add_pd(fiz2,tz);
476
477             fjx0             = _mm256_add_pd(fjx0,tx);
478             fjy0             = _mm256_add_pd(fjy0,ty);
479             fjz0             = _mm256_add_pd(fjz0,tz);
480
481             }
482
483             fjptrA             = f+j_coord_offsetA;
484             fjptrB             = f+j_coord_offsetB;
485             fjptrC             = f+j_coord_offsetC;
486             fjptrD             = f+j_coord_offsetD;
487
488             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
489
490             /* Inner loop uses 216 flops */
491         }
492
493         if(jidx<j_index_end)
494         {
495
496             /* Get j neighbor index, and coordinate index */
497             jnrlistA         = jjnr[jidx];
498             jnrlistB         = jjnr[jidx+1];
499             jnrlistC         = jjnr[jidx+2];
500             jnrlistD         = jjnr[jidx+3];
501             /* Sign of each element will be negative for non-real atoms.
502              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
503              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
504              */
505             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
506
507             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
508             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
509             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
510
511             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
512             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
513             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
514             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
515             j_coord_offsetA  = DIM*jnrA;
516             j_coord_offsetB  = DIM*jnrB;
517             j_coord_offsetC  = DIM*jnrC;
518             j_coord_offsetD  = DIM*jnrD;
519
520             /* load j atom coordinates */
521             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
522                                                  x+j_coord_offsetC,x+j_coord_offsetD,
523                                                  &jx0,&jy0,&jz0);
524
525             /* Calculate displacement vector */
526             dx00             = _mm256_sub_pd(ix0,jx0);
527             dy00             = _mm256_sub_pd(iy0,jy0);
528             dz00             = _mm256_sub_pd(iz0,jz0);
529             dx10             = _mm256_sub_pd(ix1,jx0);
530             dy10             = _mm256_sub_pd(iy1,jy0);
531             dz10             = _mm256_sub_pd(iz1,jz0);
532             dx20             = _mm256_sub_pd(ix2,jx0);
533             dy20             = _mm256_sub_pd(iy2,jy0);
534             dz20             = _mm256_sub_pd(iz2,jz0);
535
536             /* Calculate squared distance and things based on it */
537             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
538             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
539             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
540
541             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
542             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
543             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
544
545             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
546             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
547             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
548
549             /* Load parameters for j particles */
550             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
551                                                                  charge+jnrC+0,charge+jnrD+0);
552             vdwjidx0A        = 2*vdwtype[jnrA+0];
553             vdwjidx0B        = 2*vdwtype[jnrB+0];
554             vdwjidx0C        = 2*vdwtype[jnrC+0];
555             vdwjidx0D        = 2*vdwtype[jnrD+0];
556
557             fjx0             = _mm256_setzero_pd();
558             fjy0             = _mm256_setzero_pd();
559             fjz0             = _mm256_setzero_pd();
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             if (gmx_mm256_any_lt(rsq00,rcutoff2))
566             {
567
568             r00              = _mm256_mul_pd(rsq00,rinv00);
569             r00              = _mm256_andnot_pd(dummy_mask,r00);
570
571             /* Compute parameters for interactions between i and j atoms */
572             qq00             = _mm256_mul_pd(iq0,jq0);
573             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
574                                             vdwioffsetptr0+vdwjidx0B,
575                                             vdwioffsetptr0+vdwjidx0C,
576                                             vdwioffsetptr0+vdwjidx0D,
577                                             &c6_00,&c12_00);
578
579             /* EWALD ELECTROSTATICS */
580
581             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
582             ewrt             = _mm256_mul_pd(r00,ewtabscale);
583             ewitab           = _mm256_cvttpd_epi32(ewrt);
584             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
585             ewitab           = _mm_slli_epi32(ewitab,2);
586             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
587             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
588             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
589             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
590             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
591             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
592             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
593             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
594             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
595
596             /* LENNARD-JONES DISPERSION/REPULSION */
597
598             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
599             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
600             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
601             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
602             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
603
604             d                = _mm256_sub_pd(r00,rswitch);
605             d                = _mm256_max_pd(d,_mm256_setzero_pd());
606             d2               = _mm256_mul_pd(d,d);
607             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
608
609             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
610
611             /* Evaluate switch function */
612             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
613             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
614             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
615             velec            = _mm256_mul_pd(velec,sw);
616             vvdw             = _mm256_mul_pd(vvdw,sw);
617             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
618
619             /* Update potential sum for this i atom from the interaction with this j atom. */
620             velec            = _mm256_and_pd(velec,cutoff_mask);
621             velec            = _mm256_andnot_pd(dummy_mask,velec);
622             velecsum         = _mm256_add_pd(velecsum,velec);
623             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
624             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
625             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
626
627             fscal            = _mm256_add_pd(felec,fvdw);
628
629             fscal            = _mm256_and_pd(fscal,cutoff_mask);
630
631             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
632
633             /* Calculate temporary vectorial force */
634             tx               = _mm256_mul_pd(fscal,dx00);
635             ty               = _mm256_mul_pd(fscal,dy00);
636             tz               = _mm256_mul_pd(fscal,dz00);
637
638             /* Update vectorial force */
639             fix0             = _mm256_add_pd(fix0,tx);
640             fiy0             = _mm256_add_pd(fiy0,ty);
641             fiz0             = _mm256_add_pd(fiz0,tz);
642
643             fjx0             = _mm256_add_pd(fjx0,tx);
644             fjy0             = _mm256_add_pd(fjy0,ty);
645             fjz0             = _mm256_add_pd(fjz0,tz);
646
647             }
648
649             /**************************
650              * CALCULATE INTERACTIONS *
651              **************************/
652
653             if (gmx_mm256_any_lt(rsq10,rcutoff2))
654             {
655
656             r10              = _mm256_mul_pd(rsq10,rinv10);
657             r10              = _mm256_andnot_pd(dummy_mask,r10);
658
659             /* Compute parameters for interactions between i and j atoms */
660             qq10             = _mm256_mul_pd(iq1,jq0);
661
662             /* EWALD ELECTROSTATICS */
663
664             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
665             ewrt             = _mm256_mul_pd(r10,ewtabscale);
666             ewitab           = _mm256_cvttpd_epi32(ewrt);
667             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
668             ewitab           = _mm_slli_epi32(ewitab,2);
669             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
670             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
671             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
672             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
673             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
674             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
675             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
676             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
677             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
678
679             d                = _mm256_sub_pd(r10,rswitch);
680             d                = _mm256_max_pd(d,_mm256_setzero_pd());
681             d2               = _mm256_mul_pd(d,d);
682             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
683
684             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
685
686             /* Evaluate switch function */
687             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
688             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
689             velec            = _mm256_mul_pd(velec,sw);
690             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
691
692             /* Update potential sum for this i atom from the interaction with this j atom. */
693             velec            = _mm256_and_pd(velec,cutoff_mask);
694             velec            = _mm256_andnot_pd(dummy_mask,velec);
695             velecsum         = _mm256_add_pd(velecsum,velec);
696
697             fscal            = felec;
698
699             fscal            = _mm256_and_pd(fscal,cutoff_mask);
700
701             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
702
703             /* Calculate temporary vectorial force */
704             tx               = _mm256_mul_pd(fscal,dx10);
705             ty               = _mm256_mul_pd(fscal,dy10);
706             tz               = _mm256_mul_pd(fscal,dz10);
707
708             /* Update vectorial force */
709             fix1             = _mm256_add_pd(fix1,tx);
710             fiy1             = _mm256_add_pd(fiy1,ty);
711             fiz1             = _mm256_add_pd(fiz1,tz);
712
713             fjx0             = _mm256_add_pd(fjx0,tx);
714             fjy0             = _mm256_add_pd(fjy0,ty);
715             fjz0             = _mm256_add_pd(fjz0,tz);
716
717             }
718
719             /**************************
720              * CALCULATE INTERACTIONS *
721              **************************/
722
723             if (gmx_mm256_any_lt(rsq20,rcutoff2))
724             {
725
726             r20              = _mm256_mul_pd(rsq20,rinv20);
727             r20              = _mm256_andnot_pd(dummy_mask,r20);
728
729             /* Compute parameters for interactions between i and j atoms */
730             qq20             = _mm256_mul_pd(iq2,jq0);
731
732             /* EWALD ELECTROSTATICS */
733
734             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
735             ewrt             = _mm256_mul_pd(r20,ewtabscale);
736             ewitab           = _mm256_cvttpd_epi32(ewrt);
737             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
738             ewitab           = _mm_slli_epi32(ewitab,2);
739             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
740             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
741             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
742             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
743             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
744             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
745             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
746             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
747             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
748
749             d                = _mm256_sub_pd(r20,rswitch);
750             d                = _mm256_max_pd(d,_mm256_setzero_pd());
751             d2               = _mm256_mul_pd(d,d);
752             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
753
754             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
755
756             /* Evaluate switch function */
757             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
758             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
759             velec            = _mm256_mul_pd(velec,sw);
760             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
761
762             /* Update potential sum for this i atom from the interaction with this j atom. */
763             velec            = _mm256_and_pd(velec,cutoff_mask);
764             velec            = _mm256_andnot_pd(dummy_mask,velec);
765             velecsum         = _mm256_add_pd(velecsum,velec);
766
767             fscal            = felec;
768
769             fscal            = _mm256_and_pd(fscal,cutoff_mask);
770
771             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
772
773             /* Calculate temporary vectorial force */
774             tx               = _mm256_mul_pd(fscal,dx20);
775             ty               = _mm256_mul_pd(fscal,dy20);
776             tz               = _mm256_mul_pd(fscal,dz20);
777
778             /* Update vectorial force */
779             fix2             = _mm256_add_pd(fix2,tx);
780             fiy2             = _mm256_add_pd(fiy2,ty);
781             fiz2             = _mm256_add_pd(fiz2,tz);
782
783             fjx0             = _mm256_add_pd(fjx0,tx);
784             fjy0             = _mm256_add_pd(fjy0,ty);
785             fjz0             = _mm256_add_pd(fjz0,tz);
786
787             }
788
789             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
790             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
791             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
792             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
793
794             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
795
796             /* Inner loop uses 219 flops */
797         }
798
799         /* End of innermost loop */
800
801         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
802                                                  f+i_coord_offset,fshift+i_shift_offset);
803
804         ggid                        = gid[iidx];
805         /* Update potential energies */
806         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
807         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
808
809         /* Increment number of inner iterations */
810         inneriter                  += j_index_end - j_index_start;
811
812         /* Outer loop uses 20 flops */
813     }
814
815     /* Increment number of outer iterations */
816     outeriter        += nri;
817
818     /* Update outer/inner flops */
819
820     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*219);
821 }
822 /*
823  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_256_double
824  * Electrostatics interaction: Ewald
825  * VdW interaction:            LennardJones
826  * Geometry:                   Water3-Particle
827  * Calculate force/pot:        Force
828  */
829 void
830 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_256_double
831                     (t_nblist                    * gmx_restrict       nlist,
832                      rvec                        * gmx_restrict          xx,
833                      rvec                        * gmx_restrict          ff,
834                      t_forcerec                  * gmx_restrict          fr,
835                      t_mdatoms                   * gmx_restrict     mdatoms,
836                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
837                      t_nrnb                      * gmx_restrict        nrnb)
838 {
839     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
840      * just 0 for non-waters.
841      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
842      * jnr indices corresponding to data put in the four positions in the SIMD register.
843      */
844     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
845     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
846     int              jnrA,jnrB,jnrC,jnrD;
847     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
848     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
849     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
850     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
851     real             rcutoff_scalar;
852     real             *shiftvec,*fshift,*x,*f;
853     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
854     real             scratch[4*DIM];
855     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
856     real *           vdwioffsetptr0;
857     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
858     real *           vdwioffsetptr1;
859     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
860     real *           vdwioffsetptr2;
861     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
862     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
863     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
864     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
865     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
866     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
867     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
868     real             *charge;
869     int              nvdwtype;
870     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
871     int              *vdwtype;
872     real             *vdwparam;
873     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
874     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
875     __m128i          ewitab;
876     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
877     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
878     real             *ewtab;
879     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
880     real             rswitch_scalar,d_scalar;
881     __m256d          dummy_mask,cutoff_mask;
882     __m128           tmpmask0,tmpmask1;
883     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
884     __m256d          one     = _mm256_set1_pd(1.0);
885     __m256d          two     = _mm256_set1_pd(2.0);
886     x                = xx[0];
887     f                = ff[0];
888
889     nri              = nlist->nri;
890     iinr             = nlist->iinr;
891     jindex           = nlist->jindex;
892     jjnr             = nlist->jjnr;
893     shiftidx         = nlist->shift;
894     gid              = nlist->gid;
895     shiftvec         = fr->shift_vec[0];
896     fshift           = fr->fshift[0];
897     facel            = _mm256_set1_pd(fr->epsfac);
898     charge           = mdatoms->chargeA;
899     nvdwtype         = fr->ntype;
900     vdwparam         = fr->nbfp;
901     vdwtype          = mdatoms->typeA;
902
903     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
904     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
905     beta2            = _mm256_mul_pd(beta,beta);
906     beta3            = _mm256_mul_pd(beta,beta2);
907
908     ewtab            = fr->ic->tabq_coul_FDV0;
909     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
910     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
911
912     /* Setup water-specific parameters */
913     inr              = nlist->iinr[0];
914     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
915     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
916     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
917     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
918
919     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
920     rcutoff_scalar   = fr->rcoulomb;
921     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
922     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
923
924     rswitch_scalar   = fr->rcoulomb_switch;
925     rswitch          = _mm256_set1_pd(rswitch_scalar);
926     /* Setup switch parameters */
927     d_scalar         = rcutoff_scalar-rswitch_scalar;
928     d                = _mm256_set1_pd(d_scalar);
929     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
930     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
931     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
932     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
933     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
934     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
935
936     /* Avoid stupid compiler warnings */
937     jnrA = jnrB = jnrC = jnrD = 0;
938     j_coord_offsetA = 0;
939     j_coord_offsetB = 0;
940     j_coord_offsetC = 0;
941     j_coord_offsetD = 0;
942
943     outeriter        = 0;
944     inneriter        = 0;
945
946     for(iidx=0;iidx<4*DIM;iidx++)
947     {
948         scratch[iidx] = 0.0;
949     }
950
951     /* Start outer loop over neighborlists */
952     for(iidx=0; iidx<nri; iidx++)
953     {
954         /* Load shift vector for this list */
955         i_shift_offset   = DIM*shiftidx[iidx];
956
957         /* Load limits for loop over neighbors */
958         j_index_start    = jindex[iidx];
959         j_index_end      = jindex[iidx+1];
960
961         /* Get outer coordinate index */
962         inr              = iinr[iidx];
963         i_coord_offset   = DIM*inr;
964
965         /* Load i particle coords and add shift vector */
966         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
967                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
968
969         fix0             = _mm256_setzero_pd();
970         fiy0             = _mm256_setzero_pd();
971         fiz0             = _mm256_setzero_pd();
972         fix1             = _mm256_setzero_pd();
973         fiy1             = _mm256_setzero_pd();
974         fiz1             = _mm256_setzero_pd();
975         fix2             = _mm256_setzero_pd();
976         fiy2             = _mm256_setzero_pd();
977         fiz2             = _mm256_setzero_pd();
978
979         /* Start inner kernel loop */
980         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
981         {
982
983             /* Get j neighbor index, and coordinate index */
984             jnrA             = jjnr[jidx];
985             jnrB             = jjnr[jidx+1];
986             jnrC             = jjnr[jidx+2];
987             jnrD             = jjnr[jidx+3];
988             j_coord_offsetA  = DIM*jnrA;
989             j_coord_offsetB  = DIM*jnrB;
990             j_coord_offsetC  = DIM*jnrC;
991             j_coord_offsetD  = DIM*jnrD;
992
993             /* load j atom coordinates */
994             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
995                                                  x+j_coord_offsetC,x+j_coord_offsetD,
996                                                  &jx0,&jy0,&jz0);
997
998             /* Calculate displacement vector */
999             dx00             = _mm256_sub_pd(ix0,jx0);
1000             dy00             = _mm256_sub_pd(iy0,jy0);
1001             dz00             = _mm256_sub_pd(iz0,jz0);
1002             dx10             = _mm256_sub_pd(ix1,jx0);
1003             dy10             = _mm256_sub_pd(iy1,jy0);
1004             dz10             = _mm256_sub_pd(iz1,jz0);
1005             dx20             = _mm256_sub_pd(ix2,jx0);
1006             dy20             = _mm256_sub_pd(iy2,jy0);
1007             dz20             = _mm256_sub_pd(iz2,jz0);
1008
1009             /* Calculate squared distance and things based on it */
1010             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1011             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1012             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1013
1014             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1015             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1016             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1017
1018             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1019             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1020             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1021
1022             /* Load parameters for j particles */
1023             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1024                                                                  charge+jnrC+0,charge+jnrD+0);
1025             vdwjidx0A        = 2*vdwtype[jnrA+0];
1026             vdwjidx0B        = 2*vdwtype[jnrB+0];
1027             vdwjidx0C        = 2*vdwtype[jnrC+0];
1028             vdwjidx0D        = 2*vdwtype[jnrD+0];
1029
1030             fjx0             = _mm256_setzero_pd();
1031             fjy0             = _mm256_setzero_pd();
1032             fjz0             = _mm256_setzero_pd();
1033
1034             /**************************
1035              * CALCULATE INTERACTIONS *
1036              **************************/
1037
1038             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1039             {
1040
1041             r00              = _mm256_mul_pd(rsq00,rinv00);
1042
1043             /* Compute parameters for interactions between i and j atoms */
1044             qq00             = _mm256_mul_pd(iq0,jq0);
1045             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1046                                             vdwioffsetptr0+vdwjidx0B,
1047                                             vdwioffsetptr0+vdwjidx0C,
1048                                             vdwioffsetptr0+vdwjidx0D,
1049                                             &c6_00,&c12_00);
1050
1051             /* EWALD ELECTROSTATICS */
1052
1053             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1054             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1055             ewitab           = _mm256_cvttpd_epi32(ewrt);
1056             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1057             ewitab           = _mm_slli_epi32(ewitab,2);
1058             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1059             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1060             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1061             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1062             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1063             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1064             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1065             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
1066             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1067
1068             /* LENNARD-JONES DISPERSION/REPULSION */
1069
1070             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1071             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
1072             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
1073             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
1074             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
1075
1076             d                = _mm256_sub_pd(r00,rswitch);
1077             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1078             d2               = _mm256_mul_pd(d,d);
1079             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1080
1081             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1082
1083             /* Evaluate switch function */
1084             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1085             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
1086             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1087             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1088
1089             fscal            = _mm256_add_pd(felec,fvdw);
1090
1091             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1092
1093             /* Calculate temporary vectorial force */
1094             tx               = _mm256_mul_pd(fscal,dx00);
1095             ty               = _mm256_mul_pd(fscal,dy00);
1096             tz               = _mm256_mul_pd(fscal,dz00);
1097
1098             /* Update vectorial force */
1099             fix0             = _mm256_add_pd(fix0,tx);
1100             fiy0             = _mm256_add_pd(fiy0,ty);
1101             fiz0             = _mm256_add_pd(fiz0,tz);
1102
1103             fjx0             = _mm256_add_pd(fjx0,tx);
1104             fjy0             = _mm256_add_pd(fjy0,ty);
1105             fjz0             = _mm256_add_pd(fjz0,tz);
1106
1107             }
1108
1109             /**************************
1110              * CALCULATE INTERACTIONS *
1111              **************************/
1112
1113             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1114             {
1115
1116             r10              = _mm256_mul_pd(rsq10,rinv10);
1117
1118             /* Compute parameters for interactions between i and j atoms */
1119             qq10             = _mm256_mul_pd(iq1,jq0);
1120
1121             /* EWALD ELECTROSTATICS */
1122
1123             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1124             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1125             ewitab           = _mm256_cvttpd_epi32(ewrt);
1126             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1127             ewitab           = _mm_slli_epi32(ewitab,2);
1128             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1129             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1130             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1131             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1132             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1133             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1134             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1135             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
1136             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1137
1138             d                = _mm256_sub_pd(r10,rswitch);
1139             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1140             d2               = _mm256_mul_pd(d,d);
1141             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1142
1143             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1144
1145             /* Evaluate switch function */
1146             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1147             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
1148             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1149
1150             fscal            = felec;
1151
1152             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1153
1154             /* Calculate temporary vectorial force */
1155             tx               = _mm256_mul_pd(fscal,dx10);
1156             ty               = _mm256_mul_pd(fscal,dy10);
1157             tz               = _mm256_mul_pd(fscal,dz10);
1158
1159             /* Update vectorial force */
1160             fix1             = _mm256_add_pd(fix1,tx);
1161             fiy1             = _mm256_add_pd(fiy1,ty);
1162             fiz1             = _mm256_add_pd(fiz1,tz);
1163
1164             fjx0             = _mm256_add_pd(fjx0,tx);
1165             fjy0             = _mm256_add_pd(fjy0,ty);
1166             fjz0             = _mm256_add_pd(fjz0,tz);
1167
1168             }
1169
1170             /**************************
1171              * CALCULATE INTERACTIONS *
1172              **************************/
1173
1174             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1175             {
1176
1177             r20              = _mm256_mul_pd(rsq20,rinv20);
1178
1179             /* Compute parameters for interactions between i and j atoms */
1180             qq20             = _mm256_mul_pd(iq2,jq0);
1181
1182             /* EWALD ELECTROSTATICS */
1183
1184             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1185             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1186             ewitab           = _mm256_cvttpd_epi32(ewrt);
1187             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1188             ewitab           = _mm_slli_epi32(ewitab,2);
1189             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1190             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1191             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1192             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1193             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1194             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1195             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1196             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
1197             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1198
1199             d                = _mm256_sub_pd(r20,rswitch);
1200             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1201             d2               = _mm256_mul_pd(d,d);
1202             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1203
1204             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1205
1206             /* Evaluate switch function */
1207             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1208             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
1209             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1210
1211             fscal            = felec;
1212
1213             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1214
1215             /* Calculate temporary vectorial force */
1216             tx               = _mm256_mul_pd(fscal,dx20);
1217             ty               = _mm256_mul_pd(fscal,dy20);
1218             tz               = _mm256_mul_pd(fscal,dz20);
1219
1220             /* Update vectorial force */
1221             fix2             = _mm256_add_pd(fix2,tx);
1222             fiy2             = _mm256_add_pd(fiy2,ty);
1223             fiz2             = _mm256_add_pd(fiz2,tz);
1224
1225             fjx0             = _mm256_add_pd(fjx0,tx);
1226             fjy0             = _mm256_add_pd(fjy0,ty);
1227             fjz0             = _mm256_add_pd(fjz0,tz);
1228
1229             }
1230
1231             fjptrA             = f+j_coord_offsetA;
1232             fjptrB             = f+j_coord_offsetB;
1233             fjptrC             = f+j_coord_offsetC;
1234             fjptrD             = f+j_coord_offsetD;
1235
1236             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1237
1238             /* Inner loop uses 204 flops */
1239         }
1240
1241         if(jidx<j_index_end)
1242         {
1243
1244             /* Get j neighbor index, and coordinate index */
1245             jnrlistA         = jjnr[jidx];
1246             jnrlistB         = jjnr[jidx+1];
1247             jnrlistC         = jjnr[jidx+2];
1248             jnrlistD         = jjnr[jidx+3];
1249             /* Sign of each element will be negative for non-real atoms.
1250              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1251              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1252              */
1253             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1254
1255             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1256             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1257             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1258
1259             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1260             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1261             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1262             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1263             j_coord_offsetA  = DIM*jnrA;
1264             j_coord_offsetB  = DIM*jnrB;
1265             j_coord_offsetC  = DIM*jnrC;
1266             j_coord_offsetD  = DIM*jnrD;
1267
1268             /* load j atom coordinates */
1269             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1270                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1271                                                  &jx0,&jy0,&jz0);
1272
1273             /* Calculate displacement vector */
1274             dx00             = _mm256_sub_pd(ix0,jx0);
1275             dy00             = _mm256_sub_pd(iy0,jy0);
1276             dz00             = _mm256_sub_pd(iz0,jz0);
1277             dx10             = _mm256_sub_pd(ix1,jx0);
1278             dy10             = _mm256_sub_pd(iy1,jy0);
1279             dz10             = _mm256_sub_pd(iz1,jz0);
1280             dx20             = _mm256_sub_pd(ix2,jx0);
1281             dy20             = _mm256_sub_pd(iy2,jy0);
1282             dz20             = _mm256_sub_pd(iz2,jz0);
1283
1284             /* Calculate squared distance and things based on it */
1285             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1286             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1287             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1288
1289             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1290             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1291             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1292
1293             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1294             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1295             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1296
1297             /* Load parameters for j particles */
1298             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1299                                                                  charge+jnrC+0,charge+jnrD+0);
1300             vdwjidx0A        = 2*vdwtype[jnrA+0];
1301             vdwjidx0B        = 2*vdwtype[jnrB+0];
1302             vdwjidx0C        = 2*vdwtype[jnrC+0];
1303             vdwjidx0D        = 2*vdwtype[jnrD+0];
1304
1305             fjx0             = _mm256_setzero_pd();
1306             fjy0             = _mm256_setzero_pd();
1307             fjz0             = _mm256_setzero_pd();
1308
1309             /**************************
1310              * CALCULATE INTERACTIONS *
1311              **************************/
1312
1313             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1314             {
1315
1316             r00              = _mm256_mul_pd(rsq00,rinv00);
1317             r00              = _mm256_andnot_pd(dummy_mask,r00);
1318
1319             /* Compute parameters for interactions between i and j atoms */
1320             qq00             = _mm256_mul_pd(iq0,jq0);
1321             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1322                                             vdwioffsetptr0+vdwjidx0B,
1323                                             vdwioffsetptr0+vdwjidx0C,
1324                                             vdwioffsetptr0+vdwjidx0D,
1325                                             &c6_00,&c12_00);
1326
1327             /* EWALD ELECTROSTATICS */
1328
1329             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1330             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1331             ewitab           = _mm256_cvttpd_epi32(ewrt);
1332             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1333             ewitab           = _mm_slli_epi32(ewitab,2);
1334             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1335             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1336             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1337             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1338             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1339             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1340             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1341             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
1342             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1343
1344             /* LENNARD-JONES DISPERSION/REPULSION */
1345
1346             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1347             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
1348             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
1349             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
1350             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
1351
1352             d                = _mm256_sub_pd(r00,rswitch);
1353             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1354             d2               = _mm256_mul_pd(d,d);
1355             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1356
1357             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1358
1359             /* Evaluate switch function */
1360             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1361             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
1362             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1363             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1364
1365             fscal            = _mm256_add_pd(felec,fvdw);
1366
1367             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1368
1369             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1370
1371             /* Calculate temporary vectorial force */
1372             tx               = _mm256_mul_pd(fscal,dx00);
1373             ty               = _mm256_mul_pd(fscal,dy00);
1374             tz               = _mm256_mul_pd(fscal,dz00);
1375
1376             /* Update vectorial force */
1377             fix0             = _mm256_add_pd(fix0,tx);
1378             fiy0             = _mm256_add_pd(fiy0,ty);
1379             fiz0             = _mm256_add_pd(fiz0,tz);
1380
1381             fjx0             = _mm256_add_pd(fjx0,tx);
1382             fjy0             = _mm256_add_pd(fjy0,ty);
1383             fjz0             = _mm256_add_pd(fjz0,tz);
1384
1385             }
1386
1387             /**************************
1388              * CALCULATE INTERACTIONS *
1389              **************************/
1390
1391             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1392             {
1393
1394             r10              = _mm256_mul_pd(rsq10,rinv10);
1395             r10              = _mm256_andnot_pd(dummy_mask,r10);
1396
1397             /* Compute parameters for interactions between i and j atoms */
1398             qq10             = _mm256_mul_pd(iq1,jq0);
1399
1400             /* EWALD ELECTROSTATICS */
1401
1402             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1403             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1404             ewitab           = _mm256_cvttpd_epi32(ewrt);
1405             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1406             ewitab           = _mm_slli_epi32(ewitab,2);
1407             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1408             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1409             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1410             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1411             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1412             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1413             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1414             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
1415             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1416
1417             d                = _mm256_sub_pd(r10,rswitch);
1418             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1419             d2               = _mm256_mul_pd(d,d);
1420             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1421
1422             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1423
1424             /* Evaluate switch function */
1425             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1426             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
1427             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1428
1429             fscal            = felec;
1430
1431             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1432
1433             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1434
1435             /* Calculate temporary vectorial force */
1436             tx               = _mm256_mul_pd(fscal,dx10);
1437             ty               = _mm256_mul_pd(fscal,dy10);
1438             tz               = _mm256_mul_pd(fscal,dz10);
1439
1440             /* Update vectorial force */
1441             fix1             = _mm256_add_pd(fix1,tx);
1442             fiy1             = _mm256_add_pd(fiy1,ty);
1443             fiz1             = _mm256_add_pd(fiz1,tz);
1444
1445             fjx0             = _mm256_add_pd(fjx0,tx);
1446             fjy0             = _mm256_add_pd(fjy0,ty);
1447             fjz0             = _mm256_add_pd(fjz0,tz);
1448
1449             }
1450
1451             /**************************
1452              * CALCULATE INTERACTIONS *
1453              **************************/
1454
1455             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1456             {
1457
1458             r20              = _mm256_mul_pd(rsq20,rinv20);
1459             r20              = _mm256_andnot_pd(dummy_mask,r20);
1460
1461             /* Compute parameters for interactions between i and j atoms */
1462             qq20             = _mm256_mul_pd(iq2,jq0);
1463
1464             /* EWALD ELECTROSTATICS */
1465
1466             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1467             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1468             ewitab           = _mm256_cvttpd_epi32(ewrt);
1469             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1470             ewitab           = _mm_slli_epi32(ewitab,2);
1471             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1472             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1473             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1474             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1475             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1476             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1477             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1478             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
1479             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1480
1481             d                = _mm256_sub_pd(r20,rswitch);
1482             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1483             d2               = _mm256_mul_pd(d,d);
1484             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1485
1486             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1487
1488             /* Evaluate switch function */
1489             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1490             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
1491             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1492
1493             fscal            = felec;
1494
1495             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1496
1497             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1498
1499             /* Calculate temporary vectorial force */
1500             tx               = _mm256_mul_pd(fscal,dx20);
1501             ty               = _mm256_mul_pd(fscal,dy20);
1502             tz               = _mm256_mul_pd(fscal,dz20);
1503
1504             /* Update vectorial force */
1505             fix2             = _mm256_add_pd(fix2,tx);
1506             fiy2             = _mm256_add_pd(fiy2,ty);
1507             fiz2             = _mm256_add_pd(fiz2,tz);
1508
1509             fjx0             = _mm256_add_pd(fjx0,tx);
1510             fjy0             = _mm256_add_pd(fjy0,ty);
1511             fjz0             = _mm256_add_pd(fjz0,tz);
1512
1513             }
1514
1515             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1516             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1517             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1518             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1519
1520             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1521
1522             /* Inner loop uses 207 flops */
1523         }
1524
1525         /* End of innermost loop */
1526
1527         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1528                                                  f+i_coord_offset,fshift+i_shift_offset);
1529
1530         /* Increment number of inner iterations */
1531         inneriter                  += j_index_end - j_index_start;
1532
1533         /* Outer loop uses 18 flops */
1534     }
1535
1536     /* Increment number of outer iterations */
1537     outeriter        += nri;
1538
1539     /* Update outer/inner flops */
1540
1541     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*207);
1542 }