Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m128i          ewitab;
100     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
102     real             *ewtab;
103     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
104     real             rswitch_scalar,d_scalar;
105     __m256d          dummy_mask,cutoff_mask;
106     __m128           tmpmask0,tmpmask1;
107     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
108     __m256d          one     = _mm256_set1_pd(1.0);
109     __m256d          two     = _mm256_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
128     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
129     beta2            = _mm256_mul_pd(beta,beta);
130     beta3            = _mm256_mul_pd(beta,beta2);
131
132     ewtab            = fr->ic->tabq_coul_FDV0;
133     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
134     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
135
136     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137     rcutoff_scalar   = fr->rcoulomb;
138     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
139     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
140
141     rswitch_scalar   = fr->rcoulomb_switch;
142     rswitch          = _mm256_set1_pd(rswitch_scalar);
143     /* Setup switch parameters */
144     d_scalar         = rcutoff_scalar-rswitch_scalar;
145     d                = _mm256_set1_pd(d_scalar);
146     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
147     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
148     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
149     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
150     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
151     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
152
153     /* Avoid stupid compiler warnings */
154     jnrA = jnrB = jnrC = jnrD = 0;
155     j_coord_offsetA = 0;
156     j_coord_offsetB = 0;
157     j_coord_offsetC = 0;
158     j_coord_offsetD = 0;
159
160     outeriter        = 0;
161     inneriter        = 0;
162
163     for(iidx=0;iidx<4*DIM;iidx++)
164     {
165         scratch[iidx] = 0.0;
166     }
167
168     /* Start outer loop over neighborlists */
169     for(iidx=0; iidx<nri; iidx++)
170     {
171         /* Load shift vector for this list */
172         i_shift_offset   = DIM*shiftidx[iidx];
173
174         /* Load limits for loop over neighbors */
175         j_index_start    = jindex[iidx];
176         j_index_end      = jindex[iidx+1];
177
178         /* Get outer coordinate index */
179         inr              = iinr[iidx];
180         i_coord_offset   = DIM*inr;
181
182         /* Load i particle coords and add shift vector */
183         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
184
185         fix0             = _mm256_setzero_pd();
186         fiy0             = _mm256_setzero_pd();
187         fiz0             = _mm256_setzero_pd();
188
189         /* Load parameters for i particles */
190         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
191         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
192
193         /* Reset potential sums */
194         velecsum         = _mm256_setzero_pd();
195         vvdwsum          = _mm256_setzero_pd();
196
197         /* Start inner kernel loop */
198         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
199         {
200
201             /* Get j neighbor index, and coordinate index */
202             jnrA             = jjnr[jidx];
203             jnrB             = jjnr[jidx+1];
204             jnrC             = jjnr[jidx+2];
205             jnrD             = jjnr[jidx+3];
206             j_coord_offsetA  = DIM*jnrA;
207             j_coord_offsetB  = DIM*jnrB;
208             j_coord_offsetC  = DIM*jnrC;
209             j_coord_offsetD  = DIM*jnrD;
210
211             /* load j atom coordinates */
212             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
213                                                  x+j_coord_offsetC,x+j_coord_offsetD,
214                                                  &jx0,&jy0,&jz0);
215
216             /* Calculate displacement vector */
217             dx00             = _mm256_sub_pd(ix0,jx0);
218             dy00             = _mm256_sub_pd(iy0,jy0);
219             dz00             = _mm256_sub_pd(iz0,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
223
224             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
225
226             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
227
228             /* Load parameters for j particles */
229             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
230                                                                  charge+jnrC+0,charge+jnrD+0);
231             vdwjidx0A        = 2*vdwtype[jnrA+0];
232             vdwjidx0B        = 2*vdwtype[jnrB+0];
233             vdwjidx0C        = 2*vdwtype[jnrC+0];
234             vdwjidx0D        = 2*vdwtype[jnrD+0];
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             if (gmx_mm256_any_lt(rsq00,rcutoff2))
241             {
242
243             r00              = _mm256_mul_pd(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             qq00             = _mm256_mul_pd(iq0,jq0);
247             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
248                                             vdwioffsetptr0+vdwjidx0B,
249                                             vdwioffsetptr0+vdwjidx0C,
250                                             vdwioffsetptr0+vdwjidx0D,
251                                             &c6_00,&c12_00);
252
253             /* EWALD ELECTROSTATICS */
254
255             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
256             ewrt             = _mm256_mul_pd(r00,ewtabscale);
257             ewitab           = _mm256_cvttpd_epi32(ewrt);
258             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
259             ewitab           = _mm_slli_epi32(ewitab,2);
260             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
261             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
262             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
263             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
264             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
265             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
266             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
267             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
268             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
269
270             /* LENNARD-JONES DISPERSION/REPULSION */
271
272             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
273             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
274             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
275             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
276             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
277
278             d                = _mm256_sub_pd(r00,rswitch);
279             d                = _mm256_max_pd(d,_mm256_setzero_pd());
280             d2               = _mm256_mul_pd(d,d);
281             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
282
283             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
284
285             /* Evaluate switch function */
286             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
287             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
288             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
289             velec            = _mm256_mul_pd(velec,sw);
290             vvdw             = _mm256_mul_pd(vvdw,sw);
291             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             velec            = _mm256_and_pd(velec,cutoff_mask);
295             velecsum         = _mm256_add_pd(velecsum,velec);
296             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
297             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
298
299             fscal            = _mm256_add_pd(felec,fvdw);
300
301             fscal            = _mm256_and_pd(fscal,cutoff_mask);
302
303             /* Calculate temporary vectorial force */
304             tx               = _mm256_mul_pd(fscal,dx00);
305             ty               = _mm256_mul_pd(fscal,dy00);
306             tz               = _mm256_mul_pd(fscal,dz00);
307
308             /* Update vectorial force */
309             fix0             = _mm256_add_pd(fix0,tx);
310             fiy0             = _mm256_add_pd(fiy0,ty);
311             fiz0             = _mm256_add_pd(fiz0,tz);
312
313             fjptrA             = f+j_coord_offsetA;
314             fjptrB             = f+j_coord_offsetB;
315             fjptrC             = f+j_coord_offsetC;
316             fjptrD             = f+j_coord_offsetD;
317             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
318
319             }
320
321             /* Inner loop uses 83 flops */
322         }
323
324         if(jidx<j_index_end)
325         {
326
327             /* Get j neighbor index, and coordinate index */
328             jnrlistA         = jjnr[jidx];
329             jnrlistB         = jjnr[jidx+1];
330             jnrlistC         = jjnr[jidx+2];
331             jnrlistD         = jjnr[jidx+3];
332             /* Sign of each element will be negative for non-real atoms.
333              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
334              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
335              */
336             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
337
338             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
339             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
340             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
341
342             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
343             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
344             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
345             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
346             j_coord_offsetA  = DIM*jnrA;
347             j_coord_offsetB  = DIM*jnrB;
348             j_coord_offsetC  = DIM*jnrC;
349             j_coord_offsetD  = DIM*jnrD;
350
351             /* load j atom coordinates */
352             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
353                                                  x+j_coord_offsetC,x+j_coord_offsetD,
354                                                  &jx0,&jy0,&jz0);
355
356             /* Calculate displacement vector */
357             dx00             = _mm256_sub_pd(ix0,jx0);
358             dy00             = _mm256_sub_pd(iy0,jy0);
359             dz00             = _mm256_sub_pd(iz0,jz0);
360
361             /* Calculate squared distance and things based on it */
362             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
363
364             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
365
366             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
367
368             /* Load parameters for j particles */
369             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
370                                                                  charge+jnrC+0,charge+jnrD+0);
371             vdwjidx0A        = 2*vdwtype[jnrA+0];
372             vdwjidx0B        = 2*vdwtype[jnrB+0];
373             vdwjidx0C        = 2*vdwtype[jnrC+0];
374             vdwjidx0D        = 2*vdwtype[jnrD+0];
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             if (gmx_mm256_any_lt(rsq00,rcutoff2))
381             {
382
383             r00              = _mm256_mul_pd(rsq00,rinv00);
384             r00              = _mm256_andnot_pd(dummy_mask,r00);
385
386             /* Compute parameters for interactions between i and j atoms */
387             qq00             = _mm256_mul_pd(iq0,jq0);
388             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
389                                             vdwioffsetptr0+vdwjidx0B,
390                                             vdwioffsetptr0+vdwjidx0C,
391                                             vdwioffsetptr0+vdwjidx0D,
392                                             &c6_00,&c12_00);
393
394             /* EWALD ELECTROSTATICS */
395
396             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
397             ewrt             = _mm256_mul_pd(r00,ewtabscale);
398             ewitab           = _mm256_cvttpd_epi32(ewrt);
399             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
400             ewitab           = _mm_slli_epi32(ewitab,2);
401             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
402             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
403             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
404             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
405             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
406             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
407             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
408             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
409             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
410
411             /* LENNARD-JONES DISPERSION/REPULSION */
412
413             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
414             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
415             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
416             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
417             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
418
419             d                = _mm256_sub_pd(r00,rswitch);
420             d                = _mm256_max_pd(d,_mm256_setzero_pd());
421             d2               = _mm256_mul_pd(d,d);
422             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
423
424             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
425
426             /* Evaluate switch function */
427             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
428             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
429             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
430             velec            = _mm256_mul_pd(velec,sw);
431             vvdw             = _mm256_mul_pd(vvdw,sw);
432             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
433
434             /* Update potential sum for this i atom from the interaction with this j atom. */
435             velec            = _mm256_and_pd(velec,cutoff_mask);
436             velec            = _mm256_andnot_pd(dummy_mask,velec);
437             velecsum         = _mm256_add_pd(velecsum,velec);
438             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
439             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
440             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
441
442             fscal            = _mm256_add_pd(felec,fvdw);
443
444             fscal            = _mm256_and_pd(fscal,cutoff_mask);
445
446             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
447
448             /* Calculate temporary vectorial force */
449             tx               = _mm256_mul_pd(fscal,dx00);
450             ty               = _mm256_mul_pd(fscal,dy00);
451             tz               = _mm256_mul_pd(fscal,dz00);
452
453             /* Update vectorial force */
454             fix0             = _mm256_add_pd(fix0,tx);
455             fiy0             = _mm256_add_pd(fiy0,ty);
456             fiz0             = _mm256_add_pd(fiz0,tz);
457
458             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
459             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
460             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
461             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
462             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
463
464             }
465
466             /* Inner loop uses 84 flops */
467         }
468
469         /* End of innermost loop */
470
471         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
472                                                  f+i_coord_offset,fshift+i_shift_offset);
473
474         ggid                        = gid[iidx];
475         /* Update potential energies */
476         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
477         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
478
479         /* Increment number of inner iterations */
480         inneriter                  += j_index_end - j_index_start;
481
482         /* Outer loop uses 9 flops */
483     }
484
485     /* Increment number of outer iterations */
486     outeriter        += nri;
487
488     /* Update outer/inner flops */
489
490     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*84);
491 }
492 /*
493  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_256_double
494  * Electrostatics interaction: Ewald
495  * VdW interaction:            LennardJones
496  * Geometry:                   Particle-Particle
497  * Calculate force/pot:        Force
498  */
499 void
500 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_256_double
501                     (t_nblist                    * gmx_restrict       nlist,
502                      rvec                        * gmx_restrict          xx,
503                      rvec                        * gmx_restrict          ff,
504                      t_forcerec                  * gmx_restrict          fr,
505                      t_mdatoms                   * gmx_restrict     mdatoms,
506                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
507                      t_nrnb                      * gmx_restrict        nrnb)
508 {
509     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
510      * just 0 for non-waters.
511      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
512      * jnr indices corresponding to data put in the four positions in the SIMD register.
513      */
514     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
515     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
516     int              jnrA,jnrB,jnrC,jnrD;
517     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
518     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
519     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
520     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
521     real             rcutoff_scalar;
522     real             *shiftvec,*fshift,*x,*f;
523     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
524     real             scratch[4*DIM];
525     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
526     real *           vdwioffsetptr0;
527     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
528     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
529     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
530     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
531     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
532     real             *charge;
533     int              nvdwtype;
534     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
535     int              *vdwtype;
536     real             *vdwparam;
537     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
538     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
539     __m128i          ewitab;
540     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
541     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
542     real             *ewtab;
543     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
544     real             rswitch_scalar,d_scalar;
545     __m256d          dummy_mask,cutoff_mask;
546     __m128           tmpmask0,tmpmask1;
547     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
548     __m256d          one     = _mm256_set1_pd(1.0);
549     __m256d          two     = _mm256_set1_pd(2.0);
550     x                = xx[0];
551     f                = ff[0];
552
553     nri              = nlist->nri;
554     iinr             = nlist->iinr;
555     jindex           = nlist->jindex;
556     jjnr             = nlist->jjnr;
557     shiftidx         = nlist->shift;
558     gid              = nlist->gid;
559     shiftvec         = fr->shift_vec[0];
560     fshift           = fr->fshift[0];
561     facel            = _mm256_set1_pd(fr->epsfac);
562     charge           = mdatoms->chargeA;
563     nvdwtype         = fr->ntype;
564     vdwparam         = fr->nbfp;
565     vdwtype          = mdatoms->typeA;
566
567     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
568     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
569     beta2            = _mm256_mul_pd(beta,beta);
570     beta3            = _mm256_mul_pd(beta,beta2);
571
572     ewtab            = fr->ic->tabq_coul_FDV0;
573     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
574     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
575
576     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
577     rcutoff_scalar   = fr->rcoulomb;
578     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
579     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
580
581     rswitch_scalar   = fr->rcoulomb_switch;
582     rswitch          = _mm256_set1_pd(rswitch_scalar);
583     /* Setup switch parameters */
584     d_scalar         = rcutoff_scalar-rswitch_scalar;
585     d                = _mm256_set1_pd(d_scalar);
586     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
587     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
588     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
589     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
590     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
591     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
592
593     /* Avoid stupid compiler warnings */
594     jnrA = jnrB = jnrC = jnrD = 0;
595     j_coord_offsetA = 0;
596     j_coord_offsetB = 0;
597     j_coord_offsetC = 0;
598     j_coord_offsetD = 0;
599
600     outeriter        = 0;
601     inneriter        = 0;
602
603     for(iidx=0;iidx<4*DIM;iidx++)
604     {
605         scratch[iidx] = 0.0;
606     }
607
608     /* Start outer loop over neighborlists */
609     for(iidx=0; iidx<nri; iidx++)
610     {
611         /* Load shift vector for this list */
612         i_shift_offset   = DIM*shiftidx[iidx];
613
614         /* Load limits for loop over neighbors */
615         j_index_start    = jindex[iidx];
616         j_index_end      = jindex[iidx+1];
617
618         /* Get outer coordinate index */
619         inr              = iinr[iidx];
620         i_coord_offset   = DIM*inr;
621
622         /* Load i particle coords and add shift vector */
623         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
624
625         fix0             = _mm256_setzero_pd();
626         fiy0             = _mm256_setzero_pd();
627         fiz0             = _mm256_setzero_pd();
628
629         /* Load parameters for i particles */
630         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
631         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
632
633         /* Start inner kernel loop */
634         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
635         {
636
637             /* Get j neighbor index, and coordinate index */
638             jnrA             = jjnr[jidx];
639             jnrB             = jjnr[jidx+1];
640             jnrC             = jjnr[jidx+2];
641             jnrD             = jjnr[jidx+3];
642             j_coord_offsetA  = DIM*jnrA;
643             j_coord_offsetB  = DIM*jnrB;
644             j_coord_offsetC  = DIM*jnrC;
645             j_coord_offsetD  = DIM*jnrD;
646
647             /* load j atom coordinates */
648             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
649                                                  x+j_coord_offsetC,x+j_coord_offsetD,
650                                                  &jx0,&jy0,&jz0);
651
652             /* Calculate displacement vector */
653             dx00             = _mm256_sub_pd(ix0,jx0);
654             dy00             = _mm256_sub_pd(iy0,jy0);
655             dz00             = _mm256_sub_pd(iz0,jz0);
656
657             /* Calculate squared distance and things based on it */
658             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
659
660             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
661
662             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
663
664             /* Load parameters for j particles */
665             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
666                                                                  charge+jnrC+0,charge+jnrD+0);
667             vdwjidx0A        = 2*vdwtype[jnrA+0];
668             vdwjidx0B        = 2*vdwtype[jnrB+0];
669             vdwjidx0C        = 2*vdwtype[jnrC+0];
670             vdwjidx0D        = 2*vdwtype[jnrD+0];
671
672             /**************************
673              * CALCULATE INTERACTIONS *
674              **************************/
675
676             if (gmx_mm256_any_lt(rsq00,rcutoff2))
677             {
678
679             r00              = _mm256_mul_pd(rsq00,rinv00);
680
681             /* Compute parameters for interactions between i and j atoms */
682             qq00             = _mm256_mul_pd(iq0,jq0);
683             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
684                                             vdwioffsetptr0+vdwjidx0B,
685                                             vdwioffsetptr0+vdwjidx0C,
686                                             vdwioffsetptr0+vdwjidx0D,
687                                             &c6_00,&c12_00);
688
689             /* EWALD ELECTROSTATICS */
690
691             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
692             ewrt             = _mm256_mul_pd(r00,ewtabscale);
693             ewitab           = _mm256_cvttpd_epi32(ewrt);
694             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
695             ewitab           = _mm_slli_epi32(ewitab,2);
696             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
697             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
698             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
699             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
700             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
701             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
702             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
703             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
704             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
705
706             /* LENNARD-JONES DISPERSION/REPULSION */
707
708             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
709             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
710             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
711             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
712             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
713
714             d                = _mm256_sub_pd(r00,rswitch);
715             d                = _mm256_max_pd(d,_mm256_setzero_pd());
716             d2               = _mm256_mul_pd(d,d);
717             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
718
719             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
720
721             /* Evaluate switch function */
722             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
723             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
724             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
725             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
726
727             fscal            = _mm256_add_pd(felec,fvdw);
728
729             fscal            = _mm256_and_pd(fscal,cutoff_mask);
730
731             /* Calculate temporary vectorial force */
732             tx               = _mm256_mul_pd(fscal,dx00);
733             ty               = _mm256_mul_pd(fscal,dy00);
734             tz               = _mm256_mul_pd(fscal,dz00);
735
736             /* Update vectorial force */
737             fix0             = _mm256_add_pd(fix0,tx);
738             fiy0             = _mm256_add_pd(fiy0,ty);
739             fiz0             = _mm256_add_pd(fiz0,tz);
740
741             fjptrA             = f+j_coord_offsetA;
742             fjptrB             = f+j_coord_offsetB;
743             fjptrC             = f+j_coord_offsetC;
744             fjptrD             = f+j_coord_offsetD;
745             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
746
747             }
748
749             /* Inner loop uses 77 flops */
750         }
751
752         if(jidx<j_index_end)
753         {
754
755             /* Get j neighbor index, and coordinate index */
756             jnrlistA         = jjnr[jidx];
757             jnrlistB         = jjnr[jidx+1];
758             jnrlistC         = jjnr[jidx+2];
759             jnrlistD         = jjnr[jidx+3];
760             /* Sign of each element will be negative for non-real atoms.
761              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
762              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
763              */
764             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
765
766             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
767             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
768             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
769
770             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
771             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
772             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
773             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
774             j_coord_offsetA  = DIM*jnrA;
775             j_coord_offsetB  = DIM*jnrB;
776             j_coord_offsetC  = DIM*jnrC;
777             j_coord_offsetD  = DIM*jnrD;
778
779             /* load j atom coordinates */
780             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
781                                                  x+j_coord_offsetC,x+j_coord_offsetD,
782                                                  &jx0,&jy0,&jz0);
783
784             /* Calculate displacement vector */
785             dx00             = _mm256_sub_pd(ix0,jx0);
786             dy00             = _mm256_sub_pd(iy0,jy0);
787             dz00             = _mm256_sub_pd(iz0,jz0);
788
789             /* Calculate squared distance and things based on it */
790             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
791
792             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
793
794             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
795
796             /* Load parameters for j particles */
797             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
798                                                                  charge+jnrC+0,charge+jnrD+0);
799             vdwjidx0A        = 2*vdwtype[jnrA+0];
800             vdwjidx0B        = 2*vdwtype[jnrB+0];
801             vdwjidx0C        = 2*vdwtype[jnrC+0];
802             vdwjidx0D        = 2*vdwtype[jnrD+0];
803
804             /**************************
805              * CALCULATE INTERACTIONS *
806              **************************/
807
808             if (gmx_mm256_any_lt(rsq00,rcutoff2))
809             {
810
811             r00              = _mm256_mul_pd(rsq00,rinv00);
812             r00              = _mm256_andnot_pd(dummy_mask,r00);
813
814             /* Compute parameters for interactions between i and j atoms */
815             qq00             = _mm256_mul_pd(iq0,jq0);
816             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
817                                             vdwioffsetptr0+vdwjidx0B,
818                                             vdwioffsetptr0+vdwjidx0C,
819                                             vdwioffsetptr0+vdwjidx0D,
820                                             &c6_00,&c12_00);
821
822             /* EWALD ELECTROSTATICS */
823
824             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
825             ewrt             = _mm256_mul_pd(r00,ewtabscale);
826             ewitab           = _mm256_cvttpd_epi32(ewrt);
827             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
828             ewitab           = _mm_slli_epi32(ewitab,2);
829             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
830             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
831             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
832             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
833             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
834             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
835             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
836             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
837             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
838
839             /* LENNARD-JONES DISPERSION/REPULSION */
840
841             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
842             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
843             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
844             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
845             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
846
847             d                = _mm256_sub_pd(r00,rswitch);
848             d                = _mm256_max_pd(d,_mm256_setzero_pd());
849             d2               = _mm256_mul_pd(d,d);
850             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
851
852             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
853
854             /* Evaluate switch function */
855             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
856             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
857             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
858             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
859
860             fscal            = _mm256_add_pd(felec,fvdw);
861
862             fscal            = _mm256_and_pd(fscal,cutoff_mask);
863
864             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
865
866             /* Calculate temporary vectorial force */
867             tx               = _mm256_mul_pd(fscal,dx00);
868             ty               = _mm256_mul_pd(fscal,dy00);
869             tz               = _mm256_mul_pd(fscal,dz00);
870
871             /* Update vectorial force */
872             fix0             = _mm256_add_pd(fix0,tx);
873             fiy0             = _mm256_add_pd(fiy0,ty);
874             fiz0             = _mm256_add_pd(fiz0,tz);
875
876             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
877             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
878             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
879             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
880             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
881
882             }
883
884             /* Inner loop uses 78 flops */
885         }
886
887         /* End of innermost loop */
888
889         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
890                                                  f+i_coord_offset,fshift+i_shift_offset);
891
892         /* Increment number of inner iterations */
893         inneriter                  += j_index_end - j_index_start;
894
895         /* Outer loop uses 7 flops */
896     }
897
898     /* Increment number of outer iterations */
899     outeriter        += nri;
900
901     /* Update outer/inner flops */
902
903     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*78);
904 }