Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
82     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
83     __m128i          ewitab;
84     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
85     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
86     real             *ewtab;
87     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
88     real             rswitch_scalar,d_scalar;
89     __m256d          dummy_mask,cutoff_mask;
90     __m128           tmpmask0,tmpmask1;
91     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
92     __m256d          one     = _mm256_set1_pd(1.0);
93     __m256d          two     = _mm256_set1_pd(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm256_set1_pd(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
112     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
113     beta2            = _mm256_mul_pd(beta,beta);
114     beta3            = _mm256_mul_pd(beta,beta2);
115
116     ewtab            = fr->ic->tabq_coul_FDV0;
117     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
118     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
119
120     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
121     rcutoff_scalar   = fr->rcoulomb;
122     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
123     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
124
125     rswitch_scalar   = fr->rcoulomb_switch;
126     rswitch          = _mm256_set1_pd(rswitch_scalar);
127     /* Setup switch parameters */
128     d_scalar         = rcutoff_scalar-rswitch_scalar;
129     d                = _mm256_set1_pd(d_scalar);
130     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
131     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
132     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
133     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
134     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
135     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = jnrC = jnrD = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141     j_coord_offsetC = 0;
142     j_coord_offsetD = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
168
169         fix0             = _mm256_setzero_pd();
170         fiy0             = _mm256_setzero_pd();
171         fiz0             = _mm256_setzero_pd();
172
173         /* Load parameters for i particles */
174         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
175         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
176
177         /* Reset potential sums */
178         velecsum         = _mm256_setzero_pd();
179         vvdwsum          = _mm256_setzero_pd();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192             j_coord_offsetC  = DIM*jnrC;
193             j_coord_offsetD  = DIM*jnrD;
194
195             /* load j atom coordinates */
196             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
197                                                  x+j_coord_offsetC,x+j_coord_offsetD,
198                                                  &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm256_sub_pd(ix0,jx0);
202             dy00             = _mm256_sub_pd(iy0,jy0);
203             dz00             = _mm256_sub_pd(iz0,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
207
208             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
209
210             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
211
212             /* Load parameters for j particles */
213             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
214                                                                  charge+jnrC+0,charge+jnrD+0);
215             vdwjidx0A        = 2*vdwtype[jnrA+0];
216             vdwjidx0B        = 2*vdwtype[jnrB+0];
217             vdwjidx0C        = 2*vdwtype[jnrC+0];
218             vdwjidx0D        = 2*vdwtype[jnrD+0];
219
220             /**************************
221              * CALCULATE INTERACTIONS *
222              **************************/
223
224             if (gmx_mm256_any_lt(rsq00,rcutoff2))
225             {
226
227             r00              = _mm256_mul_pd(rsq00,rinv00);
228
229             /* Compute parameters for interactions between i and j atoms */
230             qq00             = _mm256_mul_pd(iq0,jq0);
231             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
232                                             vdwioffsetptr0+vdwjidx0B,
233                                             vdwioffsetptr0+vdwjidx0C,
234                                             vdwioffsetptr0+vdwjidx0D,
235                                             &c6_00,&c12_00);
236
237             /* EWALD ELECTROSTATICS */
238
239             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
240             ewrt             = _mm256_mul_pd(r00,ewtabscale);
241             ewitab           = _mm256_cvttpd_epi32(ewrt);
242             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
243             ewitab           = _mm_slli_epi32(ewitab,2);
244             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
245             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
246             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
247             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
248             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
249             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
250             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
251             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
252             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
253
254             /* LENNARD-JONES DISPERSION/REPULSION */
255
256             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
257             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
258             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
259             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
260             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
261
262             d                = _mm256_sub_pd(r00,rswitch);
263             d                = _mm256_max_pd(d,_mm256_setzero_pd());
264             d2               = _mm256_mul_pd(d,d);
265             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
266
267             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
268
269             /* Evaluate switch function */
270             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
271             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
272             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
273             velec            = _mm256_mul_pd(velec,sw);
274             vvdw             = _mm256_mul_pd(vvdw,sw);
275             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
276
277             /* Update potential sum for this i atom from the interaction with this j atom. */
278             velec            = _mm256_and_pd(velec,cutoff_mask);
279             velecsum         = _mm256_add_pd(velecsum,velec);
280             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
281             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
282
283             fscal            = _mm256_add_pd(felec,fvdw);
284
285             fscal            = _mm256_and_pd(fscal,cutoff_mask);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm256_mul_pd(fscal,dx00);
289             ty               = _mm256_mul_pd(fscal,dy00);
290             tz               = _mm256_mul_pd(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm256_add_pd(fix0,tx);
294             fiy0             = _mm256_add_pd(fiy0,ty);
295             fiz0             = _mm256_add_pd(fiz0,tz);
296
297             fjptrA             = f+j_coord_offsetA;
298             fjptrB             = f+j_coord_offsetB;
299             fjptrC             = f+j_coord_offsetC;
300             fjptrD             = f+j_coord_offsetD;
301             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
302
303             }
304
305             /* Inner loop uses 83 flops */
306         }
307
308         if(jidx<j_index_end)
309         {
310
311             /* Get j neighbor index, and coordinate index */
312             jnrlistA         = jjnr[jidx];
313             jnrlistB         = jjnr[jidx+1];
314             jnrlistC         = jjnr[jidx+2];
315             jnrlistD         = jjnr[jidx+3];
316             /* Sign of each element will be negative for non-real atoms.
317              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
318              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
319              */
320             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
321
322             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
323             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
324             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
325
326             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
327             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
328             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
329             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
330             j_coord_offsetA  = DIM*jnrA;
331             j_coord_offsetB  = DIM*jnrB;
332             j_coord_offsetC  = DIM*jnrC;
333             j_coord_offsetD  = DIM*jnrD;
334
335             /* load j atom coordinates */
336             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
337                                                  x+j_coord_offsetC,x+j_coord_offsetD,
338                                                  &jx0,&jy0,&jz0);
339
340             /* Calculate displacement vector */
341             dx00             = _mm256_sub_pd(ix0,jx0);
342             dy00             = _mm256_sub_pd(iy0,jy0);
343             dz00             = _mm256_sub_pd(iz0,jz0);
344
345             /* Calculate squared distance and things based on it */
346             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
347
348             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
349
350             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
351
352             /* Load parameters for j particles */
353             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
354                                                                  charge+jnrC+0,charge+jnrD+0);
355             vdwjidx0A        = 2*vdwtype[jnrA+0];
356             vdwjidx0B        = 2*vdwtype[jnrB+0];
357             vdwjidx0C        = 2*vdwtype[jnrC+0];
358             vdwjidx0D        = 2*vdwtype[jnrD+0];
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             if (gmx_mm256_any_lt(rsq00,rcutoff2))
365             {
366
367             r00              = _mm256_mul_pd(rsq00,rinv00);
368             r00              = _mm256_andnot_pd(dummy_mask,r00);
369
370             /* Compute parameters for interactions between i and j atoms */
371             qq00             = _mm256_mul_pd(iq0,jq0);
372             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
373                                             vdwioffsetptr0+vdwjidx0B,
374                                             vdwioffsetptr0+vdwjidx0C,
375                                             vdwioffsetptr0+vdwjidx0D,
376                                             &c6_00,&c12_00);
377
378             /* EWALD ELECTROSTATICS */
379
380             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
381             ewrt             = _mm256_mul_pd(r00,ewtabscale);
382             ewitab           = _mm256_cvttpd_epi32(ewrt);
383             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
384             ewitab           = _mm_slli_epi32(ewitab,2);
385             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
386             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
387             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
388             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
389             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
390             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
391             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
392             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
393             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
394
395             /* LENNARD-JONES DISPERSION/REPULSION */
396
397             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
398             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
399             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
400             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
401             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
402
403             d                = _mm256_sub_pd(r00,rswitch);
404             d                = _mm256_max_pd(d,_mm256_setzero_pd());
405             d2               = _mm256_mul_pd(d,d);
406             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
407
408             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
409
410             /* Evaluate switch function */
411             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
412             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
413             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
414             velec            = _mm256_mul_pd(velec,sw);
415             vvdw             = _mm256_mul_pd(vvdw,sw);
416             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
417
418             /* Update potential sum for this i atom from the interaction with this j atom. */
419             velec            = _mm256_and_pd(velec,cutoff_mask);
420             velec            = _mm256_andnot_pd(dummy_mask,velec);
421             velecsum         = _mm256_add_pd(velecsum,velec);
422             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
423             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
424             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
425
426             fscal            = _mm256_add_pd(felec,fvdw);
427
428             fscal            = _mm256_and_pd(fscal,cutoff_mask);
429
430             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
431
432             /* Calculate temporary vectorial force */
433             tx               = _mm256_mul_pd(fscal,dx00);
434             ty               = _mm256_mul_pd(fscal,dy00);
435             tz               = _mm256_mul_pd(fscal,dz00);
436
437             /* Update vectorial force */
438             fix0             = _mm256_add_pd(fix0,tx);
439             fiy0             = _mm256_add_pd(fiy0,ty);
440             fiz0             = _mm256_add_pd(fiz0,tz);
441
442             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
443             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
444             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
445             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
446             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
447
448             }
449
450             /* Inner loop uses 84 flops */
451         }
452
453         /* End of innermost loop */
454
455         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
456                                                  f+i_coord_offset,fshift+i_shift_offset);
457
458         ggid                        = gid[iidx];
459         /* Update potential energies */
460         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
461         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
462
463         /* Increment number of inner iterations */
464         inneriter                  += j_index_end - j_index_start;
465
466         /* Outer loop uses 9 flops */
467     }
468
469     /* Increment number of outer iterations */
470     outeriter        += nri;
471
472     /* Update outer/inner flops */
473
474     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*84);
475 }
476 /*
477  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_256_double
478  * Electrostatics interaction: Ewald
479  * VdW interaction:            LennardJones
480  * Geometry:                   Particle-Particle
481  * Calculate force/pot:        Force
482  */
483 void
484 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_256_double
485                     (t_nblist * gmx_restrict                nlist,
486                      rvec * gmx_restrict                    xx,
487                      rvec * gmx_restrict                    ff,
488                      t_forcerec * gmx_restrict              fr,
489                      t_mdatoms * gmx_restrict               mdatoms,
490                      nb_kernel_data_t * gmx_restrict        kernel_data,
491                      t_nrnb * gmx_restrict                  nrnb)
492 {
493     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
494      * just 0 for non-waters.
495      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
496      * jnr indices corresponding to data put in the four positions in the SIMD register.
497      */
498     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
499     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
500     int              jnrA,jnrB,jnrC,jnrD;
501     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
502     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
503     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
504     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
505     real             rcutoff_scalar;
506     real             *shiftvec,*fshift,*x,*f;
507     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
508     real             scratch[4*DIM];
509     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
510     real *           vdwioffsetptr0;
511     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
512     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
513     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
514     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
515     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
516     real             *charge;
517     int              nvdwtype;
518     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
519     int              *vdwtype;
520     real             *vdwparam;
521     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
522     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
523     __m128i          ewitab;
524     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
525     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
526     real             *ewtab;
527     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
528     real             rswitch_scalar,d_scalar;
529     __m256d          dummy_mask,cutoff_mask;
530     __m128           tmpmask0,tmpmask1;
531     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
532     __m256d          one     = _mm256_set1_pd(1.0);
533     __m256d          two     = _mm256_set1_pd(2.0);
534     x                = xx[0];
535     f                = ff[0];
536
537     nri              = nlist->nri;
538     iinr             = nlist->iinr;
539     jindex           = nlist->jindex;
540     jjnr             = nlist->jjnr;
541     shiftidx         = nlist->shift;
542     gid              = nlist->gid;
543     shiftvec         = fr->shift_vec[0];
544     fshift           = fr->fshift[0];
545     facel            = _mm256_set1_pd(fr->epsfac);
546     charge           = mdatoms->chargeA;
547     nvdwtype         = fr->ntype;
548     vdwparam         = fr->nbfp;
549     vdwtype          = mdatoms->typeA;
550
551     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
552     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
553     beta2            = _mm256_mul_pd(beta,beta);
554     beta3            = _mm256_mul_pd(beta,beta2);
555
556     ewtab            = fr->ic->tabq_coul_FDV0;
557     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
558     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
559
560     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
561     rcutoff_scalar   = fr->rcoulomb;
562     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
563     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
564
565     rswitch_scalar   = fr->rcoulomb_switch;
566     rswitch          = _mm256_set1_pd(rswitch_scalar);
567     /* Setup switch parameters */
568     d_scalar         = rcutoff_scalar-rswitch_scalar;
569     d                = _mm256_set1_pd(d_scalar);
570     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
571     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
572     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
573     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
574     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
575     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
576
577     /* Avoid stupid compiler warnings */
578     jnrA = jnrB = jnrC = jnrD = 0;
579     j_coord_offsetA = 0;
580     j_coord_offsetB = 0;
581     j_coord_offsetC = 0;
582     j_coord_offsetD = 0;
583
584     outeriter        = 0;
585     inneriter        = 0;
586
587     for(iidx=0;iidx<4*DIM;iidx++)
588     {
589         scratch[iidx] = 0.0;
590     }
591
592     /* Start outer loop over neighborlists */
593     for(iidx=0; iidx<nri; iidx++)
594     {
595         /* Load shift vector for this list */
596         i_shift_offset   = DIM*shiftidx[iidx];
597
598         /* Load limits for loop over neighbors */
599         j_index_start    = jindex[iidx];
600         j_index_end      = jindex[iidx+1];
601
602         /* Get outer coordinate index */
603         inr              = iinr[iidx];
604         i_coord_offset   = DIM*inr;
605
606         /* Load i particle coords and add shift vector */
607         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
608
609         fix0             = _mm256_setzero_pd();
610         fiy0             = _mm256_setzero_pd();
611         fiz0             = _mm256_setzero_pd();
612
613         /* Load parameters for i particles */
614         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
615         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
616
617         /* Start inner kernel loop */
618         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
619         {
620
621             /* Get j neighbor index, and coordinate index */
622             jnrA             = jjnr[jidx];
623             jnrB             = jjnr[jidx+1];
624             jnrC             = jjnr[jidx+2];
625             jnrD             = jjnr[jidx+3];
626             j_coord_offsetA  = DIM*jnrA;
627             j_coord_offsetB  = DIM*jnrB;
628             j_coord_offsetC  = DIM*jnrC;
629             j_coord_offsetD  = DIM*jnrD;
630
631             /* load j atom coordinates */
632             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
633                                                  x+j_coord_offsetC,x+j_coord_offsetD,
634                                                  &jx0,&jy0,&jz0);
635
636             /* Calculate displacement vector */
637             dx00             = _mm256_sub_pd(ix0,jx0);
638             dy00             = _mm256_sub_pd(iy0,jy0);
639             dz00             = _mm256_sub_pd(iz0,jz0);
640
641             /* Calculate squared distance and things based on it */
642             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
643
644             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
645
646             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
647
648             /* Load parameters for j particles */
649             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
650                                                                  charge+jnrC+0,charge+jnrD+0);
651             vdwjidx0A        = 2*vdwtype[jnrA+0];
652             vdwjidx0B        = 2*vdwtype[jnrB+0];
653             vdwjidx0C        = 2*vdwtype[jnrC+0];
654             vdwjidx0D        = 2*vdwtype[jnrD+0];
655
656             /**************************
657              * CALCULATE INTERACTIONS *
658              **************************/
659
660             if (gmx_mm256_any_lt(rsq00,rcutoff2))
661             {
662
663             r00              = _mm256_mul_pd(rsq00,rinv00);
664
665             /* Compute parameters for interactions between i and j atoms */
666             qq00             = _mm256_mul_pd(iq0,jq0);
667             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
668                                             vdwioffsetptr0+vdwjidx0B,
669                                             vdwioffsetptr0+vdwjidx0C,
670                                             vdwioffsetptr0+vdwjidx0D,
671                                             &c6_00,&c12_00);
672
673             /* EWALD ELECTROSTATICS */
674
675             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
676             ewrt             = _mm256_mul_pd(r00,ewtabscale);
677             ewitab           = _mm256_cvttpd_epi32(ewrt);
678             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
679             ewitab           = _mm_slli_epi32(ewitab,2);
680             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
681             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
682             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
683             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
684             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
685             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
686             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
687             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
688             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
689
690             /* LENNARD-JONES DISPERSION/REPULSION */
691
692             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
693             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
694             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
695             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
696             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
697
698             d                = _mm256_sub_pd(r00,rswitch);
699             d                = _mm256_max_pd(d,_mm256_setzero_pd());
700             d2               = _mm256_mul_pd(d,d);
701             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
702
703             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
704
705             /* Evaluate switch function */
706             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
707             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
708             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
709             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
710
711             fscal            = _mm256_add_pd(felec,fvdw);
712
713             fscal            = _mm256_and_pd(fscal,cutoff_mask);
714
715             /* Calculate temporary vectorial force */
716             tx               = _mm256_mul_pd(fscal,dx00);
717             ty               = _mm256_mul_pd(fscal,dy00);
718             tz               = _mm256_mul_pd(fscal,dz00);
719
720             /* Update vectorial force */
721             fix0             = _mm256_add_pd(fix0,tx);
722             fiy0             = _mm256_add_pd(fiy0,ty);
723             fiz0             = _mm256_add_pd(fiz0,tz);
724
725             fjptrA             = f+j_coord_offsetA;
726             fjptrB             = f+j_coord_offsetB;
727             fjptrC             = f+j_coord_offsetC;
728             fjptrD             = f+j_coord_offsetD;
729             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
730
731             }
732
733             /* Inner loop uses 77 flops */
734         }
735
736         if(jidx<j_index_end)
737         {
738
739             /* Get j neighbor index, and coordinate index */
740             jnrlistA         = jjnr[jidx];
741             jnrlistB         = jjnr[jidx+1];
742             jnrlistC         = jjnr[jidx+2];
743             jnrlistD         = jjnr[jidx+3];
744             /* Sign of each element will be negative for non-real atoms.
745              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
746              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
747              */
748             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
749
750             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
751             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
752             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
753
754             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
755             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
756             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
757             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
758             j_coord_offsetA  = DIM*jnrA;
759             j_coord_offsetB  = DIM*jnrB;
760             j_coord_offsetC  = DIM*jnrC;
761             j_coord_offsetD  = DIM*jnrD;
762
763             /* load j atom coordinates */
764             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
765                                                  x+j_coord_offsetC,x+j_coord_offsetD,
766                                                  &jx0,&jy0,&jz0);
767
768             /* Calculate displacement vector */
769             dx00             = _mm256_sub_pd(ix0,jx0);
770             dy00             = _mm256_sub_pd(iy0,jy0);
771             dz00             = _mm256_sub_pd(iz0,jz0);
772
773             /* Calculate squared distance and things based on it */
774             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
775
776             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
777
778             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
779
780             /* Load parameters for j particles */
781             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
782                                                                  charge+jnrC+0,charge+jnrD+0);
783             vdwjidx0A        = 2*vdwtype[jnrA+0];
784             vdwjidx0B        = 2*vdwtype[jnrB+0];
785             vdwjidx0C        = 2*vdwtype[jnrC+0];
786             vdwjidx0D        = 2*vdwtype[jnrD+0];
787
788             /**************************
789              * CALCULATE INTERACTIONS *
790              **************************/
791
792             if (gmx_mm256_any_lt(rsq00,rcutoff2))
793             {
794
795             r00              = _mm256_mul_pd(rsq00,rinv00);
796             r00              = _mm256_andnot_pd(dummy_mask,r00);
797
798             /* Compute parameters for interactions between i and j atoms */
799             qq00             = _mm256_mul_pd(iq0,jq0);
800             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
801                                             vdwioffsetptr0+vdwjidx0B,
802                                             vdwioffsetptr0+vdwjidx0C,
803                                             vdwioffsetptr0+vdwjidx0D,
804                                             &c6_00,&c12_00);
805
806             /* EWALD ELECTROSTATICS */
807
808             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
809             ewrt             = _mm256_mul_pd(r00,ewtabscale);
810             ewitab           = _mm256_cvttpd_epi32(ewrt);
811             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
812             ewitab           = _mm_slli_epi32(ewitab,2);
813             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
814             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
815             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
816             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
817             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
818             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
819             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
820             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
821             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
822
823             /* LENNARD-JONES DISPERSION/REPULSION */
824
825             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
826             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
827             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
828             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
829             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
830
831             d                = _mm256_sub_pd(r00,rswitch);
832             d                = _mm256_max_pd(d,_mm256_setzero_pd());
833             d2               = _mm256_mul_pd(d,d);
834             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
835
836             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
837
838             /* Evaluate switch function */
839             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
840             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
841             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
842             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
843
844             fscal            = _mm256_add_pd(felec,fvdw);
845
846             fscal            = _mm256_and_pd(fscal,cutoff_mask);
847
848             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
849
850             /* Calculate temporary vectorial force */
851             tx               = _mm256_mul_pd(fscal,dx00);
852             ty               = _mm256_mul_pd(fscal,dy00);
853             tz               = _mm256_mul_pd(fscal,dz00);
854
855             /* Update vectorial force */
856             fix0             = _mm256_add_pd(fix0,tx);
857             fiy0             = _mm256_add_pd(fiy0,ty);
858             fiz0             = _mm256_add_pd(fiz0,tz);
859
860             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
861             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
862             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
863             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
864             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
865
866             }
867
868             /* Inner loop uses 78 flops */
869         }
870
871         /* End of innermost loop */
872
873         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
874                                                  f+i_coord_offset,fshift+i_shift_offset);
875
876         /* Increment number of inner iterations */
877         inneriter                  += j_index_end - j_index_start;
878
879         /* Outer loop uses 7 flops */
880     }
881
882     /* Increment number of outer iterations */
883     outeriter        += nri;
884
885     /* Update outer/inner flops */
886
887     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*78);
888 }