Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m128i          ewitab;
98     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
99     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
100     real             *ewtab;
101     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
102     real             rswitch_scalar,d_scalar;
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
126     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
127     beta2            = _mm256_mul_pd(beta,beta);
128     beta3            = _mm256_mul_pd(beta,beta2);
129
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
133
134     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
135     rcutoff_scalar   = fr->rcoulomb;
136     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
137     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
138
139     rswitch_scalar   = fr->rcoulomb_switch;
140     rswitch          = _mm256_set1_pd(rswitch_scalar);
141     /* Setup switch parameters */
142     d_scalar         = rcutoff_scalar-rswitch_scalar;
143     d                = _mm256_set1_pd(d_scalar);
144     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
145     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
146     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
147     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
148     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
149     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
150
151     /* Avoid stupid compiler warnings */
152     jnrA = jnrB = jnrC = jnrD = 0;
153     j_coord_offsetA = 0;
154     j_coord_offsetB = 0;
155     j_coord_offsetC = 0;
156     j_coord_offsetD = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     for(iidx=0;iidx<4*DIM;iidx++)
162     {
163         scratch[iidx] = 0.0;
164     }
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
182
183         fix0             = _mm256_setzero_pd();
184         fiy0             = _mm256_setzero_pd();
185         fiz0             = _mm256_setzero_pd();
186
187         /* Load parameters for i particles */
188         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
189         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
190
191         /* Reset potential sums */
192         velecsum         = _mm256_setzero_pd();
193         vvdwsum          = _mm256_setzero_pd();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             jnrC             = jjnr[jidx+2];
203             jnrD             = jjnr[jidx+3];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208
209             /* load j atom coordinates */
210             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
211                                                  x+j_coord_offsetC,x+j_coord_offsetD,
212                                                  &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm256_sub_pd(ix0,jx0);
216             dy00             = _mm256_sub_pd(iy0,jy0);
217             dz00             = _mm256_sub_pd(iz0,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
221
222             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
223
224             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
228                                                                  charge+jnrC+0,charge+jnrD+0);
229             vdwjidx0A        = 2*vdwtype[jnrA+0];
230             vdwjidx0B        = 2*vdwtype[jnrB+0];
231             vdwjidx0C        = 2*vdwtype[jnrC+0];
232             vdwjidx0D        = 2*vdwtype[jnrD+0];
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             if (gmx_mm256_any_lt(rsq00,rcutoff2))
239             {
240
241             r00              = _mm256_mul_pd(rsq00,rinv00);
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq00             = _mm256_mul_pd(iq0,jq0);
245             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
246                                             vdwioffsetptr0+vdwjidx0B,
247                                             vdwioffsetptr0+vdwjidx0C,
248                                             vdwioffsetptr0+vdwjidx0D,
249                                             &c6_00,&c12_00);
250
251             /* EWALD ELECTROSTATICS */
252
253             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
254             ewrt             = _mm256_mul_pd(r00,ewtabscale);
255             ewitab           = _mm256_cvttpd_epi32(ewrt);
256             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
257             ewitab           = _mm_slli_epi32(ewitab,2);
258             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
259             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
260             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
261             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
262             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
263             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
264             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
265             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
266             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
267
268             /* LENNARD-JONES DISPERSION/REPULSION */
269
270             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
271             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
272             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
273             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
274             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
275
276             d                = _mm256_sub_pd(r00,rswitch);
277             d                = _mm256_max_pd(d,_mm256_setzero_pd());
278             d2               = _mm256_mul_pd(d,d);
279             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
280
281             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
282
283             /* Evaluate switch function */
284             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
285             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
286             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
287             velec            = _mm256_mul_pd(velec,sw);
288             vvdw             = _mm256_mul_pd(vvdw,sw);
289             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
290
291             /* Update potential sum for this i atom from the interaction with this j atom. */
292             velec            = _mm256_and_pd(velec,cutoff_mask);
293             velecsum         = _mm256_add_pd(velecsum,velec);
294             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
295             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
296
297             fscal            = _mm256_add_pd(felec,fvdw);
298
299             fscal            = _mm256_and_pd(fscal,cutoff_mask);
300
301             /* Calculate temporary vectorial force */
302             tx               = _mm256_mul_pd(fscal,dx00);
303             ty               = _mm256_mul_pd(fscal,dy00);
304             tz               = _mm256_mul_pd(fscal,dz00);
305
306             /* Update vectorial force */
307             fix0             = _mm256_add_pd(fix0,tx);
308             fiy0             = _mm256_add_pd(fiy0,ty);
309             fiz0             = _mm256_add_pd(fiz0,tz);
310
311             fjptrA             = f+j_coord_offsetA;
312             fjptrB             = f+j_coord_offsetB;
313             fjptrC             = f+j_coord_offsetC;
314             fjptrD             = f+j_coord_offsetD;
315             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
316
317             }
318
319             /* Inner loop uses 83 flops */
320         }
321
322         if(jidx<j_index_end)
323         {
324
325             /* Get j neighbor index, and coordinate index */
326             jnrlistA         = jjnr[jidx];
327             jnrlistB         = jjnr[jidx+1];
328             jnrlistC         = jjnr[jidx+2];
329             jnrlistD         = jjnr[jidx+3];
330             /* Sign of each element will be negative for non-real atoms.
331              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
332              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
333              */
334             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
335
336             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
337             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
338             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
339
340             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
341             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
342             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
343             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
344             j_coord_offsetA  = DIM*jnrA;
345             j_coord_offsetB  = DIM*jnrB;
346             j_coord_offsetC  = DIM*jnrC;
347             j_coord_offsetD  = DIM*jnrD;
348
349             /* load j atom coordinates */
350             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
351                                                  x+j_coord_offsetC,x+j_coord_offsetD,
352                                                  &jx0,&jy0,&jz0);
353
354             /* Calculate displacement vector */
355             dx00             = _mm256_sub_pd(ix0,jx0);
356             dy00             = _mm256_sub_pd(iy0,jy0);
357             dz00             = _mm256_sub_pd(iz0,jz0);
358
359             /* Calculate squared distance and things based on it */
360             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
361
362             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
363
364             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
365
366             /* Load parameters for j particles */
367             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
368                                                                  charge+jnrC+0,charge+jnrD+0);
369             vdwjidx0A        = 2*vdwtype[jnrA+0];
370             vdwjidx0B        = 2*vdwtype[jnrB+0];
371             vdwjidx0C        = 2*vdwtype[jnrC+0];
372             vdwjidx0D        = 2*vdwtype[jnrD+0];
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             if (gmx_mm256_any_lt(rsq00,rcutoff2))
379             {
380
381             r00              = _mm256_mul_pd(rsq00,rinv00);
382             r00              = _mm256_andnot_pd(dummy_mask,r00);
383
384             /* Compute parameters for interactions between i and j atoms */
385             qq00             = _mm256_mul_pd(iq0,jq0);
386             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
387                                             vdwioffsetptr0+vdwjidx0B,
388                                             vdwioffsetptr0+vdwjidx0C,
389                                             vdwioffsetptr0+vdwjidx0D,
390                                             &c6_00,&c12_00);
391
392             /* EWALD ELECTROSTATICS */
393
394             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
395             ewrt             = _mm256_mul_pd(r00,ewtabscale);
396             ewitab           = _mm256_cvttpd_epi32(ewrt);
397             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
398             ewitab           = _mm_slli_epi32(ewitab,2);
399             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
400             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
401             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
402             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
403             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
404             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
405             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
406             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
407             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
408
409             /* LENNARD-JONES DISPERSION/REPULSION */
410
411             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
412             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
413             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
414             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
415             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
416
417             d                = _mm256_sub_pd(r00,rswitch);
418             d                = _mm256_max_pd(d,_mm256_setzero_pd());
419             d2               = _mm256_mul_pd(d,d);
420             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
421
422             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
423
424             /* Evaluate switch function */
425             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
426             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
427             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
428             velec            = _mm256_mul_pd(velec,sw);
429             vvdw             = _mm256_mul_pd(vvdw,sw);
430             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
431
432             /* Update potential sum for this i atom from the interaction with this j atom. */
433             velec            = _mm256_and_pd(velec,cutoff_mask);
434             velec            = _mm256_andnot_pd(dummy_mask,velec);
435             velecsum         = _mm256_add_pd(velecsum,velec);
436             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
437             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
438             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
439
440             fscal            = _mm256_add_pd(felec,fvdw);
441
442             fscal            = _mm256_and_pd(fscal,cutoff_mask);
443
444             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
445
446             /* Calculate temporary vectorial force */
447             tx               = _mm256_mul_pd(fscal,dx00);
448             ty               = _mm256_mul_pd(fscal,dy00);
449             tz               = _mm256_mul_pd(fscal,dz00);
450
451             /* Update vectorial force */
452             fix0             = _mm256_add_pd(fix0,tx);
453             fiy0             = _mm256_add_pd(fiy0,ty);
454             fiz0             = _mm256_add_pd(fiz0,tz);
455
456             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
457             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
458             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
459             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
460             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
461
462             }
463
464             /* Inner loop uses 84 flops */
465         }
466
467         /* End of innermost loop */
468
469         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
470                                                  f+i_coord_offset,fshift+i_shift_offset);
471
472         ggid                        = gid[iidx];
473         /* Update potential energies */
474         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
475         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
476
477         /* Increment number of inner iterations */
478         inneriter                  += j_index_end - j_index_start;
479
480         /* Outer loop uses 9 flops */
481     }
482
483     /* Increment number of outer iterations */
484     outeriter        += nri;
485
486     /* Update outer/inner flops */
487
488     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*84);
489 }
490 /*
491  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_256_double
492  * Electrostatics interaction: Ewald
493  * VdW interaction:            LennardJones
494  * Geometry:                   Particle-Particle
495  * Calculate force/pot:        Force
496  */
497 void
498 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_256_double
499                     (t_nblist                    * gmx_restrict       nlist,
500                      rvec                        * gmx_restrict          xx,
501                      rvec                        * gmx_restrict          ff,
502                      t_forcerec                  * gmx_restrict          fr,
503                      t_mdatoms                   * gmx_restrict     mdatoms,
504                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
505                      t_nrnb                      * gmx_restrict        nrnb)
506 {
507     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
508      * just 0 for non-waters.
509      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
510      * jnr indices corresponding to data put in the four positions in the SIMD register.
511      */
512     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
513     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
514     int              jnrA,jnrB,jnrC,jnrD;
515     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
516     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
517     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
518     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
519     real             rcutoff_scalar;
520     real             *shiftvec,*fshift,*x,*f;
521     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
522     real             scratch[4*DIM];
523     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
524     real *           vdwioffsetptr0;
525     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
526     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
527     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
528     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
529     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
530     real             *charge;
531     int              nvdwtype;
532     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
533     int              *vdwtype;
534     real             *vdwparam;
535     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
536     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
537     __m128i          ewitab;
538     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
539     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
540     real             *ewtab;
541     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
542     real             rswitch_scalar,d_scalar;
543     __m256d          dummy_mask,cutoff_mask;
544     __m128           tmpmask0,tmpmask1;
545     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
546     __m256d          one     = _mm256_set1_pd(1.0);
547     __m256d          two     = _mm256_set1_pd(2.0);
548     x                = xx[0];
549     f                = ff[0];
550
551     nri              = nlist->nri;
552     iinr             = nlist->iinr;
553     jindex           = nlist->jindex;
554     jjnr             = nlist->jjnr;
555     shiftidx         = nlist->shift;
556     gid              = nlist->gid;
557     shiftvec         = fr->shift_vec[0];
558     fshift           = fr->fshift[0];
559     facel            = _mm256_set1_pd(fr->epsfac);
560     charge           = mdatoms->chargeA;
561     nvdwtype         = fr->ntype;
562     vdwparam         = fr->nbfp;
563     vdwtype          = mdatoms->typeA;
564
565     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
566     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
567     beta2            = _mm256_mul_pd(beta,beta);
568     beta3            = _mm256_mul_pd(beta,beta2);
569
570     ewtab            = fr->ic->tabq_coul_FDV0;
571     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
572     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
573
574     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
575     rcutoff_scalar   = fr->rcoulomb;
576     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
577     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
578
579     rswitch_scalar   = fr->rcoulomb_switch;
580     rswitch          = _mm256_set1_pd(rswitch_scalar);
581     /* Setup switch parameters */
582     d_scalar         = rcutoff_scalar-rswitch_scalar;
583     d                = _mm256_set1_pd(d_scalar);
584     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
585     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
586     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
587     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
588     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
589     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
590
591     /* Avoid stupid compiler warnings */
592     jnrA = jnrB = jnrC = jnrD = 0;
593     j_coord_offsetA = 0;
594     j_coord_offsetB = 0;
595     j_coord_offsetC = 0;
596     j_coord_offsetD = 0;
597
598     outeriter        = 0;
599     inneriter        = 0;
600
601     for(iidx=0;iidx<4*DIM;iidx++)
602     {
603         scratch[iidx] = 0.0;
604     }
605
606     /* Start outer loop over neighborlists */
607     for(iidx=0; iidx<nri; iidx++)
608     {
609         /* Load shift vector for this list */
610         i_shift_offset   = DIM*shiftidx[iidx];
611
612         /* Load limits for loop over neighbors */
613         j_index_start    = jindex[iidx];
614         j_index_end      = jindex[iidx+1];
615
616         /* Get outer coordinate index */
617         inr              = iinr[iidx];
618         i_coord_offset   = DIM*inr;
619
620         /* Load i particle coords and add shift vector */
621         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
622
623         fix0             = _mm256_setzero_pd();
624         fiy0             = _mm256_setzero_pd();
625         fiz0             = _mm256_setzero_pd();
626
627         /* Load parameters for i particles */
628         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
629         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
630
631         /* Start inner kernel loop */
632         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
633         {
634
635             /* Get j neighbor index, and coordinate index */
636             jnrA             = jjnr[jidx];
637             jnrB             = jjnr[jidx+1];
638             jnrC             = jjnr[jidx+2];
639             jnrD             = jjnr[jidx+3];
640             j_coord_offsetA  = DIM*jnrA;
641             j_coord_offsetB  = DIM*jnrB;
642             j_coord_offsetC  = DIM*jnrC;
643             j_coord_offsetD  = DIM*jnrD;
644
645             /* load j atom coordinates */
646             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
647                                                  x+j_coord_offsetC,x+j_coord_offsetD,
648                                                  &jx0,&jy0,&jz0);
649
650             /* Calculate displacement vector */
651             dx00             = _mm256_sub_pd(ix0,jx0);
652             dy00             = _mm256_sub_pd(iy0,jy0);
653             dz00             = _mm256_sub_pd(iz0,jz0);
654
655             /* Calculate squared distance and things based on it */
656             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
657
658             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
659
660             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
661
662             /* Load parameters for j particles */
663             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
664                                                                  charge+jnrC+0,charge+jnrD+0);
665             vdwjidx0A        = 2*vdwtype[jnrA+0];
666             vdwjidx0B        = 2*vdwtype[jnrB+0];
667             vdwjidx0C        = 2*vdwtype[jnrC+0];
668             vdwjidx0D        = 2*vdwtype[jnrD+0];
669
670             /**************************
671              * CALCULATE INTERACTIONS *
672              **************************/
673
674             if (gmx_mm256_any_lt(rsq00,rcutoff2))
675             {
676
677             r00              = _mm256_mul_pd(rsq00,rinv00);
678
679             /* Compute parameters for interactions between i and j atoms */
680             qq00             = _mm256_mul_pd(iq0,jq0);
681             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
682                                             vdwioffsetptr0+vdwjidx0B,
683                                             vdwioffsetptr0+vdwjidx0C,
684                                             vdwioffsetptr0+vdwjidx0D,
685                                             &c6_00,&c12_00);
686
687             /* EWALD ELECTROSTATICS */
688
689             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
690             ewrt             = _mm256_mul_pd(r00,ewtabscale);
691             ewitab           = _mm256_cvttpd_epi32(ewrt);
692             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
693             ewitab           = _mm_slli_epi32(ewitab,2);
694             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
695             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
696             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
697             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
698             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
699             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
700             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
701             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
702             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
703
704             /* LENNARD-JONES DISPERSION/REPULSION */
705
706             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
707             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
708             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
709             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
710             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
711
712             d                = _mm256_sub_pd(r00,rswitch);
713             d                = _mm256_max_pd(d,_mm256_setzero_pd());
714             d2               = _mm256_mul_pd(d,d);
715             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
716
717             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
718
719             /* Evaluate switch function */
720             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
721             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
722             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
723             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
724
725             fscal            = _mm256_add_pd(felec,fvdw);
726
727             fscal            = _mm256_and_pd(fscal,cutoff_mask);
728
729             /* Calculate temporary vectorial force */
730             tx               = _mm256_mul_pd(fscal,dx00);
731             ty               = _mm256_mul_pd(fscal,dy00);
732             tz               = _mm256_mul_pd(fscal,dz00);
733
734             /* Update vectorial force */
735             fix0             = _mm256_add_pd(fix0,tx);
736             fiy0             = _mm256_add_pd(fiy0,ty);
737             fiz0             = _mm256_add_pd(fiz0,tz);
738
739             fjptrA             = f+j_coord_offsetA;
740             fjptrB             = f+j_coord_offsetB;
741             fjptrC             = f+j_coord_offsetC;
742             fjptrD             = f+j_coord_offsetD;
743             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
744
745             }
746
747             /* Inner loop uses 77 flops */
748         }
749
750         if(jidx<j_index_end)
751         {
752
753             /* Get j neighbor index, and coordinate index */
754             jnrlistA         = jjnr[jidx];
755             jnrlistB         = jjnr[jidx+1];
756             jnrlistC         = jjnr[jidx+2];
757             jnrlistD         = jjnr[jidx+3];
758             /* Sign of each element will be negative for non-real atoms.
759              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
760              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
761              */
762             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
763
764             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
765             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
766             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
767
768             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
769             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
770             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
771             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
772             j_coord_offsetA  = DIM*jnrA;
773             j_coord_offsetB  = DIM*jnrB;
774             j_coord_offsetC  = DIM*jnrC;
775             j_coord_offsetD  = DIM*jnrD;
776
777             /* load j atom coordinates */
778             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
779                                                  x+j_coord_offsetC,x+j_coord_offsetD,
780                                                  &jx0,&jy0,&jz0);
781
782             /* Calculate displacement vector */
783             dx00             = _mm256_sub_pd(ix0,jx0);
784             dy00             = _mm256_sub_pd(iy0,jy0);
785             dz00             = _mm256_sub_pd(iz0,jz0);
786
787             /* Calculate squared distance and things based on it */
788             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
789
790             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
791
792             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
793
794             /* Load parameters for j particles */
795             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
796                                                                  charge+jnrC+0,charge+jnrD+0);
797             vdwjidx0A        = 2*vdwtype[jnrA+0];
798             vdwjidx0B        = 2*vdwtype[jnrB+0];
799             vdwjidx0C        = 2*vdwtype[jnrC+0];
800             vdwjidx0D        = 2*vdwtype[jnrD+0];
801
802             /**************************
803              * CALCULATE INTERACTIONS *
804              **************************/
805
806             if (gmx_mm256_any_lt(rsq00,rcutoff2))
807             {
808
809             r00              = _mm256_mul_pd(rsq00,rinv00);
810             r00              = _mm256_andnot_pd(dummy_mask,r00);
811
812             /* Compute parameters for interactions between i and j atoms */
813             qq00             = _mm256_mul_pd(iq0,jq0);
814             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
815                                             vdwioffsetptr0+vdwjidx0B,
816                                             vdwioffsetptr0+vdwjidx0C,
817                                             vdwioffsetptr0+vdwjidx0D,
818                                             &c6_00,&c12_00);
819
820             /* EWALD ELECTROSTATICS */
821
822             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
823             ewrt             = _mm256_mul_pd(r00,ewtabscale);
824             ewitab           = _mm256_cvttpd_epi32(ewrt);
825             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
826             ewitab           = _mm_slli_epi32(ewitab,2);
827             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
828             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
829             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
830             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
831             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
832             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
833             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
834             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
835             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
836
837             /* LENNARD-JONES DISPERSION/REPULSION */
838
839             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
840             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
841             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
842             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
843             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
844
845             d                = _mm256_sub_pd(r00,rswitch);
846             d                = _mm256_max_pd(d,_mm256_setzero_pd());
847             d2               = _mm256_mul_pd(d,d);
848             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
849
850             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
851
852             /* Evaluate switch function */
853             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
854             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
855             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
856             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
857
858             fscal            = _mm256_add_pd(felec,fvdw);
859
860             fscal            = _mm256_and_pd(fscal,cutoff_mask);
861
862             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
863
864             /* Calculate temporary vectorial force */
865             tx               = _mm256_mul_pd(fscal,dx00);
866             ty               = _mm256_mul_pd(fscal,dy00);
867             tz               = _mm256_mul_pd(fscal,dz00);
868
869             /* Update vectorial force */
870             fix0             = _mm256_add_pd(fix0,tx);
871             fiy0             = _mm256_add_pd(fiy0,ty);
872             fiz0             = _mm256_add_pd(fiz0,tz);
873
874             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
875             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
876             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
877             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
878             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
879
880             }
881
882             /* Inner loop uses 78 flops */
883         }
884
885         /* End of innermost loop */
886
887         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
888                                                  f+i_coord_offset,fshift+i_shift_offset);
889
890         /* Increment number of inner iterations */
891         inneriter                  += j_index_end - j_index_start;
892
893         /* Outer loop uses 7 flops */
894     }
895
896     /* Increment number of outer iterations */
897     outeriter        += nri;
898
899     /* Update outer/inner flops */
900
901     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*78);
902 }